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Abstract

The recently proposed self-ensembling methods have

achieved promising results in deep semi-supervised learning,

which penalize inconsistent predictions of unlabeled data

under different perturbations. However, they only consider

adding perturbations to each single data point, while ignor-

ing the connections between data samples. In this paper,

we propose a novel method, called Smooth Neighbors on

Teacher Graphs (SNTG). In SNTG, a graph is constructed

based on the predictions of the teacher model, i.e., the im-

plicit self-ensemble of models. Then the graph serves as a

similarity measure with respect to which the representations

of “similar” neighboring points are learned to be smooth

on the low-dimensional manifold. We achieve state-of-the-

art results on semi-supervised learning benchmarks. The

error rates are 9.89%, 3.99% for CIFAR-10 with 4000 la-

bels, SVHN with 500 labels, respectively. In particular, the

improvements are significant when the labels are fewer. For

the non-augmented MNIST with only 20 labels, the error

rate is reduced from previous 4.81% to 1.36%. Our method

also shows robustness to noisy labels.

1. Introduction

As collecting a fully labeled dataset is often expensive and

time-consuming, semi-supervised learning (SSL) has been

extensively studied in computer vision to improve general-

ization performance of the classifier by leveraging limited

labeled data and a large amount of unlabeled data [9]. The

success of SSL relies on the key smoothness assumption, i.e.,

data points close to each other are likely to have the same

label. It has a special case named cluster or low density sep-

aration assumption, which states that the decision boundary

should lie in low density regions, not crossing high density

regions [10]. Based on these assumptions, many traditional

methods have been developed [22, 54, 51, 10, 4].

Recently due to the great advances of deep learning [25],

remarkable results have been achieved on SSL [24, 35, 40,

∗Corresponding author.

27]. Among these works, perturbation-based methods [37,

2, 35, 39, 27] have demonstrated great promise. Adding

noise to the deep model is important to reduce overfitting

and learn more robust abstractions, e.g., dropout [21] and

randomized data augmentation [13]. In SSL, perturbation

regularization aids by exploring the smoothness assumption.

For example, the Manifold Tangent Classifier (MTC) [37]

trains contrastive auto-encoders to learn the data manifold

and regularizes the predictions to be insensitive to local

perturbations along the low-dimensional manifold. Pseudo-

Ensemble [2] and Γ model in Ladder Network [35] evaluate

the classifiers with and without perturbations, which act

as a “teacher” and a “student”, respectively. The student

needs to predict consistently with the targets generated by

the teacher on unlabeled data. Following the same principle,

temporal ensembling, mean teacher and virtual adversarial

training [27, 46, 33] improve the target quality in different

ways to form better teachers. All these approaches aim to

fuse the inputs into coherent clusters by adding noise and

smoothing the mapping function locally [27].

However, these methods only consider the perturbations

around each single data point, while ignoring the connec-

tions between data points, therefore not fully utilizing the

information in the unlabeled data structure, such as clusters

or manifolds. An extreme situation may happen where the

function is smooth in the vicinity of each unlabeled point

but not smooth in the vacancy among them. This artifact

could be avoided if the unlabeled data structure is taken into

consideration. It is known that data points similar to each

other (e.g., in the same class) tend to form clusters (cluster

assumption). Therefore, the connections between similar

data points help the fusing of clusters become tighter and

more effective (see Fig. 5 for the visualization of real data).

Motivated by that, we propose Smooth Neighbors on

Teacher Graphs (SNTG) that considers the connections be-

tween data points to induce smoothness on the data manifold.

By learning a teacher graph based on the targets generated

by the teacher, our model encourages invariance when some

perturbations are added to the neighboring points on the

graph. Since deep networks have a hierarchical property,
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Figure 1: The structure of our model.

the top layer maps the inputs into a low-dimensional feature

space [5, 42, 29]. Given the teacher graph, SNTG makes the

learned features more discriminative by enforcing them to be

similar for neighbors and dissimilar for those non-neighbors.

The model structure is depicted in Fig. 1. We then propose a

doubly stochastic sampling algorithm to reduce the compu-

tational cost with large mini-batch sizes. Our method can be

applied with very little engineering effort to existing deep

SSL works including both generative and discriminative

approaches because SNTG does not introduce any extra net-

work parameters. We demonstrate significant performance

improvements over state-of-the-art results while the extra

time cost is negligible.

2. Related work

Using unlabeled data to improve generalization has a long

and rich history and the literature in SSL is vast [52, 9]. So in

this section we focus on reviewing the closely related papers,

especially the recent advances in SSL with deep learning.

Self-training methods iteratively use the current classi-

fier to label those unlabeled ones with high confidence [38].

Co-training [6, 34] uses a pair of classifiers with disjoint

views of data to iteratively learn and generate training labels.

Transductive SVMs [22] implement the cluster assumption

by keeping unlabeled data far away from the decision bound-

aries. Entropy minimization [19], a strong regularization

term commonly used, minimizes the conditional entropy

H (p (y|x)) to ensure that one instance is assigned to one

class with a high probability to avoid class overlap.

Graph-based Methods. Graph-based SSL methods [53,

54, 51] define the similarity of data points by a graph and

make predictions smooth with respect to the graph structure.

Many of them often optimize a supervised loss over labeled

data with a graph Laplacian regularizer [4, 18]. Label propa-

gation [53] pushes label information from a labeled instance

to its neighbors using a predefined distance metric. We em-

phasize that our work differs from these traditional methods

in the construction and utilization of the graph. Previous

work usually constructs the graph in advance using prior

knowledge or manual labeling and the graph remains fixed

in the following training process [4, 50]. This can lead to

several disadvantages as detailed in Sec. 4.2 and 5.3. Al-

though some works [49] establish the graph dynamically

during the classification, their performance is far from recent

state-of-the-art deep learning based methods.

Generative Approaches. Besides aforementioned dis-

criminative approaches, another line is generative models,

which pay efforts to learn the input distribution p(x) that

is believed to share some information with the conditional

distribution p(y|x) [28]. Traditional models such as Gaus-

sian mixtures [52] try to maximize the joint log-likelihood of

both labeled and unlabeled data using EM. For modern deep

generative models, variational auto-encoder (VAE) makes it

scalable by employing variational methods combined with

deep learning [24] while generative adversarial networks

(GAN) generate samples by optimizing an adversarial game

between the discriminator and the generator [43, 40, 11, 15].

The samples generated by GAN can be viewed as another

kind of “data augmentation” to “tell” the decision boundary

where to lie. For example, “fake” samples can be generated

in low density regions where the training data is rare [40, 15]

based on the low density separation assumption. Alterna-

tively, more “pseudo” samples could be generated in high

density regions to keep away from the decision boundary

thus improve the robustness of the classifier [11]. Our work

is complementary to these efforts and can be easily com-

bined with them. We observe improvements over feature

matching GAN [40] with SNTG (see Section 5.6).

3. Background

We consider the semi-supervised classification task,

where the training set D consists of N examples, out of

which L have labels and the others are unlabeled. Let

L = {(xi, yi)}
L
i=1 be the labeled set and U = {xi}

N
i=L+1

be the unlabeled set where the observation xi ∈ X and the

corresponding label yi ∈ Y = {1, 2, ...,K}. We aim to

learn a function f : X → [0, 1]K parameterized by θ ∈ Θ
by solving a generic optimization problem:

min
θ

L
∑

i=1

ℓ(f(xi; θ), yi) + λR(θ,L,U), (1)

where ℓ is a pre-defined loss function like cross-entropy loss

and f(x; θ) represents the predicted distribution p (y|x; θ).
Since only a small portion of training data is labeled (L≪
N ), the regularization term R is important to leverage unla-

beled data. Here, λ is a non-negative regularization parame-

ter that controls how strongly the regularization is penalized.

3.1. Perturbation­based methods

As mentioned earlier, the models in perturbation-

based methods assume a dual role, i.e., a teacher and

a student [30]. The training targets for the student are

generated by the teacher. Recent progresses focus on

improving the quality of targets by using self-ensembling

and exploring different perturbations [27, 46, 33], as

8897



summarized in [46]. Formally, self-ensembling meth-

ods [27, 46] fit in Eq. (1) by defining R as a consistency loss:

RC(θ,L,U) =

N
∑

i=1

Eξ′,ξ d
(

f̃(xi; θ
′, ξ′), f(xi; θ, ξ)

)

, (2)

where f̃ is a “noisy” teacher model with parameters θ′ and

random perturbations ξ′, similarly, f is a student model

with θ and ξ, and d(·, ·) denotes the divergence between the

two distributions. For example, d can be l2 distance or KL

divergence. The perturbations include the input noise and

the network dropout. The teacher is defined as an implicit

ensemble of previous student models and is expected to give

better predictions than the student. f̃(x) can be seen as

the training targets and the student is supposed to predict

consistently with f̃(x). Below are several ways to define the

teacher f̃ , which have proven effective in previous work [27,

46, 33].

Π model [27]. In order to alleviate the bias in the tar-

gets, Π model adds noise ξ′ to f̃ , which shares the same

parameters with f , i.e., θ′ = θ in Eq. (2). Π model evalu-

ates the network twice under different realizations of i.i.d.

perturbations ξ′ and ξ every iteration and minimizes their

l2 distance. We observe that, in this case, optimizing the

objective in Eq. (2) is equivalent to minimizing the variance

of the prediction. See details in Appendix B.

Temporal ensembling (TempEns) [27]. To reduce the

variance of targets, TempEns maintains an exponentially

moving average (EMA) of predictions over epochs as f̃ .

The ensemble output is defined as

F̃ (t)(xi) = αF̃ (t−1)(xi) + (1− α)f (t)(xi; θ, ξ), (3)

where f (t) : X → [0, 1]K is the prediction given by the

current student model at training epoch t and α is the mo-

mentum. The target given by f̃ for xi at epoch t is the

debias correction of F̃ (t), divided by factor (1 − αt), i.e.,

f̃ (t)(xi) = F̃ (t)(xi)/(1− αt). Since the target f̃(xi) ob-

tained in TempEns is based on EMA, the network only needs

to be evaluated once, leading to a speed-up for Π model.

Mean teacher (MT) [46]. Instead of averaging predic-

tions every epoch, MT updates the targets more frequently

to form a better teacher, i.e., it averages parameters θ every

iteration:
θ′ ← αθ′ + (1− α)θ. (4)

MT provides more accurate targets and enables learning

large datasets. It also evaluates the network twice, one by

teacher f̃(·; θ′, ξ′) and the other by student f(·; θ, ξ).
Virtual adversarial training (VAT) [33]. Instead of l2

distance, VAT defines R as the KL divergence between the

model prediction and that of the input under adversarial

perturbations ξ′adv:

RC(θ,L,U) =
N
∑

i=1

KL(f̃(xi; θ)‖f(xi; θ, ξ
′
adv)). (5)

It is assumed that a model trained under the worst-case (ad-

versarial) perturbations will generalize well [33]. Generally,

VAT is also in the framework of self-ensembling in the sense

of enforcing consistent predictions. VAT resembles Π model

but distinguishes itself in the distance metric and the type of

perturbations. f̃ in Eq. (5) can be seen as the teacher model

while f with ξ′adv is treated as the student model.

As these methods generate targets themselves, the teacher

model is likely to render incorrect targets. However, previous

results [27, 46] as well as ours (see Sec. 5.2 and 5.5) suggest

that the “teacher-student” models converge well and are

robust to incorrect labels. They mitigate the hazard by using

a better teacher and the balanced trade-off between ℓ and RC .

The success of these methods can be understood as indirectly

exploiting the low-density separation assumption because

the points near the decision boundaries are prone to alter

predictions under perturbations thus have large consistency

losses. The explicitly penalized RC will keep unlabeled data

far away from the decision boundaries in low density regions

and concentrated in high density regions.

4. Our approach

One common shortcoming of the perturbation-based

methods is that they regularize the output to be smooth near

a data point locally, while ignoring the cluster structure. We

address it by proposing a new SSL method, SNTG, that

enforces neighbors to be smooth, which is a stronger regular-

ization than only imposing smoothness at a single unlabeled

point. We show that SNTG contributes to form a better

teacher model, which is the focus of recent advances on

perturbation-based methods. In the following, we formalize

our approach by answering two key questions: (1) how to

define the graph and neighbors? and (2) how to induce the

smoothness of neighboring points using the graph?

4.1. Learning the graph with the teacher model

Most existing graph-based SSL methods [4, 50] depend

on a distance metric in the input space X , which is typically

low-level (e.g., pixel values of images). For natural images,

pixel distance cannot reflect semantic similarity well. In-

stead, we use the distance in the label space Y , and treat the

data points from the same class as neighbors. However, an

issue is that the true labels of unlabeled data are unknown.

We address it by learning a teacher graph using the targets

generated by the teacher model. Self-ensembling is a good

choice for constructing the graph because the ensemble pre-

dictions are expected to be more accurate than the outputs

of current classifier. Inspired by that, a teacher graph can

guide the student model to move in correct directions. A

comparison to other graphs could be found in Sec. 5.3.

Formally, for xi ∈ D, a target prediction f̃(xi) is given

by the teacher defined in the previous section. Denote the
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hard target as ỹi = argmaxk

[

f̃(xi)
]

k
where [·]k is the

k-th component of the vector, indicating the probability that

the example is of class k. We build the graph as follows:

Wij =

{

1 if ỹi = ỹj
0 if ỹi 6= ỹj

, (6)

where Wij measures the similarity between sample xi and

xj and those pairs with nonzero entries are treated as “neigh-

bors”. Here we simply restrict Wij ∈ {0, 1} to construct a

0-1 sparse graph. Other choices include computing the KL

divergence between the soft predictions f̃(xi) and f̃(xj).

4.2. Guiding the low­dimensional feature mapping

Given a graph, we clarify how to regularize neighbors

with smoothness. Generally, a deep classifier (i.e., the stu-

dent) f can be decomposed as f = g◦h, where h : X → R
p

is the mapping from the input space to the penultimate layer

and g : Rp → [0, 1]K is the output layer usually parameter-

ized by a fully-connected layer with softmax. Due to the

hierarchical nature of deep networks, h(x) can be seen as a

low-dimensional feature of the input. And the feature space

is expected to be linearly separable, as shown in the common

practice that a following linear classifier g suffices. In terms

of approximating the semantic similarity of two instances,

the Euclidean distance of h(xi) and h(xj) is more suitable

than that of f(x) which represents class probabilities. Hence

we use the graph to guide h(x) in the feature space, making

them distinguishable among classes.

Given a N ×N similarity matrix W of the sparse graph,

we define the SNTG loss as

RS(θ,L,U) =
∑

xi,xj∈D

ℓG(h(xi; θ), h(xj ; θ),Wij) (7)

The choice of ℓG is quite flexible, which is related to unsu-

pervised feature learning or clustering. Traditional choices

include multidimensional scaling [14], ISOMAP [47] and

Laplacian eigenmaps [3]. Here we utilize the contrastive

Siamese networks [8] since they are able to learn an invariant

mapping to a smooth and coherent feature space and perform

well in metric learning and face verification [20, 12, 45].

Specifically, the loss is defined as follows:

ℓG=

{

‖h(xi)− h(xj)‖
2 if Wij=1

max (0,m−‖h(xi)− h(xj)‖)
2

if Wij=0
(8)

where m > 0 is a pre-defined margin and ‖ · ‖ is Euclidean

distance. The margin loss is to constrain neighboring points

to have consistent features. Consequently, the neighbors

are encouraged to have consistent predictions while the non-

neighbors (i.e., the points of different classes) are pushed

apart from each other with a minimum distance m. Visual-

izations can be found in Section 5.4.

One interpretation of why the proposed method works

well is that SNTG explores more information in the teacher

and improves the target quality. The teacher graph leads

to better abstract representations in a smooth and coherent

feature space and then aids the student f to give more ac-

curate predictions. In turn, an improved student contributes

to a better teacher model which can provide more accurate

targets. Another perspective is that SNTG implements the

manifold assumption for classification which underlies the

loss ℓG, i.e., the points of same class are encouraged to con-

centrate together on sub-manifolds. The perturbation-based

methods only keep the decision boundaries far away from

each unlabeled data point while our method encourages the

unlabeled data points to form tighter clusters, leading the

decision boundaries to locate between the clusters.

We discuss the difference between SNTG and two early

works LPDGL [18] and EmbedNN [50]. For LPDGL, the

definition and the usage of local smoothness are both dif-

ferent from ours. LPDGL defines deformed Laplacian to

smooth the predictions of k neighbors in a local region while

our work enforces the features to be smooth by the con-

trastive loss in Eq. (8) w.r.t. the 0-1 teacher graph. For

EmbedNN, despite they also measure the embedding loss,

there are several key differences. First, inspired by Π model,

SNTG aims to induce more smoothness using neighbors

under perturbations, while EmbedNN is motivated by using

the embedding as an auxiliary task to help supervised tasks

and does not consider the robustness to perturbations. Sec-

ond, EmbedNN uses a fixed graph W defined by k-nearest-

neighbor (k-NN) based on the distance in X . Our method

takes a different approach using the teacher-generated tar-

gets in Y . As mentioned in Section 4.1, the pixel-level

distance in X may not reflect the semantic similarity as

well as that in Y for natural images. Third, once the graph

is built in EmbedNN, the fixed graph cannot leverage the

knowledge distilled by the classifier thus cannot be improved

any more, while SNTG jointly learns the classifier and the

teacher graph as stated above. Furthermore, on the time cost

and scalability, SNTG is faster than EmbedNN and can han-

dle large-scale datasets. k-NN in EmbedNN is slow for large

k and even more time-consuming for large-scale datasets.

We compute W in the much lower dimensional Y and use

the sub-sampling technique that is to be introduced next.

Experimental comparisons are in Section 5.3.

4.3. Doubly stochastic sampling approximation

Our overall objective is the sum of two components. The

first one is the standard cross-entropy loss on the labeled data,

and the second is the regularization term, which encourages

the smoothness for each single point (i.e., RC ) as well as for

the neighboring points (i.e., RS). Alg. 1 presents the pseudo-

code. Following [27], we use a ramp-up w(t) for both the

learning rate and the regularization term in the beginning.

As our model uses deep networks, we train it using

Stochastic Gradient Descent (SGD) [7] with mini-batches.
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Algorithm 1 Mini-batch training of SNTG for SSL

Require: xi = training inputs, yi for labeled inputs in L
Require: w(t) = unsupervised weight ramp-up function

Require: fθ(x) = neural network with parameters θ
1: for t in [1, numepochs] do

2: for each minibatch B do

3: fi ← fθ(xi∈B) evaluate network outputs

4: f̃i ← f̃(xi∈B) given by the teacher model

5: for (xi, xj) in a minibatch pairs S from B do

6: Compute Wij according to Eq. (6)

7: end for

8: loss← − 1
|B|

∑

i∈(B∩L) log[fi]yi

+w(t)
[

λ1
1

|B|

∑

i∈B d
(

f̃i, fi
)

+λ2
1
|S|

∑

i,j∈S ℓG(h(xi), h(xj),Wij)
]

9: update θ using optimizers, e.g., Adam [23]

10: end for

11: end for

12: return θ

We follow the common practice and construct the sub-graph

in a random mini-batch to estimate RS in Eq. (7). For a mini-

batch B of size n, we need to compute Wij for all the data

pairs (xi, xj) ∈ B, which is of size n2 in total. Although

this step is fast, the computation of ‖h(xi)− h(xj)‖ related

to Wij is O(p) and then the overall computational cost is

O(n2p), which is slow for large n. To reduce the computa-

tional cost, we instead use doubly stochastic sampled data

pairs to construct Wij and only use them to compute Eq. (8),

which is still an unbiased estimation of RS . Specifically,

in each iteration, we sample a mini-batch B and then sub-

sample s ≤ n2 data pairs S from B. Empirically, SNTG can

be incorporated into other SSL methods with not much extra

time cost. See Appendix A for details.

5. Experiments

This section presents both quantitative and qualitative re-

sults to demonstrate the effectiveness of SNTG. The purpose

of experiments is to show the improvements that come from

SNTG, using cutting-edge approaches as evidence. 1

5.1. Synthetic datasets

We first test on the well-known “two moons” and “four

spins” synthetic datasets where x ∈ R
2 and y ∈ {1, 2}

and y ∈ {1, 2, 3, 4}, respectively. Each dataset includes

6000 data points and the label ratio is 0.002 (i.e., only 12

data points are labeled). We use neural networks with three

hidden layers, each of size 100 with leaky ReLU α = 0.1
as suggested in CatGAN [43]. See Appendix A for details.

The results are visualized in Fig. 2, where we compare with

1Source code is at https://github.com/xinmei9322/SNTG.

(a) “two moons”, Π model (b) “two moons”, SNTG

(c) “four spins”, Π model (d) “four spins”, SNTG

Figure 2: Comparison between Π model (a,c) and SNTG

(b,d) on two synthetic datasets. The labeled data are marked

with the black cross. Different colors denote different classes.

The decision boundaries are shown for 2c and 2d.

Table 1: Error rates (%) on benchmark datasets without

augmentation, averaged over 10 runs.

Models MNIST

(L=100)

SVHN

(L=1000)

CIFAR-10

(L=4000)

CIFAR-100

(L=10000)

LadderNetwork [35] 0.89±0.50 – 20.40±0.47 –

CatGAN [43] 1.39±0.28 – 19.58±0.58 –

ImprovedGAN [40] 0.93±0.065 8.11±1.3 18.63±2.32 –

ALI [17] – 7.42±0.65 17.99±1.62 –

TripleGAN [11] 0.91±0.58 5.77±0.17 16.99±0.36 –

GoodBadGAN [15] 0.795±0.098 4.25±0.03 14.41±0.03 –

Π model [27] 0.89±0.15* 5.43±0.25 16.55±0.29 39.15±0.36

Π+SNTG (ours) 0.66±0.07 4.22±0.16 13.62±0.17 37.97±0.29

VAT [33] 1.36 5.77 14.82 –

VAT+Ent [33] – 4.28 13.15 –

VAT+Ent+SNTG

(ours)

– 4.02±0.20 12.49±0.36 –

Π model, a strong baseline that performs well with only

some failures. Specifically, in Fig. 2a, a small blob of data

is misclassified to green and in Fig. 2c, the tail of the green

spin is misclassified to red. The prediction of Π model is

supposed to be smooth enough at these areas because the

data points are in blobs. However, the Π model still fails to

identify them. For our SNTG, the classifications are both

correct in Fig. 2b and Fig. 2d due to effective utilization

of neighboring points’ structure. Compared to Fig. 2c, the

decision boundaries in Fig. 2d also align better with the spins.

These experiments demonstrate the effectiveness of SNTG.

5.2. Benchmark datasets

We then provide results on the widely adopted bench-

marks, MNIST, SVHN, CIFAR-10 and CIFAR-100. Fol-

lowing common practice [35, 40], we randomly sample 100,

1000 4000 and 10000 labels for MNIST, SVHN, CIFAR-10

8900
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Table 2: Error rates (%) on SVHN with translation augmentation, averaged over 10 runs.

Model 250 labels 500 labels 1000 labels All labels

Supervised-only [46] 42.65±2.68 22.08±0.73 14.46±0.71 2.81±0.07

Π model [27] 9.93±1.15* 6.65±0.53 4.82±0.17 2.54±0.04

Π+SNTG (ours) 5.07±0.25 4.52±0.30 3.82±0.25 2.42±0.05

TempEns [27] 12.62±2.91* 5.12±0.13 4.42±0.16 2.74±0.06

TempEns+SNTG (ours) 5.36±0.57 4.46±0.26 3.98±0.21 2.44±0.03

MT [46] 4.35±0.50 4.18±0.27 3.95±0.19 2.50±0.05

MT+SNTG (ours) 4.29±0.23 3.99±0.24 3.86±0.27 2.42±0.06

VAT [33] – – 5.42 –

VAT+Ent [33] – – 3.86 –

VAT+Ent+SNTG (ours) – – 3.83±0.22 –

Table 3: Error rates (%) on CIFAR-10 with standard augmentation, averaged over 10 runs.

Model 1000 labels 2000 labels 4000 labels All labels

Supervised-only [27] – – 34.85±1.65 6.05±0.15

Π model [27] 31.65±1.20* 17.57±0.44* 12.36±0.31 5.56±0.10

Π+SNTG (ours) 21.23±1.27 14.65±0.31 11.00±0.13 5.19±0.14

TempEns [27] 23.31±1.01* 15.64±0.39* 12.16±0.24 5.60±0.10

TempEns+SNTG (ours) 18.41±0.52 13.64±0.32 10.93±0.14 5.20±0.14

VAT [33] – – 11.36 5.81

VAT+Ent [33] – – 10.55 –

VAT+Ent+SNTG (ours) – – 9.89±0.34 –

and CIFAR-100, respectively. We further explore fewer la-

bels for the non-augmented MNIST as well as SVHN and

CIFAR-10 with standard augmentation. The results are aver-

aged over 10 runs with different seeds for data splits. Main

results are presented in Tables 1, 2, 3 and 4. The accuracy of

baselines are all taken from existing literature. In general, we

can see that our method surpasses previous state-of-the-arts

by a large margin.

All models are trained with the same network architec-

ture and hyper-parameters to our baselines, i.e., perturbation-

based methods described in Sec. 3.1. The SNTG loss only

needs three extra hyper-parameters: the regularization pa-

rameter λ2, the margin m and the number of sub-sampled

pairs s. We fix m and s, and only tune λ2. More details on

experimental setup can be found in Appendix A. For fair

comparison, we also report our best implementation under

the settings not covered in [27] (marked ∗).

Note that VAT is a much stronger baseline than Π model

and TempEns since it explores adversarial perturbation with

extra efforts and more time. VAT’s best results are achieved

with an additional entropy minimization (Ent) regulariza-

tion [19]. We evaluate our method under the best setting

VAT+Ent and observe a further improvement with SNTG,

e.g., from 13.15% to 12.49% and from 10.55% to 9.89%

on CIFAR-10 without or with augmentation, respectively.

In fact, we observed that Ent could also improve the per-

formance of other self-ensembling methods if it was added

Table 4: Error rates (%) on MNIST without augmentation.

Models 20 labels 50 labels 100 labels

ImprovedGAN [40] 16.77±4.52 2.21±1.36 0.93±0.065

Triple GAN [11] 4.81±4.95 1.56±0.72 0.91±0.58

Π model [27] 6.32±6.90* 1.02±0.37* 0.89±0.15*

Π+SNTG (Ours) 1.36±0.78 0.94±0.42 0.66±0.07

along with SNTG. But to keep the results clear and focus on

the efficacy of SNTG, we did not illustrate the results here.

As shown in Tables 2 and 3, when SNTG is applied to

the fully supervised setting (i.e., all labels are observed),

our method further reduces the error rates compared to self-

ensembling methods, e.g., from 5.56% to 5.19% on CIFAR-

10 for Π model. It suggests that supervised learning also

benefits from the additional smoothness and the learned

invariant feature space in SNTG.

Fewer labels. Notably, as shown in Tables 4, 2 and 3,

when labels are very scarce, e.g., MNIST with 20 labels

(only 2 labeled samples per class), SVHN with 250 labels

and CIFAR-10 with 1000 labels, the benefits provided by

SNTG are even more significant. The SNTG regularizer

empirically reduces the overfitting on the small set of labeled

data and thus yields better generalization.

Ablation study. Our reported results are based on adding

SNTG loss RS to baselines, and the overall objective has

already included the consistency loss RC (See Alg. 1, line
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Table 5: Ablation study on CIFAR-10 with 4000 labels with-

out augmentation. LS denotes the supervised loss (the first

term in Eq. 1), and RC and RS are defined in text. LS+RC

equals to Π model and LS+RC+RS equals to Π+SNTG.

Settings LS LS+RC LS+RS LS+RC+RS

Error (%) 35.56 16.55 15.36 13.62

9). To quantify the effectiveness of our method, Table 5

presents the evaluation of Π+SNTG compared to its ablated

versions. The error rate of Π model, which only uses RC , is

16.55%. However, using RS alone yields a lower error rate

of 15.36%. Thus, RS considering the neighbors proves to

be a strong regularization, comparable or even favorable to

RC , and they are also complementary.

Convergence. A potential concern of our method is the

convergence, since the information in a teacher graph is

likely to be inaccurate at the beginning of training. However,

we did not observe any divergent cases in all experiments.

Empirically, the teacher model is usually a little better than

the student in training. Furthermore, the ramp-up w(t) is

used to balance the trade-off between the supervised loss

and regularization, which is important for the convergence

as described in previous works [27, 46]. Using the ramp-

up weighting mechanism, the supervised loss dominates

the learning in earlier training. As the training continues,

the student model has more confidence in the information

given by the teacher model, i.e., the target predictions and

the graph, which gradually contributes more to the learning

process. Fig. 3 shows that our model converges well.

5.3. Comparison to EmbedNN and other graphs

As our graph is learned based on the predictions in Y
given by the teacher model, we further compare to other

graphs. We test them on CIFAR-10 using 4000 labels with-

out augmentation and share all the same hyper-parameter

settings with Π model except the definition of W . The first

baseline is a fixed graph defined by k-NN in X—Following

EmbedNN [50], W is predefined so that 10 nearest neighbors

of xi have Wij = 1, and Wij = 0 otherwise. The second

one is another fixed graph in Y—Since only a small portion

of labels are observed on training data in SSL, we construct

the graph based on the predictions of a pre-trained Π model

on training data. Fig. 3 shows that our model outperforms

other graphs. The test error rate of the baseline Π model is

16.55%. Using k-NN in X gives a marginal improvement

to 16.13%. Using the predictions in pre-trained Π model to

construct a 0-1 fixed graph, the error rate is 15.71%. Using

our method, learning a teacher graph from scratch, Π+SNTG

achieves superior result with 13.62% error rate.

Note that Π model is a strong baseline surpassing most

previous methods. For natural images like CIFAR-10, the

pixel-level distance provides limited information for the sim-

ilarity thus k-NN graph in X does not improve the strong

baseline. The reason of the performance gap to the second

one lies in that using a fixed graph in Y is more like “pre-

training” while using teacher graph is like “joint-training”.

The teacher graph becomes better using the information ex-

tracted by the teacher and then benefits it in turn. However,

the fixed graphs cannot receive feedbacks from the model in

the training and all the information is from the pre-training

or prior knowledge. Empirical results support our analysis.
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Figure 3: Comparison to the fixed graphs on CIFAR-10 with

4000 labels without augmentation.

5.4. Visualization of embeddings

We visualize the embeddings of our algorithm and Π
model on test data under the same settings (CIFAR-10 with

4000 labels and MNIST with 100 labels, both without aug-

mentation). We implemented it using TensorBoard in Ten-

sorFlow [1]. Fig. 5 shows the representations h(x) ∈ R
128

projected to 2 dimension using PCA or tSNE [32]. The

learned representations of our model are more concentrated

within clusters and are potentially easier to separate for dif-

ferent classes. The visualization is also consistent with our

assumption and analysis.

5.5. Robustness to noisy labels

We finally show that SNTG can not only benefit from

unlabeled data, but also learn from noisy supervision. Fol-

lowing [27], we did extra experiments on supervised SVHN

to show the tolerance to incorrect labels. Certain percent-

ages of true labels on the training set are replaced by random

labels. Fig. 4 shows that TempEns+SNTG retains over 93%

accuracy even when 90% of the labels are noisy while Tem-

pEns alone only obtains 73% accuracy [27]. With standard

supervised training, the model suffers a lot and overfits to

the incorrect information in labels. Thus, our SNTG regu-

larization improves the robustness and generalization per-

formance of the model. Previous work [36] also shows that

self-generated targets yield robustness to label noise.

5.6. Feature matching GAN benefits from SNTG

Recently, the feature matching (FM) GAN in Improved

GAN [40] has performed well for SSL but usually generates
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Figure 4: Test accuracy on supervised SVHN with noisy labels. Different colors denote the percentages of corrupted labels.

With standard supervised training (left), the model suffers a lot and overfits to the incorrect information in labels. TempEns

(middle) shows the resistance to the corruption but still has a drop in accuracy when the portion of randomized labels increases

to 90%. Adding SNTG shows almost perfect robustness even when 90% labels are corrupted.

(a) CIFAR-10, Π model (b) CIFAR-10, SNTG

(c) MNIST, Π model (d) MNIST, SNTG

Figure 5: (a, b) are the embeddings of CIFAR-10 test data

projected to 2-D using PCA. (c, d) are the 2-D embeddings

of MNIST test data using t-SNE. Each color denotes a class.

In (b, d) with SNTG, the embeddings of each class form

a tight and concentrated cluster. In (c) without SNTG, the

cluster of the same class are divided into several parts.

images with strange patterns. Some works have been done

to analyze the reasons [15, 11, 26]. An interesting finding

is that our method can also alleviate the problem. Fig. 6

presents the comparison between the samples generated in

FM GAN [40] and FM GAN+SNTG. Apart from improv-

ing the generated sample quality of FM GAN, SNTG also

reduces the error rate. FM GAN achieves 18.63% on CIFAR-

10 with 4000 labels. We regularize the features of unlabeled

data using SNTG and observe an improvement to 14.93%,

which is comparable to the state-of-the-art 14.41% in deep

generative models [15].

In FM GAN, the objective for the generator is defined as

‖Ex∼pdata
h(x)− Ex∼pG

h(x)‖22, (9)

(a) FM GAN (b) FM GAN+SNTG

Figure 6: Comparison of generated images in SSL on

CIFAR-10 with FM GAN [40], original in their paper (left)

and with our SNTG loss (right). FM GAN has strange and

repeated patterns in the samples. Adding SNTG, the quality

and diversity of generated samples are improved.

which is similar to the neighboring case when Wij = 1 in

Eq. (8). In our opinion, SNTG helps shape the feature space

better so that the generator could capture the data distribution

by matching only the mean of features.

6. Conclusions and future work

We present a simple but effective SNTG, which regu-

larizes the neighboring points on a learned teacher graph.

Empirically, it outperforms all baselines and achieves new

state-of-the-art results on several datasets. As a byproduct,

we also learn an invariant mapping on a low-dimensional

manifold. SNTG offers additional benefits such as handling

extreme cases with fewer labels and noisy labels. In fu-

ture work, it is promising to do more theoretical analysis of

our method and to explore its combination with generative

models as well as applications to large-scale datasets, e.g.,

ImageNet with more classes.
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