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Abstract

Previous deep learning based state-of-the-art scene text

detection methods can be roughly classified into two cate-

gories. The first category treats scene text as a type of gen-

eral objects and follows general object detection paradigm

to localize scene text by regressing the text box locations,

but troubled by the arbitrary-orientation and large aspect

ratios of scene text. The second one segments text regions

directly, but mostly needs complex post processing. In this

paper, we present a method that combines the ideas of the

two types of methods while avoiding their shortcomings.

We propose to detect scene text by localizing corner points

of text bounding boxes and segmenting text regions in rel-

ative positions. In inference stage, candidate boxes are

generated by sampling and grouping corner points, which

are further scored by segmentation maps and suppressed

by NMS. Compared with previous methods, our method

can handle long oriented text naturally and doesn’t need

complex post processing. The experiments on ICDAR2013,

ICDAR2015, MSRA-TD500, MLT and COCO-Text demon-

strate that the proposed algorithm achieves better or com-

parable results in both accuracy and efficiency. Based on

VGG16, it achieves an F-measure of 84.3% on ICDAR2015

and 81.5% on MSRA-TD500.

1. Introduction

Recently, extracting textual information from natural

scene images has become increasingly popular, due to the

growing demands of real-world applications (e.g., product

search [4], image retrieval [20], and autonomous driving).

Scene text detection, which aims at locating text in natu-

ral images, plays an important role in various text reading

systems [35, 11, 50, 6, 21, 52, 5, 42, 41, 14, 8, 26].

Scene text detection is challenging due to both external

and internal factors. The external factors come from the en-
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Figure 1. The images in top row and bottom row are the predicted

corner points and position-sensitive maps in top-left, top-right,

bottom-right, bottom-left order, respectively.

vironment, such as noise, blur and occlusion, which are also

major problems disturbing general object detection. The

internal factors are caused by properties and variations of

scene text. Compared with general object detection, scene

text detection is more complicated because: 1) Scene text

may exist in natural images with arbitrary orientation, so

the bounding boxes can also be rotated rectangles or quad-

rangles; 2) The aspect ratios of bounding boxes of scene text

vary significantly; 3) Since scene text can be in the form of

characters, words, or text lines, algorithms might be con-

fused when locating the boundaries.

In the past few years, scene text detection has been

widely studied [58, 11, 6, 53, 21, 46, 56, 40, 45] and has

achieved obvious progresses recently, with the rapid devel-

opment of general object detection and semantic segmenta-

tion. Based on general object detection and semantic seg-

mentation models, several well-designed modifications are

made to detect text more accurately. Those scene text detec-

tors can be split into two branches. The first branch is based

on general object detectors (SSD [31], YOLO [38] and

DenseBox [19]), such as TextBoxes [28], FCRN [15] and

EAST [57] etc., which predict candidate bounding boxes

directly. The second branch is based on semantic segmen-

tation, such as [56] and [54], which generate segmentation

maps and produce the final text boxes by post-processing.

Different from previous methods, in this paper we com-

bine the ideas of object detection and semantic segmenta-

tion and apply them in an alternative way. Our motivations

mainly come from two observations: 1) a rectangle can be

determined by corner points, regardless of the size, aspect

ratio or orientation of the rectangle; 2) region segmenta-
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Figure 2. Overview of our method. Given an image, the network outputs corner points and segmentation maps by corner detection and

position-sensitive segmentation. Then candidate boxes are generated by sampling and grouping corner points. Finally, those candidate

boxes are scored by segmentation maps and suppressed by NMS.

tion maps can provide effective location information of text.

Thus, we first detect the corner points (top-left, top-right,

bottom-right, bottom-left, as shown in Fig. 1) of text region

rather than text boxes directly. Besides, we predict position-

sensitive segmentation maps (shown in Fig. 1) instead of a

text/non-text map as in [56] and [54]. Finally, we generate

candidate bounding boxes by sampling and grouping the de-

tected corner points and then eliminate unreasonable boxes

by segmentation information. The pipeline of our proposed

method is depicted in Fig. 2.

The key advantages of the proposed method are as fol-

lows: 1) Since we detect scene text by sampling and

grouping corner points, our approach can naturally han-

dle arbitrary-oriented text; 2) As we detect corner points

rather than text bounding boxes, our method can sponta-

neously avoid the problem of large variation in aspect ra-

tio; 3) With position-sensitive segmentation, it can segment

text instances well, no matter the instances are characters,

words, or text lines; 4) In our method, the boundaries of

candidate boxes are determined by corner points. Com-

pared with regressing text bounding box from anchors (

[28, 33]) or from text regions ([57, 17]), the yielded bound-

ing boxes are more accurate, particularly for long text.

We validate the effectiveness of our method on horizon-

tal, oriented, long and oriented text as well as multi-lingual

text from public benchmarks. The results show the ad-

vantages of the proposed algorithm in accuracy and speed.

Specifically, the F-Measures of our method on ICDAR2015

[23], MSRA-TD500 [53] and MLT [2] are 84.3%, 81.5%
and 72.4% respectively, which outperform previous state-

of-the-art methods significantly. Besides, our method is also

competitive in efficiency. It can process more than 10.4 im-

ages (512x512 in size) per second.

The contributions of this paper are four-fold: (1) We pro-

pose a new scene text detector that combines the ideas of ob-

ject detection and segmentation, which can be trained and

evaluated end-to-end. (2) Based on position-sensitive ROI

pooling [10], we propose a rotated position-sensitive ROI

average pooling layer that can handle arbitrary-oriented

proposals. (3) Our method can simultaneously handle the

challenges (such as rotation, varying aspect ratios, very

close instances) in multi-oriented scene text, which are suf-

fered by previous methods. (4) Our method achieves better

or competitive results in both accuracy and efficiency.

2. Related Work

2.1. Regression Based Text Detection

Regression based text detection has become the main-

stream of scene text detection in the past two years. Based

on general object detectors, several text detection methods

were proposed and achieved substantial progress. Originat-

ing from SSD [31], TextBoxes [28] use “long” default boxes

and “long” convolutional filters to cope with the extreme as-

pect ratios. Similarly, in [33] Ma et al. utilize the architec-

ture of Faster-RCNN [39] and add rotated anchors in RPN

to detect arbitrary-oriented scene text. SegLink [40] pre-

dicts text segments and the linkage of them in a SSD style

network and links the segments to text boxes, in order to

handle long oriented text in natural scene. Based on Dense-

Box [19], EAST [57] regresses text boxes directly.

Our method is also adapted from a general object detec-

tor DSSD [12]. But unlike the above methods that regress

text boxes or segments directly, we propose to localize the

positions of corner points, and then generate text boxes by

sampling and grouping the detected corners.

2.2. Segmentation Based Text Detection

Segmentation based text detection is another direction of

text detection. Inspired by FCN [32], some methods are

proposed to detect scene text by using segmentation maps.

In [56], Zhang et al. first attempt to extract text blocks from

a segmentation map by a FCN. Then they detect characters

in those text blocks with MSER [35] and group the char-

acters to words or text lines by some priori rules. In [54],

Yao et al. use a FCN to predict three types of maps (text re-

gions, characters, and linking orientations) of the input im-

ages. Then some post-processings are conducted to obtain
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text bounding boxes with the segmentation maps.

Different from the previous segmentation based text

detection methods, which usually need complex post-

processing, our method is simpler and clearer. In infer-

ence stage, the position-sensitive segmentation maps are

used to score the candidate boxes by our proposed Rotated

Position-Sensitive Average ROI Pooling layer.

2.3. Corner Point Based General Object Detection

Corner point based general object detection is a new

stream of general object detection methods. In DeNet [48],

Tychsen-Smith et al. propose a corner detect layer and a

sparse sample layer to replace RPN in a Faster-RCNN style

two-stage model. In [51], Wang et al. propose PLN (Point

Linking Network) which regresses the corner/center points

of bounding-box and their links using a fully convolutional

network. Then the bounding boxes of objects are formed

using the corner/center points and their links.

Our method is inspired by those corner point based ob-

ject detection methods, but there are key differences. First,

the corner detector of our method is different. Second, we

use segmentation map to score candidate boxes. Third, it

can produce arbitrary-oriented boxes for objects (text).

2.4. Position­Sensitive Segmentation

Recently, instance-aware semantic segmentation meth-

ods are proposed with position-sensitive maps. In [9], Dai et

al. first introduce relative position to segmentation and pro-

pose InstanceFCN for instance segment proposal. In FCIS

[27], with the assistance of position-sensitive inside/outside

score maps, Li et al. propose an end-to-end network for

instance-aware semantic segmentation.

We also adopt position-sensitive segmentation maps to

predict text regions. Compared with the above-mentioned

methods, there are three key differences: 1) We optimize the

network with position-sensitive ground truth directly (de-

tailed in Sec 4.1.1); 2) Our position-sensitive maps can be

used to predict text regions and score proposals simultane-

ously (detailed in Sec 4.2.2), different from FCIS which

uses two types of position-sensitive maps (inside and out-

side); 3) Our proposed Rotated Position-Sensitive ROI Av-

erage Pooling can handle arbitrary-oriented proposals.

3. Network

The network of our method is a fully convolutional net-

work that plays the roles of feature extraction, corner detec-

tion and position-sensitive segmentation. The network ar-

chitecture is shown in Fig. 3. Given an image, the network

produces candidate corner points and segmentation maps.

3.1. Feature Extraction

The backbone of our model is adapted from a pre-trained

VGG16 [44] network and designed with the following con-

siderations: 1) the size of scene text varies hugely, so the

backbone must has enough capacity to handle this problem

well; 2) backgrounds in natural scenes are complex, so the

features should better contain more context. Inspired by the

good performance achieved on those problem by FPN [29]

and DSSD [12], we adopt the backbone in FPN/DSSD ar-

chitecture to extract features.

In detail, we convert the fc6 and fc7 in the VGG16 to

convolutional layers and name them conv6 and conv7 re-

spectively. Then several extra convolutional layers (conv8,

conv9, conv10, conv11) are stacked above conv7 to en-

large the receptive fields of extracted features. After that,

a few deconvolution modules proposed in DSSD [12] are

used in a top-down pathway (Fig. 3). Particularly, to de-

tect text with different sizes well, we cascade deconvolution

modules with 256 channels from conv11 to conv3 (the fea-

tures from conv10, conv9, conv8, conv7, conv4, conv3 are

reused), and 6 deconvolution modules are built in total. In-

cluding the features of conv11, we name those output fea-

tures F3, F4, F7, F8, F9, F10 and F11 for convenience. In

the end, the feature extracted by conv11 and deconvolution

modules which have richer feature representations are used

to detect corner points and predict position-sensitive maps.

3.2. Corner Detection

For a given rotated rectangular bounding box

R = (x, y, w, h, θ), there are 4 corner points

(top-left, top-right, bottom-right, bottom-left) and

can be represented as two-dimensional coordinates

{(x1, y1), (x2, y2), (x3, y3), (x4, y4)} in a clockwise

direction. To expediently detect corner points, here we

redefine and represent a corner point by a horizontal square

C = (xc, yc, ss, ss), where xc, yc are the coordinate of a

corner point (such as x1, y1 for top-left point) as well as the

center of the horizontal square. ss is the length short side

of the rotated rectangular bounding box R.

Following SSD and DSSD, we detect corner points with

default boxes. Different from the manner in SSD or DSSD

where each default box outputs the classification scores and

offsets of the corresponding candidate box, corner point de-

tection is more complex because there might be more than

one corner points in the same location (such as a location

can be the bottom-left corner and top-right corner of two

boxes simultaneously). So in our case, a default box should

output classification scores and offsets for 4 candidate boxes

corresponding to the 4 types of corner points.

We adapt the prediction module proposed in [12] to pre-

dict scores and offsets in two branches in a convolutional

manner. In order to reduce the computational complexity,

the filters of all convolutions are set to 256. For an m × n

feature map with k default boxes in each cell, the “score”

branch and “offset” branch output 2 scores and 4 offsets re-

spectively for each type of corner point of each default box.
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Figure 3. Network Architecture. The network contains three parts: backbone, conner point detector and position-sensitive segmentation

predictor. The backbone is adapted from DSSD [12]. Conner point detectors are built on multiple feature layers (blocks in pink). position-

sensitive segmentation predictor shares some features (pink blocks) with corner point detectors.

Here, 2 for “score” branch means whether a corner point

exists in this position. In total, the output channels of the

”score” branch and the “offset” branch are k × q × 2 and

k × q × 4, where q means the type of corner points. By

default, q is equal to 4.

In the training stage, we follow the matching strategy

of default boxes and ground truth ones in SSD. To detect

scene text with different sizes, we use default boxes of mul-

tiple sizes on multiple layer features. The scales of all de-

fault boxes are listed in Table 1. The aspect ratios of default

boxes are set to 1.

3.3. Position­Sensitive Segmentation

In the previous segmentation based text detection meth-

ods [56, 54], a segmentation map is generated to repre-

sent the probability of each pixel belonging to text regions.

However those text regions in score map always can not be

separated from each other, as a result of the overlapping of

text regions and inaccurate predictions of text pixels. To get

the text bounding boxes from the segmentation map, com-

plex post-processing are conducted in [56, 54].

Inspired by InstanceFCN [9], we use position-sensitive

segmentation to generate text segmentation maps. Com-

pared with previous text segmentation methods, relative po-

sitions are generated. In detail, for a text bounding box R,

a g × g regular grid is used to divide the text bounding box

into multiple bins (i.e., for a 2 × 2 grid, a text region can

be split into 4 bins, that is top-left, top-right, bottom-right,

bottom-left). For each bin, a segmentation map is used to

determine whether the pixels in this map belong to this bin.

We build position-sensitive segmentation with corner

point detection in a unified network. We reuse the fea-

tures of F3, F4, F7, F8, F9 and build some convolutional

blocks on them follow the residual block architecture of

corner point detection branch (Shown in Fig. 3). All out-

puts of those blocks are resized to the scale of F3 by bilin-

ear upsampling with the scale factors set to 1, 2, 4, 8, 16.

Then all those outputs with the same scale are added to-

gether to generate richer features. We further enlarge the

resolution of fused features by two continuous Conv1x1-

BN-ReLU-Deconv2x2 blocks and set the kernels of the last

deconvolution layer to g×g. So, the final position-sensitive

segmentation maps have g × g channels and the same size

as the input images. In this work, we set g to 2 in default.

4. Training and Inference

4.1. Training

4.1.1 Label Generation

For an input training sample, we first convert each text box

in ground truth into a rectangle that covers the text box re-

gion with minimal area and then determine the relative po-

sition of 4 corner points.

We determine the relative position of a rotated rectan-

gle by the following rules: 1) the x-coordinates of top-

left and bottom-left corner points must less than the x-

coordinates of top-right and bottom-right corner points; 2)

the y-coordinates of top-left and top-right corner points

must less than the y-coordinates of bottom-left and bottom-

right corner points respectively. After that, the original

ground truth can be represented as a rotated rectangle with

relative position of corner points. For convenience, we term

the rotated rectangle R = {Pi|i ∈ {1, 2, 3, 4}}, where

Pi = (xi, yi) are the corner points of the rotated rectangle

in top-left, top-right, bottom-right, bottom-left order.

We generate the label of corner point detection and
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layer F3 F4 F7 F8 F9 F10 F11

scales 4, 8, 6, 10, 12, 16 20, 24, 28, 32 36, 40, 44, 48 56, 64, 72, 80 88, 96, 104, 112 124, 136, 148, 160 184, 208, 232, 256

Table 1. Scales of default boxes on different layers.

                  (a)                                              (b)
Figure 4. Label generation for corner points detection and

position-sensitive segmentation. (a) Corner points are redefined

and represented by squares (boxes in white, red, green, blue) with

the side length set as the short side of text bounding box R (yel-

low box). (b) Corresponding ground truth of R in (a) for position-

sensitive segmentation.

position-sensitive segmentation using R. For corner point

detection, we first compute the short side of R and repre-

sent the 4 corner points by horizontal squares as shown in

Fig. 4 (a). For position-sensitive segmentation, we generate

pixel-wise masks of text/non-text with R. We first initialize

4 masks with the same scale as the input image and set all

pixel value to 0. Then we divide R into four bins with a

2 × 2 regular grid and assign each bin to a mask, such as

top-left bin to the first mask. After that, we set the value of

all pixels in those bins to 1, as shown in Fig. 4 (b).

4.1.2 Optimization

We train the corner detection and position-sensitive seg-

mentation simultaneously. The loss function is defined as:

L =
1

Nc

Lconf +
λ1

Nc

Lloc +
λ2

Ns

Lseg (1)

where Lconf and Lloc are the loss functions of the score

branch for predicting confidence score and the offset branch

for localization in the module of corner point detection.

Lseg is the loss function of position-sensitive segmentation.

Nc is the number of positive default boxes, Ns is the num-

ber of pixels in segmentation maps. Nc and Ns are used to

normalize the losses of corner point detection and segmen-

tation. λ1 and λ2 are the balancing factors of the three tasks.

In default, we set the λ1 to 1 and λ2 to 10.

We follow the matching strategy of SSD and train the

score branch using Cross Entropy loss:

Lconf = CrossEntropy(yc, pc) (2)

where yc is the ground truth of all default boxes, 1 for

positive and 0 otherwise. pc is the predicted scores. In con-

sideration of the extreme imbalance between positive and

negative samples, the category homogenization is neces-

sary. We use the online hard negative mining proposed in

[43] to balance training samples and set the ratio of posi-

tives to negatives to 1 : 3.

For the offset branch, we regress the offsets relative to

default boxes as Fast RCNN [13] and optimize them with

Smooth L1 loss:

Lloc = SmoothL1(yl, pl) (3)

where yl is the ground truth of offset branch and pl is

the predicted offsets. The yl can be calculated by a default

box B = (xb, yb, ssb, ssb) and a corner point box C =
(xc, yc, ssc, ssc) as [13].

We train position-sensitive segmentation by minimizing

the Dice loss [34]:

Lseg = 1−
2ysps
ys + ps

(4)

Where ys is the label of position-sensitive segmentation and

ps is the prediction of our segmentation module.

4.2. Inference

4.2.1 Sampling and Grouping

In inference stage, many corner points are yielded with the

predicted location, short side and confidence score. Points

with high score (great than 0.5 in default) are kept. After

NMS, 4 corner point sets are composed based on relative

position information.

We generate the candidate bounding boxes by sampling

and grouping the predicted corner points. In theory, a ro-

tated rectangle can be constructed by two points and a

side perpendicular to the line segment made up by the two

points. For a predicted point, the short side is known, so

we can form a rotated rectangle by sampling and grouping

two corner points in corner point sets arbitrarily, such as

(top-left, top-right), (top-right, bottom-right), (bottom-left,

bottom-right) and (top-left, bottom-left) pairs.

Several priori rules are used to filter unsuitable pairs: 1)

the relative positional relations can not be violated, such as

the x-coordinate of top-left point must less than that of top-

right point in (top-left, top-right) pair; 2) the shortest side

of the constructed rotated rectangle must be greater than a

threshold (the default is 5); 3) the predicted short sides ss1
and ss2 of the two points in a pair must satisfy:

max(ss1, ss2)

min(ss1, ss2)
≤ 1.5 (5)

4.2.2 Scoring

A large number of candidate bounding boxes can be gener-

ated after sampling and grouping corner points. Inspired

by InstanceFCN[9] and RFCN [10], we score the candi-

date bounding boxes by the position-sensitive segmentation

maps. The processes are shown in Fig. 5.

To handle the rotated text bounding boxes, we adapt the

Position-Sensitive ROI pooling layer in [10] and propose
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Figure 5. Overview of the scoring process. The yellow boxes in

(a) are candidate boxes. (b) are predicted segmentation maps. We

generate instance segment (c) of candidate boxes by assembling

the segmentation maps as [9]. Scores are calculated by averaging

the instance segment regions.

Rotated Position-Sensitive ROI Average pooling layer.

Specifically, for a rotated box, we first split the box into

g × g bins. Then we generate a rectangle for each bin with

the minimum area to cover the bin. We loop over all pixels

in the minimum rectangle and calculate mean value of all

pixels which in the bin. In the end, the score of a rotated

bounding box is obtained by averaging the means of g × g

bins. The specific processes are shown in Algorithm 1.

Algorithm 1 Rotated Position-Sensitive ROI Average Pool-

ing

Input: rotated bounding box B, g × g regular grid G,

Segmentation maps S

1: Generating Bins by spitting B with G.

2: M ← 0, i← 0
3: for i in range(g × g) do

4: bin← Bins[i], C ← 0, P ← 0,

5: R←MiniRect(bin)
6: for pixel in R do

7: if pixel in bin then

8: C ← C + 1, P ← P +G[i][pixel].value

9: M ←M + P
C

10: score← M
g×g

11: return score

The candidate boxes with low score will be filtered out.

We set the threshold τ to 0.6 by default.

5. Experiments

To validate the effectiveness of the proposed method, we

conduct experiments on five public datasets: ICDAR2015,

ICDAR2013, MSRA-TD500, MLT, COCO-Text, and com-

pare with other state-of-the-art methods.

5.1. Datasets

SynthText [15] is a synthetically generated dataset

which consists of about 800000 synthetic images. We use

the dataset with word level labels to pre-train our model.

ICDAR2015 is a dataset proposed in the Challenge 4 of

the 2015 Robust Reading Competition [23] for incidental

scene text detection. There are 1000 images for training

and 500 images for testing with annotations labeled as word

level quadrangles.

ICDAR2013 is a dataset proposed in the Challenge 2

of the 2013 Robust Reading Competition [24] focuses on

horizontal text in scene. It contains 229 images for training

and 233 images for testing.

MSRA-TD500 [53] is a dataset collected for detecting

arbitrary-oriented long text lines. It consists of 300 training

images and 200 test images with text line level annotations.

MLT is a dataset that proposed on ICDAR2017 Compe-

tition [2] and focuses on the multi-oriented, multi-script and

multi-lingual aspects of scene text. It consists of 7200 train-

ing images, 2000 validation images and 9000 test images.

COCO-Text [49] is a large scale scene text dataset

which comes from the MS COCO dataset [30]. There are

63686 images are annotated and two versions of annotations

and splits (V1.1 and V1.4) are released by the official. Pre-

vious methods are all evaluated on V1.1 and the new V1.4

are used on ICDAR2017 Competition [1].

5.2. Implementation Details

Training Our model is pre-trained on SynthText then

finetuned on other datasets (except COCO-Text). We use

Adam [25] to optimize our model with the learning rate

fixed to 1e − 4. In pre-train stage, we train our model on

SynthText for one epoch. During finetuning stage, the num-

ber of iterations are decided by the sizes of datasets.

Data Augmentation We use the same way of data aug-

mentation as SSD. We randomly sample a patch from the

input image in the manner of SSD, then resize the sampled

patch to 512× 512.

Post Processing NMS is the last post processing step of

our method. We set the threshold of NMS to 0.3.

Our method is implemented in PyTorch [3]. All the ex-

periments are conducted on a regular workstation (CPU: In-

tel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz; GPU:Titan

Pascal; RAM: 64GB). We train our model with the batch

size of 24 on 4 GPUs in parallel and evaluate our model on

1 GPU with batch size set as 1.

5.3. Detecting Oriented Text

We evaluate our model on the ICDAR2015 dataset to test

its ability of arbitrarily oriented text detection. We fine-

tune our model another 500 epochs on the datasets of IC-

DAR2015 and ICDAR2013. Note that, to detect vertical
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Figure 6. Examples of detection results. From left to right in columns: ICDAR2015, ICDAR2013, MSRA-TD500, MLT, COCO-Text.

Method Precision Recall F-measure FPS

Zhang et al. [56] 70.8 43.0 53.6 0.48

CTPN [47] 74.2 51.6 60.9 7.1

Yao et al. [54] 72.3 58.7 64.8 1.61

SegLink [40] 73.1 76.8 75.0 -

EAST [57] 80.5 72.8 76.4 6.52

SSTD [16] 80.0 73.0 77.0 7.7

baseline 66.0 44.7 53.3 4.5

ours 94.1 70.7 80.7 3.6

EAST ∗ † [57] 83.3 78.3 80.7 -

WordSup ∗ [18] 79.3 77.0 78.2 2

He et al. ∗ † [17] 82.0 80.0 81.0 1.1

ours∗ 89.5 79.7 84.3 1

Table 2. Results on ICDAR2015. ∗ means multi-scale, † stands for

the base net of the model is not VGG16.

text better, in the last 15 epochs, we randomly rotate the

sampled patches by 90 degree or−90 degree with the prob-

ability of 0.2. In testing, we set τ to 0.7 and resize the in-

put images to 768 × 1280. Following [57, 18, 17], we also

evaluate our model on ICDAR2015 with multi-scale inputs,

{512×512, 768×768, 768×1280, 1280×1280} in default.

We compare our method with other state-of-the-art

methods and list all the results in Table 2. Our method out-

performs the previous methods by a large margin. When

tested at single scale, our method achieves the F-measure

of 80.7%, which surpasses all competitors [56, 47, 54, 40,

57, 16] . Our method achieves 84.3% in F-measure with

multi-scale inputs, higher than the best one [17] by 3.3%.

To explore the gain between our method which detects

corner points and the method which regresses text boxes

directly, we train a network named “baseline” in Table. 2

using the same settings as our method. The baseline model

consists of the same backbone as our method and the pre-

diction module in SSD/DSSD. With slight time cost, our

method boost the accuracy greatly (53.3% vs 80.7%).

5.4. Detecting Horizontal Text

We evaluate the ability of our model to detect horizontal

text on ICDAR2013 dataset. We further train our model

on ICDAR2013 dataset for 60 epochs on the basis of the

finetuned ICDAR2015 model. In testing, the input images

Method Precision Recall F-measure FPS

Neumann et al. [36] 81.8 72.4 77.1 3

Neumann et al. [37] 82.1 71.3 76.3 3

Fastext [7] 84.0 69.3 76.8 6

Zhang et al. [55] 88.0 74.0 80.0 0.02

Zhang et al. [56] 88.0 78.0 83.0 0.5

Yao et al. [54] 88.9 80.2 84.3 1.61

CTPN [47] 93.0 83.0 88.0 7.1

TextBoxes [28] 88.0 74.0 81.0 11

SegLink [40] 87.7 83.0 85.3 20.6

SSTD [16] 89.0 86.0 88.0 7.7

ours 93.3 79.4 85.8 10.4

FCRN ∗ [15] 92.0 75.5 83.0 0.8

TextBoxes ∗ [28] 89.0 83.0 86.0 1.3

He et al. ∗ † [17] 92.0 81.0 86.0 1.1

WordSup ∗ [18] 93.3 87.5 90.3 2

ours∗ 92.0 84.4 88.0 1

Table 3. Results on ICDAR2013. ∗ means multi-scale, † stands

for the base net of the model is not VGG16. Note that, the meth-

ods of the top three lines are evaluated under the “ICDAR2013”

evaluation protocol.

are resized to 512× 512. We also use multi-scale inputs to

evaluate our model.

The results are listed in Table 3 and mostly are re-

ported with the “Deteval” evaluation protocol. Our method

achieves very competitive results. When tested at sin-

gle scale, our method achieves the F-measure of 85.8%,

which is slightly lower than the highest result. Besides, our

method can run at 10.4 FPS, faster than most methods. For

multi-scale evaluation, our method achieves the F-measure

of 88.0%, which is also competitive compared with other

methods.

5.5. Detecting Long Oriented Text Line

On MSRA-TD500, we evaluate the performance of our

method for detecting long and multi-lingual text lines.

HUST-TR400 is also used as training data as the MSRA-

TD500 only contains 300 training images. The model is

initialized with the model pre-trained on SynthText and then

finetuned another 240 epochs. In test stage, we input the

images with the size 768× 768 and set τ to 0.65.

As shown in Table 4, our method surpasses all the pre-

vious methods by a large margin. Our method achieves

state-of-the-art performances both in recall, precision and
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Method Precision Recall F-measure FPS

TD-ICDAR [53] 53.0 52.0 50.0 -

TD-Mixture [53] 63.0 63.0 60.0 -

Kang et al. [22] 71.0 62.0 66.0 -

Zhang et al. [56] 83.0 67.0 74.0 0.48

Yao et al. [54] 76.5 75.3 75.9 1.61

EAST [57] 81.7 61.6 70.2 6.52

EAST † [57] 87.3 67.4 76.1 13.2

SegLink [40] 86.0 70.0 77.0 8.9

He et al. † [17] 77.0 70.0 74.0 1.1

ours 87.6 76.2 81.5 5.7

Table 4. Results on MSRA-TD500. † stands for the base net of the

model is not VGG16.

Method Precision Recall F-measure

TH-DL [2] 67.8 34.8 46.0

SARI FDU RRPN V1 [2] 71.2 55.5 62.4

Sensetime OCR [2] 56.9 69.4 62.6

SCUT DLVClab1 [2] 80.3 54.5 65.0

e2e ctc01 multi scale [2] 79.8 61.2 69.3

ours 83.8 55.6 66.8

ours∗ 74.3 70.6 72.4

Table 5. Results on MLT. ∗ means multi-scale.

F-measure (87.6%, 76.2% and 81.5%), and much better

than the previous best result (81.5% vs. 77.0%). That

means our method is more capable than other methods of

detecting arbitrarily oriented long text.

5.6. Detecting Multi­Lingual Text

We verify the ability of our method to detect multi-

lingual text on MLT. We finetune about 120 epochs on the

model pre-trained on SynthText. When testing in single

scale, the sizes of images are set as 768× 768. We evaluate

our method online and compare with some public results

on the leaderboard [2]. As shown in Table 5, our method

outperforms all competing methods by at least 3.1%.

5.7. Generalization Ability

To evaluate the generalization ability of our model, we

test it on COCO-Text using the model finetuned on IC-

DAR2015. We set the test image size as 768 × 768. We

use the annotations (V1.1) to compare with other methods,

for the sake of fairness. The results are shown in Table 6.

Without training, on COCO-Text, our method achieves an

F-measure of 42.5%, better than competitors.

Besides, we also evaluate our model on the ICDAR2017

Robust Reading Challenge on COCO-Text [1] with the an-

notations V1.4. The results are reported in Table 6. Among

all the public results in leaderboard [1], our method ranks

the first. Especially when the threshold of iou is set to 0.75,

the result that our method exceeds others in a large margin

shows it can detect text more accurately.

5.8. Limitations

One limitation of the proposed method is that when two

text instances are extremely close, it may predict the two

Method Precision Recall F-measure

Baseline A [49] 83.8 23.3 36.5

Baseline B [49] 89.7 10.7 19.1

Baseline C [49] 18.6 4.7 7.5

Yao et al. [54] 43.2 27.1 33.3

EAST [57] 50.4 32.4 39.5

WordSup [18] 45.2 30.9 36.8

SSTD [16] 46.0 31.0 37.0

ours 69.9 26.2 38.1

ours∗ 61.9 32.4 42.5

COCO-Text Challenge (IOU 0.5)

UM [1] 47.6 65.5 55.1

TDN SJTU v2 [1] 62.4 54.3 58.1

Text Detection DL [1] 60.1 61.8 61.4

ours 72.5 52.9 61.1

ours∗ 62.9 62.2 62.6

COCO-Text Challenge (IOU 0.75)

Text Detection DL [1] 25.2 25.5 25.4

UM [1] 22.7 31.2 26.3

TDN SJTU v2 [1] 31.8 27.7 29.6

ours 40.0 30.0 34.6

ours∗ 35.1 34.8 34.9

Table 6. Results on COCO-Text. ∗ means multi-scale.

Figure 7. Failure cases of our method. The boxes in green are

ground truth. The red boxes are our predictions.

instances as one (Fig. 7), since the position-sensitive seg-

mentation might fail. Besides, the method is not good at

detecting curved text (Fig. 7), as there are few curved sam-

ples in the training set.

6. Conclusion

In this paper, we have presented a scene text detector

that localize text by corner point detection and position-

sensitive segmentation. We evaluated it on several public

benchmarks focusing on oriented, horizontal, long oriented

and multi-lingual text. The superior performances demon-

strate the effectiveness and robustness of our method. In the

future, we are interested in constructing an end-to-end OCR

system based on the proposed method.
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