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Abstract

Human actions often involve complex interactions across

several inter-related objects in the scene. However, exist-

ing approaches to fine-grained video understanding or vi-

sual relationship detection often rely on single object rep-

resentation or pairwise object relationships. Furthermore,

learning interactions across multiple objects in hundreds of

frames for video is computationally infeasible and perfor-

mance may suffer since a large combinatorial space has to

be modeled. In this paper, we propose to efficiently learn

higher-order interactions between arbitrary subgroups of

objects for fine-grained video understanding. We demon-

strate that modeling object interactions significantly im-

proves accuracy for both action recognition and video

captioning, while saving more than 3-times the computa-

tion over traditional pairwise relationships. The proposed

method is validated on two large-scale datasets: Kinetics

and ActivityNet Captions. Our SINet and SINet-Caption

achieve state-of-the-art performances on both datasets even

though the videos are sampled at a maximum of 1 FPS. To

the best of our knowledge, this is the first work modeling ob-

ject interactions on open domain large-scale video datasets,

and we additionally model higher-order object interactions

which improves the performance with low computational

costs.

1. Introduction

Video understanding tasks such as activity recognition

and caption generation are crucial for various applications

in surveillance, video retrieval, human behavior understand-

ing, etc. Recently, datasets for video understanding such as

Charades [42], Kinetics [21], and ActivityNet Captions [22]

contain diverse real-world examples and represent com-

plex human and object interactions that can be difficult

to model with state-of-the-art video understanding meth-

ods [42]. Consider the example in Figure 1. To accurately
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Attended interactionsInteractions between ROIsVideo frame

Action prediction: cooking on campfire , cooking egg , …

Figure 1. Higher-order object interactions are progressively de-

tected based on selected inter-relationships. ROIs with the same

color (weighted r, g, b) indicating there exist inter-object relation-

ships, e.g. eggs in the same bowl, hand breaks egg, and bowl

on top of campfire (interaction within the same color). Groups

of inter-relationships then jointly model higher-order object inter-

action of the scene (interaction between different colors). Right:

ROIs are highlighted with their attention weights for higher-order

interactions. The model further reasons about the interactions

through time and predicts cooking on campfire and cooking egg.

Images are generated from SINet (best viewed in color).

predict cooking on campfire and cooking egg among other

similar action classes requires understanding of fine-grained

object relationships and interactions. For example, a hand

breaks an egg, eggs are in a bowl, the bowl is on top of

the campfire, campfire is a fire built with wood at a camp,

etc. Although recent state-of-the-art approaches for action

recognition have demonstrated significant improvements

over datasets such as UCF101 [45], HMDB51 [23], Sports-

1M [20], THUMOS [18], ActivityNet [5], and YouTube-

8M [1], they often focus on representing the overall visual

scene (coarse-grained) as sequence of inputs that are com-

bined with temporal pooling, e.g. CRF, LSTM, 1D Con-

volution, attention, and NetVLAD [4, 29, 30, 41], or use

3D Convolution for the whole video sequence [6, 37, 46].

These approaches ignore the fine-grained details of the

scene and do not infer interactions between various objects

in the video. On the other hand, in video captioning tasks,

although prior approaches use spatial or temporal attention

to selectively attend to fine-grained visual content in both

space and time, they too do not model object interactions.
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Prior work in understanding visual relationships in the

image domain has recently emerged as a prominent research

problem, e.g. scene graph generation [27, 53] and visual re-

lationship detection [7, 8, 14, 17, 58, 59]. However, it is un-

clear how these techniques can be adapted to open-domain

video tasks, given that the video is intrinsically more com-

plicated in terms of temporal reasoning and computational

demands. More importantly, a video may consist of a large

number of objects over time. Prior approaches on visual

relationship detection typically model the full pairwise (or

triplet) relationships. While this may be realized for im-

ages, videos often contain hundreds or thousands of frames.

Learning relationships across multiple objects alongside the

temporal information is computationally infeasible on mod-

ern GPUs, and performance may suffer due to the fact that

a finite-capacity neural network is used to model a large

combinatorial space. Furthermore, prior work in both im-

age and video domains [31, 32] often focus on pairwise re-

lationships or interactions, where interactions over groups

of interrelated objects—higher-order interactions—are not

explored, as shown in Figure 2.

Toward this end, we present a generic recurrent mod-

ule for fine-grained video understanding, which dynami-

cally discovers higher-order object interactions via an effi-

cient dot-product attention mechanism combined with tem-

poral reasoning. Our work is applicable to various open

domain video understanding problems. In this paper, we

validate our method on two video understanding tasks with

new challenging datasets: action recognition on Kinet-

ics [21] and video captioning on ActivityNet Captions [22]

(with ground truth temporal proposals). By combining

both coarse- and fine-grained information, our SINet (Spa-

tiotemporal Interaction Network) for action recognition and

SINet-Caption for video captioning achieve state-of-the-

art performance on both tasks while using RGB video

frames sampled at only maximum 1 FPS. To the best of

our knowledge, this is the first work of modeling object in-

teractions on open domain large-scale video datasets, and

we also show that modeling higher-order object interactions

can further improve the performance at low computational

costs.

2. Related work

We discuss existing work on video understanding based

on action recognition and video captioning as well as related

work on detecting visual relationships in images and videos.

Action recognition: Recent work on action recognition

using deep learning involves learning compact (coarse) rep-

resentations over time and use pooling or other aggregation

methods to combine information from each video frame, or

even across different modalities [10, 13, 30, 41, 43]. The

representations are commonly obtained directly from for-

ward passing a single video frame or a short video snippet to

Pairwise Interaction Higher-Order Interaction
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Figure 2. Typically, object interaction methods focus on pairwise

interactions (left). We efficiently model the higher-order inter-

actions between arbitrary subgroups of objects for video under-

standing, in which the inter-object relationships in one group are

detected and objects with significant relationships (i.e. those that

serve to improve action recognition or captioning in the end) are

attentively selected (right). The higher-order interaction between

groups of selected object relationships are then modeled after con-

catenation.

a 2D ConvNet or 3D ConvNet [6, 37, 46]. Another branch

of work uses Region Proposal Networks (RPNs) to jointly

train action detection models [15, 25, 36]. These meth-

ods use an RPN to extract object features (ROIs), but they

do not model or learn interactions between objects in the

scene. Distinct from these models, we explore human ac-

tion recognition task using coarse-grained context informa-

tion and fine-grained higher-order object interactions. Note

that we focus on modeling object interactions for under-

standing video in a fine-grained manner and we consider

other modalities, e.g. optical flow and audio information, to

be complementary to our method.

Video captioning: Similar to other video tasks using

deep learning, initial work on video captioning learn com-

pact representations combined over time. This single rep-

resentation is then used as input to a decoder, e.g. LSTM,

at the beginning or at each word generation to generate a

caption for the target video [33, 49, 50]. Other work ad-

ditionally uses spatial and temporal attention mechanisms

to selectively focus on visual content in different space and

time during caption generation [38, 44, 54, 55, 57]. Simi-

lar to using spatial attention during caption generation, an-

other line of work has additionally incorporated semantic

attributes [11, 34, 40, 56]. However, these semantic or at-

tribute detection methods, with or without attention mecha-

nisms, do not consider object relationships and interactions,

i.e. they treat the detected attributes as a bag of words. Our

work, SINet-Caption uses higher-order object relationships

and their interactions as visual cues for caption generation.

Interactions/Relationships in images: Recent ad-

vances in detecting visual relationships in images use sepa-

rate branches in a ConvNet to explicitly model objects, hu-

mans, and their interactions [7, 14]. Visual relationships can

also be realized by constructing a scene graph which uses a

structured representation for describing object relationships

and their attributes [19, 26, 27, 53]. Other work on detecting
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Figure 3. Overview of the SINet for action recognition. Coarse-

grained: each video frame is encoded into a feature vector

vc,t. The sequence of vectors are then pooled via temporal SDP-

Attention into single vector representation vc. Fine-grained:

Each object (ROI) obtained from RPN is encoded in a feature

vector on,t. We detect the higher-order object interaction using

the proposed generic recurrent Higher-Order Interaction (HOI)

module. Finally, coarse-grained (image context) and fine-grained

(higher-order object interactions) information are combined to per-

form action prediction.

visual relationships explore relationships by pairing differ-

ent objects in the scene [8, 17, 39, 58]. While these mod-

els can successfully detect visual relationships for images,

a scene with many objects may have only a few individual

interacting objects. It would be inefficient to detect all re-

lationships across all individual object pairs [59], making

these methods intractable for the video domain.

Interactions/Relationships in videos: Compared to the

image domain, there is limited work in exploring relation-

ships for video understanding. Ni et al. [31] use a prob-

abilistic graphical model to track interactions, but their

model is insufficient to model interactions involving mul-

tiple objects. To overcome this issue, Ni et al. [32] propose

using a set of LSTM nodes to incrementally refine the object

detections. In contrast, Lea et al. [24] propose to decompose

the input image into several spatial units in a feature map,

which then captures the object locations, states, and their

relationships using shared ConvNets. However, due to lack

of appropriate datasets, existing work focuses on indoor or

cooking settings where the human subject along with the

objects being manipulated are at the center of the image.

Also, these methods only handle pairwise relationships be-

tween objects. However, human actions can be complex and

often involve higher-order object interactions. Therefore,

we propose to attentively model object inter-relationships

and discover the higher-order interactions on large-scale

and open domain videos for fine-grained understanding.

3. Model

Despite the recent successes in video understanding,

there has been limited progress in understanding relation-

ships and interactions that occur in videos in a fine-grained

manner. To do so, methods must not only understand the

high-level video representations but also be able to explic-

itly model the relationships and interactions between ob-

jects in the scene. Toward this end, we propose to exploit

both overall image context (coarse) and higher-order object

interactions (fine) in the spatiotemporal domain for general

video understanding tasks.

In the following section, we first describe the SINet

on action recognition followed by extending it to SINet-

Caption for the video captioning task.

3.1. Action Recognition Model

3.1.1 Coarse-grained image context

As recent studies have shown, using LSTM to aggregate a

sequence of image representations often results in limited

performance since image representations can be similar to

each other and thus lack temporal variances [1, 21, 29].

As shown in Figure 3 (top), we thus begin by attending

to key image-level representations to summarize the whole

video sequence via the Scale Dot-Product Attention (SDP-

Attention) [47]:

αc = softmax(
Xc

⊤Xc
√

dφ
), Xc = gφ(Vc) (1)

vc = αc Xc
⊤ (2)

where Vc is a set of image features: Vc =
{

vc,1, vc,2, ..., vc,T
}

, vc,t ∈ R
m is the image feature

representation encoded via a ConvNet at time t, and t

ranges from
{

1, 2, ..., T
}

for a given video length. gφ is

a Multi-Layer Perceptron (MLP) with parameter φ, dφ is

the dimension of last fully-connected (FC) layer of gφ,

Xc ∈ R
dφ×T is the projected image feature matrix,

√

dφ
is a scaling factor, and αc ∈ R

T×T is an attention weight

applied to the (projected) sequence of image representa-

tions Vc. The weighted image representations are then

mean-pooled to form video representation vc.

3.1.2 Fine-grained higher-order object interactions

Traditional pairwise object interactions only consider how

each object interacts with another object. We instead model

inter-relationships between arbitrary subgroups of objects,

the members of which are determined by a learned attention

mechanism, as illustrated in Figure 2. Note that this covers

pair-wise or triplet object relationships as a special case, in

which the learned attention only focus on one single object.

Problem statement: We define objects to be a certain

region in the scene that might be used to determine the vi-

sual relationships and interactions. Each object representa-

tion can be directly obtained from an RPN and further en-

coded into an object feature. Note that we do not encode

object class information from the detector into the feature
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representation since there exists a cross-domain problem,

and we may miss some objects that are not detected by the

pre-trained object detector. Also, we do not know the corre-

sponding objects across time since linking objects through

time can be computationally expensive for long videos. As

a result, we have variable-lengths of object sets residing in

a high-dimensional space that spans across time. Our ob-

jective is to efficiently detect higher-order interactions from

these rich yet unordered object representation sets across

time.

In the simplest setting, an interaction between objects in

the scene can be represented via summation operation of in-

dividual object information. For example, one method is to

add the learnable representations and project these represen-

tations into a high-dimensional space where the object inter-

actions can be exploited by simply summing up the object

representations. Another approach which has been widely

used with images is by pairing all possible object candi-

dates (or subject-object pairs) [7, 8, 17, 39, 58]. However,

this is infeasible for video, since a video typically contains

hundreds or thousands of frame and the set of object-object

pairs is too large to fully represent. Detecting object rela-

tionships frame by frame is computationally expensive, and

the temporal reasoning of object interactions is not used.

Recurrent Higher-Order Interaction (HOI): To over-

come these issues, we propose a generic recurrent mod-

ule for detecting higher-order object interactions for fine-

grained video understanding problems, as shown in Fig-

ure 4. The proposed recurrent module dynamically selects

object candidates which are important to discriminate the

human actions. The combinations of these objects are then

concatenated to model higher order interaction using group

to group or triplet groups of objects.

First, we introduce learnable parameters for the incom-

ing object features via MLP projection gθk , since the object

features are pre-trained from another domain and may not

necessarily present interactions towards action recognition.

The projected object features are then combined with over-

all image content and previous object interaction to gener-

ate K sets of weights to select K groups of objects 1. Ob-

jects with inter-relationships are selected from an attention

weight, which generates a probability distribution over all

object candidates. The attention is computed using inputs

from current (projected) object features, overall image vi-

sual representation, and previously discovered object inter-

actions (see Figure 4), which provide the attention mecha-

nism with maximum context.

αk = Attention(gθk(Ot), vc,t, ht−1) (3)

where the input Ot is a set of objects: Ot =

1The number K depends on the complexity of the visual scene and

the requirement of the task (in this case, action recognition). We leave

dynamically selecting K to future work.

Objects b?: 67,?	 6:,?	
;^,?	

][@
MLP c = 3

Image context

][V
MLP

ℎ?	

;<,?
7

;<,?
8

;<,?
C

Z7
Z8

ZC

Attentive
Selection Attentive

Selection

ℎ?Y7	

MLP

Attentive
Selection

][d

LSTM
Cell

Figure 4. Recurrent Higher-Order Interaction module dynam-

ically selects K groups of arbitrary objects with detected inter-

object relationships via learnable attention mechanism. This atten-

tive selection module uses the overall image context representation

vc,t, current set of (projected) objects Ot, and previous object in-

teractions ht−1 to generate kth weights αk for kth selections. The

higher-order interaction between groups of selected objects is then

modeled via concatenation and the following LSTM cell.

{

o1,t, o2,t, ..., oN,t

}

, on,t ∈ R
m is the nth object feature

representation at time t. The gθk is a MLP with parame-

ter θk, the parameters are learnable synaptic weights shared

across all objects on,t and through time t. vc,t denotes as

encoded image feature at current time t, and ht−1 is the

previous output of LSTM cell which represents the previ-

ous discovered object interaction. Formally, given an input

sequence, a LSTM network computes the hidden vector se-

quences h =
(

h1, h2, ..., hT

)

. Lastly, αk is an attention

weight computed from the proposed attention module.

Attentive selection module: Here we discuss two pos-

sible choices for the attention module, as shown in Figure 5.

Dot-product attention considers inter-relationships when se-

lecting the objects, and α-attention does not.

- Dot-product attention: In order to model higher-

order interactions, which models inter-object relationships

in each group of selected objects, we use dot-product atten-

tion since the attention weights computed for each object is

the combination of all objects.

Formally, the current image representation vc,t and the

last object interaction representation ht−1 are first projected

to introduce learnable weights. The projected vc,t and ht−1

are then repeated and expanded N times (the number of

objects in Ot). We directly combine this information with

projected objects via matrix addition and use it as input to

dot-product attention. We added a scale factor as in [47].

The input to the first matrix multiplication and the attention

weights over all objects can be defined as:

Xk = repeat(Whk
ht−1 +Wckvc,t) + gθk(Ot) (4)
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Figure 5. Attention modules: dot-product attention and α-

attention. Both attention mechanisms take input from overall im-

age representation vc,t, current set of objects Ot, and previous

object interactions ht−1 computed from LSTM cell at time t− 1.

αk = softmax(
Xk

⊤Xk√
dθ

) (5)

where Whk
∈ R

dθ×dh and Wck ∈ R
dθ×dvc,t are learned

weights for ht−1 and vc,t, dθ is the dimension of last fully-

connected layer of gθk , Xk ∈ R
dθ×N is the input to kth

attention module, and
√
dθ is a scaling factor, αk ∈ R

N×N

is the computed kth attention. We omit the bias term for

simplicity. The attended object feature at time t is then cal-

culated as mean-pooling on weighted objects:

vko,t = αk (gθk(Ot))⊤ (6)

where the output vko,t is a single feature vector representa-

tion which encodes the kth object inter-relationships of a

video frame at time t.

- α-attention: The α-attention uses the same input for-

mat as dot-product attention, but the attention is computed

using a tanh function and a fully-connected layer:

αk = softmax(wk
⊤tanh(Xk)) (7)

where wk ∈ R
dθ is a learned weight, and αk ∈ R

1×N is the

computed kth attention. The attended object feature at time

t is then calculated as a convex combination:

vko,t =
∑

n

αkn
(gθk(on,t)) (8)

We use the α-attention as a baseline to show how con-

sidering the inter-relationships of objects (dot-product at-

tention) can further improve the accuracy when ROIs are

selected separately.

Finally, for both attention mechanisms, the selected ob-

ject candidates vko,t are then concatenated and used as the

input to a LSTM cell. The output voi,t is then defined as

the higher-order object interaction representation at current

time t.

voi,t = LSTMCell(v1o,t‖v2o,t‖...‖vKo,t) (9)

where ‖ denotes concatenation between feature vectors.

The last hidden state of the LSTM cell hT = voi,T is the

representation of overall object interactions for the entire

video sequence.

Note that by concatenating selected inter-object rela-

tionships into a single higher-order interaction representa-

tion, the selective attention module tends to select differ-

ent groups of inter-relationships, since concatenating du-

plicate inter-relationships does not provide extra informa-

tion and will be penalized. For an analysis of what inter-

relationships are selected, please refer to the supplement.

3.1.3 Late fusion of coarse and fine

Finally, the attended context information vc obtained from

the image representation provides coarse-grained under-

standing of the video, and the object interactions discovered

through the video sequences voi,T provide fine-grained un-

derstanding of the video. We concatenate them as the input

to the last fully-connected layer, and train the model jointly

to make a final action prediction.

p(y) = softmax(Wp(vc‖voi,T ) + bp) (10)

where Wp ∈ R
dy×(dvc+dvoi,T

)
and bp ∈ R

dy are learned

weights and biases.

3.2. Video Captioning Model

We now describe how SINet can be extended from

sequence-to-one to a sequence-to-sequence problem for

video captioning. Our goal in providing fine-grained in-

formation for video captioning is that, for each prediction

of the word, the model is aware of the past generated word,

previous output, and the summary of the video content. At

each word generation, it has the ability to selectively attend

to various parts of the video content in both space and time,

as well as to the detected object interactions.

Our SINet-Caption is inspired by prior work using hier-

archical LSTM for captioning tasks [2, 44], and we extend

and integrate it with SINet so that the model can leverage

the detected higher-order object interactions. We use a two-

layered LSTM integrated with the coarse- and fine-grained

information, as shown in Figure 6. The two LSTM layers

are: Attention LSTM and Language LSTM. The Attention

LSTM identifies which part of the video in spatiotemporal

feature space is needed for Language LSTM to generate the

next word. Different from prior work, which applied atten-

tion directly over all image patches in the entire video [55],
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i.e. attended to objects individually, our attentive selec-

tion module attends to object interactions while considering

their temporal order.

Attention LSTM: The Attention LSTM fuses the previ-

ous hidden state output of Language LSTM h2
tw−1, overall

representation of the video, and the input word at time tw−1
to generate the hidden representation for the following at-

tention module. Formally, the input to Attention LSTM can

be defined as:

x1
tw

= h2
tw−1 ‖ gφ(Vc) ‖WeΠtw−1 (11)

where gφ(Vc) is the projected and mean-pooled image fea-

tures, gφ is a MLP with parameters φ, We ∈ R
E×Σ is

a word embedding matrix for a vocabulary of size Σ, and

Πtw−1 is one-hot encoding of the input word at time tw−1.

Note that t is the video time, and tw is the timestep for each

word generation.

Temporal attention module: We adapt the same α-

attention module as shown in Figure 5 to attend over pro-

jected image features gφ(Vc). The two types of input for

this temporal attention module are from outputs of the At-

tention LSTM and projected image features.

Xa = repeat(Whh
1
tw
) +Wcgφ(Vc) (12)

where h1
tw

is the output of Attention LSTM, Wh ∈
R

dφ×d
h1
tw and Wc ∈ R

dφ×dφ are learned weights for h1
tw

and gφ(Vc). dφ is the dimension of the last FC layer of gφ.

Co-attention: We directly apply the temporal attention

obtained from image features on object interaction repre-

sentations h =
(

h1, h2, ..., hT

)

(see Sec 3.1.2 for details).

Language LSTM: Finally, the Language LSTM takes

in input which is the concatenation of output of the Atten-

tion LSTM h1
tw

, attended video representation v̂c,tw , and

co-attended object interactions ĥtw at timestep tw.

x2
tw

= h1
tw

‖ v̂c,tw ‖ ĥtw (13)

The output of Language LSTM is then used to generate

each word, which is a conditional probability distribution

defined as:

p(ytw |y1:tw−1) = softmax(Wph
2
tw
) (14)

where y1:tw−1 is a sequence of outputs (y1, ..., ytw−1) and

Wp ∈ R
Σ×d

h2
tw is learned weights for h2

tw
. All bias terms

are omitted for simplicity.

4. Datasets and Implementations

4.1. Datasets:

Kinetics dataset: To evaluate SINet on a sequence-to-

one problem for video, we use the Kinetics dataset for ac-

tion recognition [21]. The Kinetics dataset contains 400 hu-

man action classes and has approximately 300k video clips

Attention	LSTM

Language	LSTM

Attend Co-attend

\_ i]

Tanh

FC

Masking

MatMul

dDKDFA(efℎ>l
7 ) +e]\_ i]
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ℎ7, ℎ8, … , ℎL

Figure 6. Overview of the proposed SINet-Caption for video cap-

tioning. The Attention LSTM with α-attention is used to selec-

tively attend to temporal video frame features. The computed tem-

poral attention is then used to attend to temporal object interactions

{h1, h2, ..., hT } (see Figure 4). Concatenation of the outputs of

Attention LSTM, attended video frame feature, and attended ob-

ject interactions is then used as input for language decoder LSTM.

(833 video hours). Most importantly, different from previ-

ous datasets which mostly cover sports actions [20, 23, 45],

Kinetics includes human-object interactions and human-

human interactions. We sampled videos at 1 FPS only, as

opposed to sampling at 25 FPS reported for Kinetics [21].

ActivityNet Captions dataset: To evaluate SINet-

Caption on a sequence-to-sequence problem for video, we

use ActivityNet Captions for video captioning. The Activi-

tyNet Captions dataset contains 20k videos and has total of

849 video hours with 100K total descriptions. To demon-

strate our proposed idea, we focus on providing fine-grained

understanding of the video to describe video events with

natural language, as opposed to identifying the temporal

proposals. We thus use the ground truth temporal segments

and treat each temporal segment independently. We use this

dataset over others because ActivityNet Captions is action-

centric, as opposed to object-centric [22]. This fits our goal

of detecting higher-order object interactions for understand-

ing human actions. All sentences are capped to be a max-

imum length of 30 words. We sample predictions using

beam search of size 5 for captioning. While the previous

work sample C3D features every 8 frames [22], we only

sampled video at maximum 1 FPS. Video segments longer

than 30 secs. are evenly sampled at maximum 30 samples.

4.2. Implementation Details:

We now discuss how to extract image and object features

for both Kinetics and ActivityNet Captions.

Image feature: We fine-tune a pre-trained ResNeXt-

101 [52] on Kinetics sampled at 1 FPS (approximately 2.5

million images). We use SGD with Nesterov momentum as

the optimizer. The initial learning rate is 1e−4 and drops by

10x when validation loss saturates for 5 epochs. The weight

decay is 1e − 4 and the momentum is 0.9, and the batch

size is 128. We use standard data augmentation by ran-

domly cropping and horizontally flipping video frames dur-
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Table 1. Prediction accuracy on the Kinetics validation set. All

of our results use only RGB videos sampled at 1 FPS. Maximum

number of objects per frame is set to be 30.

Method Top-1 Top-5

I3D2(25 FPS) [6] (test) 71.1 89.3

TSN (Inception-ResNet-v2) (2.5 FPS) [4, 51] 73.0 90.9

Ours (1 FPS)

Img feature + LSTM (baseline) 70.6 89.1

Img feature + temporal SDP-Attention 71.1 89.6

Obj feature (mean-pooling) 72.2 90.2

Img + obj feature (mean-pooling) 73.1 91.1

SINet (α-attention) 73.9 91.5

SINet (dot-product attention) 74.2 91.7

ing training. When extracting image features, the smaller

edge of the image is scaled to 256 pixels and we crop the

center of the image as input to the fine-tuned ResNeXt-101.

Each image feature is a 2048-d feature vector.

Object feature: We generate the object features by first

obtaining the coordinates of ROIs from a Deformable R-

FCN [9] (pre-trained on MS-COCO) with ResNet-101 [16]

as backbone architecture. We set the IoU threshold for

NMS to be 0.2. Empirically, we found that it is important

to maintain a balance of image and object features, espe-

cially when image features were obtained from a network

which was fine-tuned on the target dataset. Thus, for each

of the ROIs, we extract features using coordinates and adap-

tive max-pooling from the same model (ResNeXt-101) that

was fine-tuned on Kinetics. The resulting object feature for

each ROI is a 2048-d feature vector. ROIs are ranked ac-

cording to their ROI scores. We select top 30 objects for

Kinetics and top 15 for ActivityNet Captions. Note that we

have a varied number of ROIs for each video frame, and

video length can also be different. We do not use the object

class information since we may miss some of the objects

that were not detected, due to the cross-domain problem.

For the same reason, the bounding-box regression process

is not performed here since we do not have the ground-truth

bounding boxes.

Training: We train SINet and SINet-Caption with

ADAM optimizer. The initial learning rate is set to 1e−5 for

Kinetics and 1e − 3 for ActivityNet Captions. Both learn-

ing rates automatically drop by 10x when validation loss is

saturated. The batch sizes are 64 and 32 respectively for

Kinetics and ActivityNet Captions.

5. Evaluation

5.1. Action recognition on Kinetics:

In this section, we conduct an ablation study of SINet on

Kinetics.

Does temporal SDP-Attention help? Several stud-

ies have pointed out that using temporal mean-pooling or

2Results obtained from https://github.com/deepmind/kinetics-i3d

Table 2. Comparison of pairwise (or triplet) object interaction

with the proposed higher-order object interaction with dot-product

attentive selection method on Kinetics. The maximum number of

objects is set to be 15. FLOP is calculated per video. For details

on calculating FLOP, please refer to the supplementary material.

Method Top-1 Top-5 FLOP (e9)

Obj (mean-pooling) 73.1 90.8 1.9

Obj pairs (mean-pooling) 73.4 90.8 18.3

Obj triplet (mean-pooling) 72.9 90.7 77.0

SINet (K = 1) 73.9 91.3 2.7

SINet (K = 2) 74.2 91.5 5.3

SINet (K = 3) 74.2 91.7 8.0

LSTMs may not be the best method to aggregate the se-

quence of image representations for videos [4, 29, 30]. To

overcome this issue, we use temporal SDP-Attention in-

stead of LSTM. As we can see from Table 1, using tempo-

ral SDP-Attention has proven to be superior to traditional

LSTM and already performs comparably with 3D ConvNet

that uses a much higher video sampling rate.

Does object interaction help? We first evaluate how

much higher-order object interactions can help in identify-

ing human actions. Considering mean-pooling over the ob-

ject features to be the simplest form of object interaction, we

show that mean-pooling over the object features per frame

and using LSTM for temporal reasoning has already outper-

formed single compact image representations, which is cur-

rently the trend for video classification methods. Directly

combining image features with temporal SDP-Attention

and object features over LSTM further reaches 73.1% top-

1 accuracy. This already outperforms the state-of-the-art

TSN [51] method using a deeper ConvNet with a higher

video sampling rate. Beyond using mean-pooling as the

simplest form of object interaction, our proposed method

to dynamically discover and model higher-order object in-

teractions further achieved 74.2% top-1 and 91.7% top-5

accuracy. The selection module with dot-product attention,

in which we exploit the inter-relationships between objects

within the same group, outperforms α-attention where the

inter-relationships are ignored.

Does attentive selection help? Prior work on visual

relationships and VQA concatenate pairwise object fea-

tures for detecting object relationships. In this experiment,

we compare the traditional way of creating object pairs or

triplets with our proposed attentive selection method. We

use temporal SDP-Attention for image features, and dot-

project attention for selecting object interactions. As shown

in Table 2, concatenating pairwise features marginally im-

proves over the simplest form of object interactions while

increasing the computational cost drastically. By further

concatenating three object features, the space for meaning-

ful object interactions becomes so sparse that it instead re-

duced the prediction accuracy, and the number of operations

(FLOP) further increases drastically. On the other hand, our
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Table 3. METEOR, ROUGE-L, CIDEr-D, and BLEU@N scores on the ActivityNet Captions test and validation set. All methods use

ground truth proposal except LSTM-A3 [12]. Our results with ResNeXt spatial features use videos sampled at maximum 1 FPS only.
Method B@1 B@2 B@3 B@4 ROUGE-L METEOR CIDEr-D

Test set

LSTM-YT [50] (C3D) 18.22 7.43 3.24 1.24 - 6.56 14.86

S2VT [49] (C3D) 20.35 8.99 4.60 2.62 - 7.85 20.97

H-RNN [55] (C3D) 19.46 8.78 4.34 2.53 - 8.02 20.18

S2VT + full context [22] (C3D) 26.45 13.48 7.21 3.98 - 9.46 24.56

LSTM-A3 + policy gradient + retrieval [12]

(ResNet + P3D ResNet [37])
- - - - - 12.84 -

Validation set (Avg. 1st and 2nd)

LSTM-A3 (ResNet + P3D ResNet) [12] 17.5 9.62 5.54 3.38 13.27 7.71 16.08

LSTM-A3 + policy gradient + retrieval [12]

(ResNet + P3D ResNet [37])
17.27 9.70 5.39 3.13 14.29 8.73 14.75

SINet-Caption — img (C3D) 17.18 7.99 3.53 1.47 18.78 8.44 38.22

SINet-Caption — img (ResNeXt) 18.81 9.31 4.27 1.84 20.46 9.56 43.12

SINet-Caption — obj (ResNeXt) 19.07 9.48 4.38 1.92 20.67 9.56 44.02

SINet-Caption — img + obj — no co-attention (ResNeXt) 19.93 9.82 4.52 2.03 21.08 9.79 44.81

SINet-Caption — img + obj — co-attention (ResNeXt) 19.78 9.89 4.52 1.98 21.25 9.84 44.84

attentive selection method can improve upon these methods

while saving significant computation time. Empirically, we

also found that reducing the number of objects per frame

from 30 to 15 yields no substantial difference on prediction

accuracy. This indicates that the top 15 objects with highest

ROI score are sufficient to represent fine-grained details of

the video. For detailed qualitative analysis of how objects

are selected at each timestep and how SINet reasons over a

sequence of object interactions, please see the supplement.

We are aware of that integrating optical flow or audio in-

formation with RGB video can further improve the action

recognition accuracy [4, 6]. We instead focus on modeling

object interactions for understanding video in a fine-grained

manner, and we consider other modalities to be complemen-

tary to our higher-order object interactions.

5.2. Video captioning on ActivityNet Captions:

We focus on understanding human actions for video cap-

tioning rather than on temporal proposals. Hence, we use

ground truth temporal proposals for segmenting the videos

and treat each video segment independently. All meth-

ods in Table 3 use ground truth temporal proposal, except

LSTM-A3 [12]. Our performances are reported with four

language metrics, including BLEU [35], ROUGH-L [28],

METEOR [3], and CIDEr-D [48].

For fair comparison with prior methods using C3D fea-

tures, we report results with both C3D and ResNeXt spa-

tial features. Since there is no prior result reported on the

validation set, we compare against LSTM-A3 [12] which

reports results on the validation and test sets. This allows

us to indirectly compare with methods reported on the test

set. As shown in Table 3, while LSTM-A3 clearly out-

performs other methods on the test set with a large mar-

gin, our method shows better results on the validation sets

across nearly all language metrics. We do not claim our

method to be superior to LSTM-A3 because of two funda-

mental differences. First, they do not rely on ground truth

temporal proposals. Second, they use features extracted

from an ResNet fine-tuned on Kinetics and another P3D

ResNet [37] fine-tuned on Sports-1M, whereas we use a

ResNeXt-101 fine-tuned on Kinetics sampled at maximum

1 FPS. Utilizing more powerful feature representations has

been proved to improve the prediction accuracy by a large

margin on video tasks. This also corresponds to our experi-

ments with C3D and ResNeXt features, where the proposed

method with ResNeXt features perform significantly better

than C3D features.

Does object interaction help? SINet-Caption without

any object interaction has already outperformed prior meth-

ods reported on this dataset. Additionally, by introducing an

efficient selection module for detecting object interactions,

SINet-Caption further improves across nearly all evaluation

metrics, with or without co-attention. We also observed that

introducing the co-attention from image features constantly

shows improvement on the first validation set but having

separate temporal attention for object interaction features

show better results on second validation set (please see the

supplement for results on each validation set).

6. Conclusion

We introduce a computationally efficient fine-grained

video understanding approach for discovering higher-order

object interactions. Our work on large-scale action recogni-

tion and video captioning datasets demonstrates that learn-

ing higher-order object relationships provides high accuracy

over existing methods at low computation costs. We achieve

state-of-the-art performances on both tasks with only RGB

videos sampled at maximum 1 FPS.
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