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Abstract

Gaussian process (GP) regression is a powerful tool in

non-parametric regression providing uncertainty estimates.

However, it is limited to data in vector spaces. In fields

such as shape analysis and diffusion tensor imaging, the

data often lies on a manifold, making GP regression non-

viable, as the resulting predictive distribution does not live

in the correct geometric space. We tackle the problem by

defining wrapped Gaussian processes (WGPs) on Rieman-

nian manifolds, using the probabilistic setting to general-

ize GP regression to the context of manifold-valued targets.

The method is validated empirically on diffusion weighted

imaging (DWI) data, directional data on the sphere and in

the Kendall shape space, endorsing WGP regression as an

efficient and flexible tool for manifold-valued regression.

1. Introduction

Regressing functions from Euclidean training data

{(xi, yi)}
N
i=1 is well studied. Manifold-valued yi, on the

other hand, pose difficulties due to the lack of the vector

space structure: Euclidean statistics do not respect the in-

trinsic structure of manifold-valued data, and the product

of inference might not belong to the object category of the

data. For example, see Fig. 1, where Gaussian process re-

gression escapes the 2-sphere.

Sometimes the data observed is uncertain. In this

case, it is favorable to estimate a distribution over possi-

ble regressed functions, yielding uncertainty estimates of

the resulting inference. Gaussian process (GP) regression

achieves this in a tractable manner. Furthermore, GP regres-

sion is an example of Bayesian inference, where it is pos-

sible to incorporate prior knowledge to aid the inference.

These qualitative properties motivate us to generalize GP

regression to Riemannian manifolds.

Related work. Fletcher [1] generalized linear regres-

sion to handle manifold-valued data with real covariates

by geodesic regression; this was later extended to include

multi-dimensional covariates [2]. Prior work also consider

Figure 1. Why geometrically intrinsic regression is important.

Consider data points (black) on the 2-sphere. In a), we apply or-

dinary GP regression. The black curve is the prediction and the

colorful curves are samples from the predictive distribution, which

clearly escape the sphere. In b), we visualize the result using WGP

regression, which respects the geometrical constraints of the data.

Method Non-geod. Priors Uncert. Global

Geod. reg.[1, 2, 3] No No No Yes

Poly. reg.[4] Yes No No Yes

Mani. Kriging [3] Yes Yes Yes No

Kernel reg. [5, 6] Yes Yes No Yes

Stoch. dev. [7] No No Yes Yes

Hong et al.[8] No Yes Yes Yes

WGP reg. Yes Yes Yes Yes

Table 1. Qualitative comparison of manifold regression models

mentioned in this paper. Global means, that regression is not car-

ried out in a single tangent space, uncert. is short for uncertainty

and Non-geod short for non-geodesic.

uncertainty estimates for geodesic regression; by a Kalman

filter approach [8] and by stochastic development [7].

Manifold-valued data, however, does not always follow

a geodesic trend. Approaches for this non-geodesic setting

include kernel-based approaches [5, 6] and a generalization

of polynomial regression [4]. Unfortunately, these models

do not provide uncertainty estimates.

Improving on this, Pigoli et al. [3] consider a kriging (GP

regression) method. The method uses multivariate geodesic

regression to form a reference coordinate system, which

is used to compute residuals of the manifold-valued data

points. Regular GP regression is then applied on the resid-
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uals and the result is mapped back onto the manifold. The

procedure, however, depends heavily on the localization of

the problem to a single tangent space, and does not offer

an intrinsic probabilistic interpretation. Relying on WGPs,

our method offers interpretability, and the prior basepoint

function used in WGP regression allows avoiding being too

local. Furthermore, the kriging method in [3] took advan-

tage of the geodesic submanifold regression to initialize a

reference coordinate system. Our method, enables one to

take advantage of more general priors, including the use of

geodesic submanifold regression.

Steinke and Hein [9] consider the problem of approxi-

mating a function between manifolds via minimizing regu-

larized empirical risk. In this setting, also the independent

variables are manifold-valued. The WGP regression pro-

posed in this paper can be extended to this setting, as long

as a kernel can be defined on the domain, carrying on all the

advantages of WGPs mentioned.

Wrapped Gaussian processes appear in directional

statistics [10], where a wrapped normal distribution is de-

fined on a 1-sphere S1, which is then generalized to a mul-

tivariate version, and this is then used to define a WGP. This

is a special case of our setting, when the manifold is chosen

to be the torus S1 × S1 × ...× S1.

The contribution can be summarized as follows: We

generalize GPs to Riemannian manifolds as wrapped Gaus-

sian procesess (WGPs), and provide a novel framework for

non-parametric regression with uncertainty estimates using

WGP regression. We demonstrate the method in Section 5

on the 2-sphere by considering a toy example and orienta-

tions of the left femur of a walking person, on the manifold

of symmetric positive definite matrices for DTI upsampling,

and on Kendall shape space, using a data set of Corpus Cal-

losum shapes. The method is analytically tractable for man-

ifolds with infinite injectivity radius, such as manifolds with

non-positive curvature. Otherwise, we suggest the approx-

imation in Remark 2. Computationally, the method is rel-

atively cheap, as the only addition compared to GP regres-

sion is a single application of the logarithmic map per data

point and single exponential map per predicted point.

2. Preliminaries

We briefly summarize the mathematical prerequisities

needed. First, we recall how GPs are used in non-parametric

regression in the Euclidean case, after which we turn to ba-

sic concepts in Riemannian geometry and briefly discuss

geodesic submanifold regression.

2.1. Gaussian process regression

Denote by N (µ,Σ) the multivariate Gaussian distribu-

tion with mean vector µ ∈ Rn and covariance matrix

Σ ∈ Rn×n, and write the probability density function p
as p(v) = N (v|µ,Σ) for v ∈ Rn.

A Gaussian process (GP) [11] is a collection f of ran-

dom variables, such that any finite subcollection (f(ωi))
N
i=1

has a joint Gaussian distribution, where ωi ∈ Ω ⊂ Rl, and

Ω is the index set. A GP is entirely characterized by the pair

m(ω) = E [f(ω)] , (1)

k(ω, ω′) = E
[

(f(ω)−m(ω))(f(ω′)−m(ω′))T
]

, (2)

where m and k are called the mean function and covari-

ance function, respectively. We denote such a GP by f ∼
GP(m, k). It follows from the definition that the covariance

function (kernel) k is symmetric and positive semidefinite.

Let D = {(xi, yi) | xi ∈ x ⊂ Rl, yi ∈ y ⊂ Rn} be the

training data. The GP predictive distribution for outputs y∗

at the test inputs x∗, given in vector form, is

p(y∗|D,x∗) = N (µ∗,Σ∗), (3)

µ∗ = kT
∗ (k +Kerr)

−1y, (4)

Σ∗ = k∗∗ − kT
∗ (k +Kerr)

−1k∗, (5)

where, given a kernel k : R × R → R we use the notation

k = k(x,x), k∗ = k(x,x∗), k∗∗ = k(x∗,x∗) and Kerr is

the measurement error variance. In the notation above, the

function and k is applied elementwise on the vectors x,x∗.

Typically in model selection, the kernel k is picked from

a parametric family {kθ|θ ∈ Θ} of covariance functions,

such as the radial basis function (RBF) kernels

kσ2,λ(x, y) = σ2 exp

(

−
‖x− y‖2

2λ

)

, σ2, λ > 0, (6)

choosing the parameters (σ2, λ) so that the marginal likeli-

hood P{y|(σ2, λ)} is maximized.

2.2. Riemannian geometry

To fix notation, we briefly present the essentials of Rie-

mannian geometry. For a thorough presentation, see [12].

A Riemannian manifold is a smooth manifold M with a

smoothly varying inner product gp(·, ·) (we will often use

the notation 〈·, ·〉p) on the tangent space TpM at each

p ∈ M , called a Riemannian metric, inducing the distance

function d between points on the M . Each element (p, v)
in the tangent bundle TM =

⋃

p∈M (p× TpM) defines a

geodesic γ (a curve locally minimizing distance between

two points) on M , so that γ(0) = p and d
dt
γ(t) |t=0= v.

The exponential map Exp : TM → M given by (p, v) 7→
Expp(v) = γ(1), where γ is the geodesic corresponding to

(p, v). The exponential map Expp at p is a diffeomorphism

between a neighborhood 0 ∈ U ⊂ TpM and neighbour-

hood p ∈ V ⊂ M , which is chosen in a maximal way, so

if V ( V ′, then a diffeomorphism between V ′ and a neigh-

borhood in the tangent space cannot be defined anymore.

We also call V the area of injectivity.
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We can define the inverse map Logp : V → TpM , char-

acterized by Expp(Logp(p
′)) = p′. Outside of V , we use

Logp(p
′) to denote a smallest v ∈ TpM chosen in a mea-

surable, consistent way. We call the the minimun distance

from p to the boundary of a maximal V the injectivity radius

of Expp and the complement of V in M the cut-locus at p
denoted by Cp. The manifolds with non-positive curvature

form an important class of manifolds with infinite injectiv-

ity radius, that is, they have an empty cut-locus Cp for every

p ∈M .

Let Mi be Riemannian manifolds with metrics gi, ex-

ponential maps Expi and logarithmic maps Logi for i =
1, 2. Then M = M1 × M2 turns into a Riemannian

manifold when endowed with the metric g = g1 + g2,

which has the component-wise computed exponential map

Exp(p1,p2)((v1, v2)) =
(

Exp1p1
(v1),Exp

2
p2
(v2)

)

, akin to

the logarithmic map Log on the product manifold.

2.2.1 Probabilistic notions

Let X be a random point on a Riemannian manifold M , the

set

E[X] :=

{

p | p ∈ arg min
q∈M

(E[d(q,X)2])

}

. (7)

is called the Fréchet means of X . If there is a unique mean

p̄, then by abuse of notation we write E[X] = p̄. Given a

data set p = {pi ∈ M}Ni=1, an empirical Fréchet mean is a

minimizer of the quantity

min
q∈M

N
∑

i=1

d(q, pi)
2. (8)

The set of empirical Fréchet means is denoted by E[p].
Given two probability spaces (Xi,Si, νi) for i = 1, 2 and

a measurable map F : X1 → X2, we say that the measure

ν2 is the push-forward of the measure ν1 with respect to F ,

if ν2(A) = ν1(F
−1(A)) for every A in the sigma-algebra

S2. We denote this by ν2 = F#ν1.

For more about intrinsic statistics on manifolds, see [13].

2.2.2 Geodesic submanifold regression

Geodesic regression on a Riemannian manifold M was in-

troduced by Fletcher [1]. It is a generalization of linear re-

gression, that seeks the geodesic parametrized by (p, v) ∈
TM that minimizes the quantity

E(p, v) =
1

2

N
∑

i=1

d(Expp(tiv), pi)
2, (9)

given the training data (ti, pi) ∈ R×M for i = 1, ..., N .

This framework has been generalized to deal with more

covariates [2]; assume we are given data (xi, pi) ∈ Rl×M

for i = 1, ..., N . Then, we want to solve for the submani-

fold γ parametrized by (p, v1, ..., vl) that minimizes

E(p, v1, ..., vl) =
1

2

N
∑

i=1

d



Expp





l
∑

j=1

xi(j)vj



 , pi





2

.

(10)

This is analogous to fitting a hyperplane in the Euclidean

case. Another generalization for multiple independent vari-

ables was carried out in [3]. Later on in this work, we pro-

pose a way to construct priors for the GP regression on man-

ifolds by regressing a geodesic model.

Tangent space geodesic regression is a Naı̈ve generaliza-

tion of linear regression, achieved by linearizing the space

by picking p ∈ M , transforming the data set (xi, pi) ∈
Rl×M for i = 1, ..., N into images of the Riemannian log-

arithmic map at p. Then, one can carry out linear regression

in the tangent space and map the result onto the manifold

using the exponential map, yielding a quick approximation

of geodesic submanifold regression.

3. Wrapped Gaussian processes

We are now ready to introduce wrapped Gaussian distri-

butions (WGDs), computing the conditional distribution of

two jointly WGD random points on the manifold. This is an

essential part of wrapped Gaussian process (WGP) regres-

sion on manifolds introduced in the next chapter, alike in

the Euclidean case. In this chapter we also introduce WGPs

in a formal way, without studying their properties further.

3.1. Wrapped Gaussian distributions

Wrapped Gaussian distributions (WGDs) originated in

directional statistics [14]. There exist multiple different

ways of generalizing Gaussian distributions to manifolds.

For example, Sommer [15] uses an instrinsic, anisotropic

diffusion process for the generalization. Pennec [16], on

the other hand, generalizes the Gaussian as the distribu-

tion maximizing entropy with a fixed mean and covariance.

WGDs rely on linearizing the manifold through a wrapping

function, in our case the Riemannian exponential map.

Let (M,d) be an n-dimensional Riemannian manifold.

We say that a random point X on M follows a wrapped

Gaussian distribution (WGD), if for some µ ∈M and sym-

metric positive definite matrix K ∈ Rn×n

X ∼
(

Expµ
)

#
(N (0,K)) , (11)

denoted by X ∼ NM (µ,K). To sample from this distri-

bution, draw v from N (0,K) and map the sample to the

manifold by Expµ(v). Now, define the basepoint and tan-

gent space covariance of X as

µNM
(X) := µ, CovNM

(X) := K. (12)

5582



In the case of infinite injectivity radius µNM
(X) ∈ E[X],

but not in general [17, Prop. 2.11]. The random points Xi ∼
NMi

(µi,Ki), i = 1, 2, are jointly WGD, if the random point

(X1, X2) on M1 ×M2 is WGD, that is,

(X1, X2) ∼ NM1×M2

((

µ1

µ2

)

,

(

K1 K12

K21 K2

))

, (13)

for some matrix K12 = KT
21.

We now compute the conditional distribution of two

jointly WGD random points, which is the core of WGP re-

gression in Section 4.

Theorem 1. Assume X1, X2 are jointly WGD as in (13),

then we have the conditional distribution

X1|(X2 = p2) ∼
(

Expµ1

)

#

(

∑

v∈A

λvN (µv,Kv)

)

,

(14)

where

µv = K12K
−1
2 v,

Kv = K1 −K12K
−1
2 KT

12,

λv =
N (v|0,K2)

P{A}
,

A = {v ∈ Tµ2
M | Expµ2

(v) = p2},

P{A} =
∑

v∈A

N (v|0,K2).

(15)

Proof. Pick p1 ∈M . Let B = Exp−1
µ1

(p1) be the preimage

of p1 in Tµ1
M , similarly A = Exp−1

µ2
(p2) as above for

p2, and furthermore K be the tangent space covariance of

(X1, X2) given in (13), then

P{X1 = p1|(X2 = p2)}

=
P{u ∈ B, v ∈ A}

P{v ∈ A}

=
∑

v∈A,u∈B

N (v|0,K2)

P{A}

N ((u, v)|0,K)

N (v|0,K2)

=
∑

v∈A,u∈B

λvN (u|µv,Kv)

=P{Z = p1},

(16)

where Z ∼
(

Expµ1

)

#

(
∑

v∈A λvN (µv,Kv)
)

, and

N (u|µv,Kv) is the predictive distribution calculated as in

the Euclidean case in (3).

Remark 2. If the injectivity radius of the exponential map

is infinite, then

X1|(X2 = p2)

∼
(

Expµ1

)

#

(

N
(

µLogµ2
(p2),KLogµ2

(p2)

))

,
(17)

following the notation in (15). Furthermore, if the proba-

bility mass on the area of injectivity of the exponential map

is large enough, we can use this expression as a reasonable

approximation for the predictive distribution, as the Gaus-

sian mixture distribution in the tangent space can be well

approximated by a single Gaussian.

3.2. Wrapped Gaussian processes

A collection f of random points on a manifold M in-

dexed over a set Ω is a wrapped Gaussian process (WGP),

if every finite subcollection (f(ωi))
N
i=1 is jointly WGD on

MN . We define

m(ω) := µNM
(f(ω)) (18)

k(ω, ω′) := CovNM
(f(ω), f(ω′)), (19)

called the basepoint function (BPF) and tangent space co-

variance function (TSCF) of f , respectively. The restriction

we have on Ω, is being able to define a kernel on it.

A WGP f can be viewed as a WGD on the possibly

infinite-dimensional product manifold M |Ω|. To elaborate,

formally one can state

f ∼ (Expm)#(GP(0, k)). (20)

The difference is, that the tangent space distribution is a GP

instead of a GD. The WGP is entirely characterized by the

pair (m, k), similar to the Euclidean case. Therefore, we

introduce the notation f ∼ GPM (m, k).

4. Gaussian process inference on manifolds

In the following, we discuss two different methods of

GP regression on a Riemannian manifold M with infinite

injectivity radius (or using the approximation in Remark 2),

given the noise-free training data

DM = {(xi, pi) | xi ∈ Rl, pi ∈M, i = 1, ..., N}. (21)

For shorthand notation, we denote x = (xi)
N
i=1 and p =

(pi)
N
i=1. Additionally, x∗ is used for the test inputs, and p∗

for the test outputs. Later, we remark that the first approach

is actually a special case of the latter one, see Fig. 2.

4.1. Naı̈ve tangent space approach

Choose p ∈ M (typically p ∈ E[p]), and transfrom the

training data DM into DTpM by

DTpM = (x,y) := {(xi, yi) | yi = Logp(pi)}, (22)

see Fig. 2 a). As DTpM ⊂ Rl × TpM now lives in a

Euclidean space, fit a GP feuc ∼ GP(meuc, keuc) to the

data using GP regression, resulting in the predictive distri-

bution y∗|y ∼ N (µ∗,Σ∗). Then, reversing the previous

data transformation, we can map the random vector to a ran-

dom point p∗|p on the manifold M , resulting in

p∗|p = Expp(y∗) ∼
(

Expp
)

#
(N (µ∗,Σ∗)) . (23)

5583



Figure 2. a) Tangent space GP data transformation. Data point

pi (in black) is transformed into Logp(pi) ∈ TpM . This can be

seen as a special case of WGP regression, with a fixed prior BPF

m(x) = p. In b), the data transformation is visualized with a more

general prior BPF m (black curve).

4.2. Wrapped Gaussian process regression

Now we generalize GP regression inside a probabilistic

framework, relying on the results presented in Section 3, by

assuming a WGP prior fprior ∼ GPM (m, k). According to

the prior, the joint distribution between the training outputs

p and test outputs p∗ at x∗ is given by

(

p∗

p

)

∼ NM1×M2

((

m∗

m

)

,

(

k∗∗ k∗

kT
∗ k

))

, (24)

where m = m(x), m∗ = m(x∗), k = k(x,x), k∗ =
k(x∗,x), and k∗∗ = k(x∗,x∗). Therefore, by Theorem 1

and using the approximation in Remark 2 (if necessary)

p∗|p ∼
(

Exp
m∗

)

#
(N (µ∗,Σ∗)) ,

µ∗ = k∗k
−1Log

m
p,

Σ∗ = k∗∗ − k∗k
−1kT

∗ .

(25)

The predictive distribution p∗|p is not necessarily WGD,

as µ∗ might be non-zero. The distribution can be sampled

from, but computing exactly quantities such as E[p∗|p] is

not trivial. As in [18, Sect. 3.1.1], the distribution can be

approximated via Riemannian unscented transform or by

using a WGD with the basepoint at Exp
m∗

(µ∗) and par-

allel transporting the tangent space covariance to this point

along the geodesic γ(t) = Exp
m∗

(tµ∗).

Remark 3. Exp
m∗

(µ∗) is not necessarily a Fréchet mean

of p∗|p. However, it is the maximum a posteriori (MAP) es-

timate. For this reason, we will use Exp
m∗

(µ∗) as a point

prediction in Section 5.

4.2.1 Choosing a prior

The prior WGP fprior ∼ GPM (m, k) indexed over Ω is

chosen by picking a kernel k on Ω to be the TSCF, and pick-

ing a BPF m so that p and m(xi) live in the same connected

component of M for every data-point (xi, pi).
In Section 5, two kinds of prior BPFs are used. The

first BPF m1 is a generalization of a centered GP, given

by m1(ω) = p̄, for all x ∈ Ω and a p̄ ∈ E[p]. The sec-

ond kind m2, uses a previous regression (such as geodesic

submanifold regression) γ on the dataset DM . That is,

m2(ω) = γ(ω) for all ω ∈ Ω. For computational reasons,

we only consider TSCFs that assume each tangent space co-

ordinate independent, resulting in the diagonal RBF kernel

k(x,x′) = diag(k1(x,x
′), k2(x,x

′), ..., kn(x,x
′)),

(26)

where each ki are chosen to be RBF kernels, diag(A,B) is

a block-diagonal matrix with blocks A and B, x,x′ ⊂ Ω,

and n is the dimension of M . The diagonal RBF yields

uncertainty estimates, but not a generative model, as this

would need covariance between coordinates.

Optimizing hyperparameters. We choose the TSCF

from a parametric family of kernels {kθ}θ∈Θ maximizing

the marginal likelihood, as in the Euclidean case. In the

setting of WGPs, the marginal likelihood becomes

P{p|θ} =
∑

v∈Exp−1

m
(p)

N (v|0,Kθ), (27)

where Kθ = kθ(x,x). To improve the approximation dis-

cussed in Remark 2, we propose to maximize the quantity

P{p|θ} ≈ N (Log
m
(y)|0,Kθ) , (28)

as maximizing this quantity increases the probability mass

given by the prior distribution to the area of injectivity. The

diagonal RBF kernel (Eq. (26)) can be optimized by choos-

ing each ki to maximize the marginal likelihood of the re-

spective tangent space coordinate independently. That is, ki
is chosen to maximize the marginal likelihood of the data

set
{(

xj , πi

(

Logm(xj)(pj)
))}N

j=1
, where πi is the pro-

jection onto the ith component.

A part of engineering the kernel is to pick a frame for

the manifold. A frame is a smooth map ρ : M → Rn×n,

so that the columns of ρ(p) form an orthonormal basis for

TpM . This way, there is a relation between tangent vectors

in different tangent spaces, and so the covariance becomes

meaningful.

The WGP regression process is summarized in Alg. 4.

Algorithm 4 (WGP regression.). The following describes

step-by-step how to carry out WGP regression.

Input Manifold-valued training data DM = {(xi, pi)}
n
i=1.
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Output Predictive distribution for p∗|p at x∗.

i. Choose a prior BPF m.

ii. Transform DTmM ← {(xi,Logm(xi)(pi))}
N
i=1.

iii. Choose a prior TSCF k from a parametric family by

optimizing the hyperparameters.

iv. Using GP prior GP(0, k), carry out Euclidean GP re-

gression for the transformed data DTmM , yielding the

mean and covariance (µ∗,Σ∗).

vi. End with the predictive distribution

p∗|p ∼ (Exp
m∗

)#(N (µ∗,Σ∗))

4.2.2 Observations with noise

A difficulty arises, when introducing a noise model on our

observations. In the Euclidean case, a popular noise model

on the observations (xi, pi) is given by pi = f(xi) + ǫ,
where f is the function we approximate and ǫ ∼ N (0,Kerr)
is the noise term. In [1], this model is generalized to the

manifold setting implicitely as

pi = Expf(xi)(ǫ), (29)

which is also supported by the central limit theorem pro-

vided in [19]. However, this makes the WGP analytically

intractable. To allow computations, we propose the error

model Logm(xi)(pi) = Logm(xi)(f(xi))+ ǫ, that is, the er-

ror lives in the tangent space of the prior mean at xi. This

can be viewed as a first order approximation of (29) around

m(xi). Introduction of this error changes the regression

procedure only slighty; the joint distribution of p and p∗

changes into

(

p∗

p

)

∼ NM1×M2

((

m∗

m

)

,

(

k∗∗ k∗

kT
∗ k +Kerr

))

.

(30)

Rest of the computations are then carried out similarly, with

the replacement of k with k +Kerr everywhere.

5. Experiments

We demonstrate WGP regression on three manifolds.

First, we visualize our algorithm on the 2-sphere using both

an illustrative toy dataset and fitting a WGP to motion cap-

ture data of the left femur of a person walking in a circular

pattern. Next, we illustrate DTI upsampling with uncer-

tainty estimates as a tensor field prediction task on a single

DTI slice living on the manifold of symmetric and positive

definite matrices, and finally we study the effect of age on

the shape of Corpus Callosum in Kendall’s shape space.

Figure 3. Depicted in a) is WGP regression using a prior BPF

given by geodesic regression (dotted black) on a toy data set (grey

dots) on S2. The predictive distribution is visualized using the

MAP estimate (black line, see Remark 3) and 20 samples from the

distribution (in gray) with three samples emphasized (in red, green

and blue). In b), a motion capture dataset of the orientation of the

left femur of a walking person. The independent variables were

estimated by principal curve analysis, and a WGP was fitted.

5.1. Data on 2­sphere

As a sanity check, we first visualize our method on a toy

dataset on the 2-sphere seen as a Riemannian manifold with

the Riemannian metric induced by the Euclidean metric on

R3. This manifold has a finite injectivity radius, thus the

approximation presented in Remark 2 is used. A regressed

geodesic γ is used as the prior BPF (Sec.3.2), and a diagonal

RBF kernel (as in Eq. (26)) with optimized hyperparame-

ters is chosen as the prior TSCF. See Fig. 3 a).

Next, we consider motion capture data of the orientation

of the left femur of a person walking in a circular pattern

[20, 21, 22]. This data naturally lives on S2 and is periodic.

We estimate the periodic independent variables of the data

by computing its principal curve as described in [22]. Then,

we fit a WGP using Fréchet mean BPF and the TSCF is

chosen to be diagonal with the periodic kernel k given by

k(t, t′) = σ2 exp

(

−
2 sin2(|t− t′|/2)

l2

)

, (31)

where the hyperparameters σ2 and l2 are optimized as de-

scribed in Sect. 4.2.1. Note that the Fréchet mean BPF

was used, as the data is not geodesic in trend. The resulting

WGP is depicted in Fig. 3 b).

5.2. Diffusion tensor imaging data

We consider a patch of estimated voxel-wise DTI tensors

from a coronal slice of an HCP subject [23, 24, 25]. The ten-

sors reside on the manifold R2 × PD(3), where PD(n) is

the set of n × n positive definite matrices. When endowed

with the affine-invariant metric [26], PD(n) forms a Rie-

mannian manifold of non-positive curvature, meaning we

can perform exact WGP regression with values in PD(n).
The data set consists of 15×19 tensors (elements of PD(3))
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Figure 4. Upsampling DTI tensor field by WGP regression. Colors

depict the direction of the principal eigenvector of the respective

tensor. a)Tthe slice shown as a tensor field, b) MAP estimate of

the predictive distribution of WGP regression on the original data

set with uncertainty visualized below (white indicates maximum

relative error, black indicates no error). The relative error is com-

puted by dividing by the maximal error over the experiment here

and in Fig. 5 c) and e).

with isotropic spacing, see Fig. 4 a). DTI upsampling is

performed as an interpolation task on a 30× 30 grid, fitting

a WGP to the data and estimating up-sampled values using

the estimated WGP. As a measure of uncertainty of the re-

sult, we calculate the sum of variances of each tangent space

coordinate at the interpolated points; this is visualized as a

background intensity in Fig. 4 b).

To illustrate the flexibility of WGP regression, we per-

form a second upsampling experiment, where we randomly

subsample only a fifth of the original DTI tensors, see Fig.

5 a). In Fig. 5 c) is shown the corresponding MAP estimate

of the predictive distribution (see Remark 3), where empir-

ical Fréchet mean was used as the prior BPF (Fig. 5 b))

and diagonal RBFs with optimized hyperparameters as the

prior TSCFs. Finally, to illustrate the effect of the choice

of prior BPF, a final experiment used the result of geodesic

submanifold regression as the prior BPF, see Fig. 5 d), e).

Note that the tensor field can be reconstructed well even

from just 20% of the data, although with increased uncer-

tainty, as can be seen when comparing Figs. 5 c), e) to

Fig. 4 a). The predictive WGPs in Figs. 5 c) and e) do

not differ vastly, although different BPFs were used. They

yield a different result in the upper-left corner area, where

the subsampled dataset is not dense, hence the regressed re-

sult is influenced by the prior BPF. In the middle, where

we also lack information, the resulting tensor fields look

similar. The error structures are very similar, seen in Figs.

5c), e). This can be explained by the optimized prior hy-

perparameters of the TSCFs being similar in both cases (the

residuals do not affect the posterior covariance other than

through hyperparameter optimization).

5.3. Corpus Callosum data

Next, we turn to a dataset of landmark representations of

Corpus Callosum (CC) shapes [1]. A landmark represen-

tation is a set of k points in R2, so that length, translation

Figure 5. Upsampling DTI tensor field by WGP regression. This

time, we carry out the regression on a subsampled tensor field

(shown in a)), where only 20% of the elements of the original

tensor field (see Fig. 4 a)) are present. We carry out the regression

using two different prior WGP BPFs. In b), the first prior BPF

using the Fréchet mean is shown and the corresponding predictive

WGP is visualized in c), using the MAP estimate to plot the ten-

sors. The second prior BPF is given by geodesic regression, shown

in d), with the corresponding predictive WGP in e). For color de-

scriptions, refer to the caption of Fig. 4. The uncertainty fields in

c) and e) have similar shapes, but the magnitudes differ.

and rotation factors have been quotiented out, resulting in

a point in the Kendall’s shape space [27]. The dataset con-

sists of 65 shapes, of which we pick randomly 6 to be the

test set, the rest are used for training.

Results are presented in Fig. 6. A tangent space geodesic

regression is used as the prior BPF, and a diagonal RBF

kernel with optimized hyperparameters is used as the prior

TSCF. As the CC shapes vary considerably even in the same

age group, the WGP predictive mean does not yield no-

table gains on the tangent space geodesic regression used

as prior BPF. However, it provides uncertainty estimates of

the shape. Notably, the results imply that aging brings about

wider variation in the upper-right part of the CC.

6. Conclusion and discussion

This paper introduced WGP regression on Riemannian

manifolds in a novel Bayesian inference framework relying
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Figure 6. WGP regression applied to a population of Corpus Callosum shapes labeled by age. Red shapes are data points from the test set,

not used for training. In black, the MAP estimates of the predictive distributions, in green values of the prior BPF at corresponding ages.

Drawn in blue are 20 samples from the predictive distribution.

on WGPs, defined via WGDs. Then, the conditional dis-

tribution of two jointly WGD random points was computed

for WGP regression. We demonstrated the method on three

manifolds; on the 2-sphere using a toy data set and mo-

tion capture data of the femur of a walking person, tensor

data originating from DTI and on a set of Corpus Callosum

shapes. The results of the experiments imply that WGP re-

gression can be used effectively on Riemannian manifolds,

providing meaningful uncertainty estimates.

This being the first step, there are still open questions;

how to engineer prior distributions efficiently, and how to

treat the predictive distribution? The predictive distribution

admits an explicit expression, but the prediction is not a

WGP anymore. Therefore, we do not have same closure

properties of the family of distributions as in the Euclidean

case. This leaves open the question, whether one should

consider other generalizations of GDs than the wrapped one

when carrying out GP regression on manifolds?

We suggested an approximation in Remark 2, not quanti-

fying how reliable it is in the case of non-infinite injectivity

radius. In practice the approximation seems plausible (see

Fig. 3), but should be studied in more detail. Furthermore, it

is of interest, in which cases the computations can be carried

out analytically, when the injectivity radius is non-infinite.

The central limit theorem presented in [19] suggests to

use WGD distributed error terms, but this poses the diffi-

culty of incorporating the noise term into the prior, when

the noise term might live in a different tangent space. The

workaround used in this paper was to approximate this error

term linearly in the tangent space of the prior BPF, however,

other models should also be considered.

Finally, GP regression could be generalized to a broader

family of spaces than Riemannian manifolds. In WGP re-

gression, the key is having a wrapping function from a

model vector space onto the manifold. For example, another

context where such structure appears, is the weak Rieman-

nian structure of the space of probability measures under

the Wasserstein metric [28].
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