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Abstract

This paper presents a method for adding multiple tasks to

a single deep neural network while avoiding catastrophic for-

getting. Inspired by network pruning techniques, we exploit

redundancies in large deep networks to free up parameters

that can then be employed to learn new tasks. By perform-

ing iterative pruning and network re-training, we are able

to sequentially “pack” multiple tasks into a single network

while ensuring minimal drop in performance and minimal

storage overhead. Unlike prior work that uses proxy losses

to maintain accuracy on older tasks, we always optimize

for the task at hand. We perform extensive experiments on

a variety of network architectures and large-scale datasets,

and observe much better robustness against catastrophic

forgetting than prior work. In particular, we are able to add

three fine-grained classification tasks to a single ImageNet-

trained VGG-16 network and achieve accuracies close to

those of separately trained networks for each task.

1. Introduction

Lifelong or continual learning [1, 14, 22] is a key re-

quirement for general artificially intelligent agents. Under

this setting, the agent is required to acquire expertise on

new tasks while maintaining its performance on previously

learned tasks, ideally without the need to store large special-

ized models for each individual task. In the case of deep

neural networks, the most common way of learning a new

task is to fine-tune the network. However, as features rele-

vant to the new task are learned through modification of the

network weights, weights important for prior tasks might

be altered, leading to deterioration in performance referred

to as “catastrophic forgetting” [4]. Without access to older

training data due to the lack of storage space, data rights, or

deployed nature of the agent, which are all very realistic con-

straints, naı̈ve fine-tuning is not a viable option for continual

learning.

Current approaches to overcoming catastrophic forget-

ting, such as Learning without Forgetting (LwF) [18] and

Elastic Weight Consolidation (EWC) [14], try to preserve

knowledge important to prior tasks through the use of proxy

losses. The former tries to preserve activations of the ini-

tial network while training on new data, while the latter

penalizes the modification of parameters deemed to be im-

portant to prior tasks. Distinct from such prior work, we

draw inspiration from approaches in network compression

that have shown impressive results for reducing network size

and computational footprint by eliminating redundant pa-

rameters [8, 17, 19, 20]. We propose an approach that uses

weight-based pruning techniques [7, 8] to free up redundant

parameters across all layers of a deep network after it has

been trained for a task, with minimal loss in accuracy. Keep-

ing the surviving parameters fixed, the freed up parameters

are modified for learning a new task. This process is per-

formed repeatedly for adding multiple tasks, as illustrated

in Figure 1. By using the task-specific parameter masks

generated by pruning, our models are able to maintain the

same level of accuracy even after the addition of multiple

tasks, and incur a very low storage overhead per each new

task.

Our experiments demonstrate the efficacy of our method

on several tasks for which high-level feature transfer does not

perform very well, indicating the need to modify parameters

of the network at all layers. In particular, we take a single

ImageNet-trained VGG-16 network [28] and add to it three

fine-grained classification tasks – CUBS birds [29], Stanford

Cars [15], and Oxford Flowers [21] – while achieving ac-

curacies very close to those of separately trained networks

for each individual task. This significantly outperforms prior

work in terms of robustness to catastrophic forgetting, as well

as the number and complexity of added tasks. We also show

that our method is superior to joint training when adding the

large-scale Places365 [30] dataset to an ImageNet-trained

network, and obtain competitive performance on a broad

range of architectures, including VGG-16 with batch nor-

malization [13], ResNets [9], and DenseNets [11].

2. Related Work

A few prior works and their variants, such as Learning

without Forgetting (LwF) [18, 22, 27] and Elastic Weight

Consolidation (EWC) [14, 16], are aimed at training a net-
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(a) Initial filter for Task I (b) Final filter for Task I (c) Initial filter for Task II (d) Final filter for Task II (e) Initial filter for Task III

60% pruning + re-training 33% pruning + re-trainingtraining training

Figure 1: Illustration of the evolution of a 5×5 filter with steps of training. Initial training of the network for Task I learns a dense filter as

illustrated in (a). After pruning by 60% (15/25) and re-training, we obtain a sparse filter for Task I, as depicted in (b), where white circles

denote 0 valued weights. Weights retained for Task I are kept fixed for the remainder of the method, and are not eligible for further pruning.

We allow the pruned weights to be updated for Task II, leading to filter (c), which shares weights learned for Task I. Another round of

pruning by 33% (5/15) and re-training leads to filter (d), which is the filter used for evaluating on task II (Note that weights for Task I, in

gray, are not considered for pruning). Hereafter, weights for Task II, depicted in orange, are kept fixed. This process is completed until

desired, or we run out of pruned weights, as shown in filter (e). The final filter (e) for task III shares weights learned for tasks I and II. At test

time, appropriate masks are applied depending on the selected task so as to replicate filters learned for the respective tasks.

work for multiple tasks sequentially. When adding a new

task, LwF preserves responses of the network on older tasks

by using a distillation loss [10], where response targets are

computed using data from the current task. As a result, LwF

does not require the storage of older training data, however,

this very strategy can cause issues if the data for the new

task belongs to a distribution different from that of prior

tasks. As more dissimilar tasks are added to the network, the

performance on the prior tasks degrades rapidly [18]. EWC

tries to minimize the change in weights that are important to

previous tasks through the use of a quadratic constraint that

tries to ensure that they do not stray too far from their initial

values. Similar to LwF and EWC, we do not require the

storage of older data. Like EWC, we want to avoid changing

weights that are important to the prior tasks. We, however,

do not use a soft constraint, but employ network pruning

techniques to identify the most important parameters, as ex-

plained shortly. In contrast to these prior works, adding even

a very unrelated new task using our method does not change

performance on older tasks at all.

As neural networks have become deeper and larger, a

number of works have emerged aiming to reduce the size of

trained models, as well as the computation required for in-

ference, either by reducing the numerical precision required

for storing the network weights [5, 6, 12, 23], or by pruning

unimportant network weights [7, 8, 17, 19, 20]. Our key

idea is to use network pruning methods to free up parame-

ters in the network, and then use these parameters to learn

a new task. We adopt the simple weight-magnitude-based

pruning method introduced in [7, 8] as it is able to prune

over 50% of the parameters of the initial network. As we

will discuss in Section 5.5, we also experimented with the

filter-based pruning of [20], obtaining limited success due

to the inability to prune aggressively. Our work is related to

the very recent method proposed by Han et al. [7], which

shows that sparsifying and retraining weights of a network

serves as a form of regularization and improves performance

on the same task. In contrast, we use iterative pruning and

re-training to add multiple diverse tasks.

It is possible to limit performance loss on older tasks if

one allows the network to grow as new tasks are added. One

approach, called progressive neural networks [26], replicates

the network architecture for every new dataset, with each new

layer augmented with lateral connections to corresponding

older layers. The weights of the new layers are optimized,

while keeping the weights of the old layers frozen. The

initial networks are thus unchanged, while the new layers

are able to re-use representations from the older tasks. One

unavoidable drawback of this approach is that the size of the

full network keeps increasing with the number of added tasks.

The overhead per dataset added for our method is lower than

in [26] as we only store one binary parameter selection mask

per task, which can further be combined across tasks, as

explained in the next section. Another recent idea, called

PathNet [3], uses evolutionary strategies to select pathways

through the network. They too, freeze older pathways while

allowing newly introduced tasks to re-use older neurons. At

a high hevel, our method aims at achieving similar behavior,

but without resorting to computationally intensive search

over architectures or pathways.

To our knowledge, our work presents the most exten-

sive set of experiments on full-scale real image datasets and

state-of-the-art architectures to date. Most existing work

on transfer and multi-task learning, like [3, 14, 16, 26], per-

formed validation on small-image datasets (MNIST, CIFAR-

10) or synthetic reinforcement learning environments (Atari,
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3D maze games). Experiments with EWC and LwF have

demonstrated the addition of just one task, or subsets of

the same dataset [16, 18]. By contrast, we demonstrate the

successful combination of up to four tasks in a single net-

work: starting with an ImageNet-trained VGG-16 network,

we sequentially add three fine-grained classification tasks

on CUBS birds [29], Stanford Cars [15], and Oxford Flow-

ers [21] datasets. We also combine ImageNet classification

with scene classification on the Places365 [30] dataset that

has 1.8M training examples. In all experiments, our method

achieves performance close to the best possible case of us-

ing one separate network per task. Further, we show that

our pruning-based scheme generalizes to architectures with

batch normalization [13], residual connections [9], and dense

connections [11].

Finally, our work is related to incremental learning ap-

proaches [24, 27], which focus on the addition of classifiers

or detectors for a few classes at a time. Our setting differs

from theirs in that we explore the addition of entire image

classification tasks or entire datasets at once.

3. Approach

The basic idea of our approach is to use network pruning

techniques to create free parameters that can then be em-

ployed for learning new tasks, without adding extra network

capacity.

Training. Figure 1 gives an overview of our method. We

begin with a standard network learned for an initial task,

such as the VGG-16 [28] trained on ImageNet [25] classi-

fication, referred to as Task I. The initial weights of a filter

are depicted in gray in Figure 1 (a). We then prune away a

certain fraction of the weights of the network, i.e. set them

to zero. Pruning a network results in a loss in performance

due to the sudden change in network connectivity. This is

especially pronounced when the pruning ratio is high. In or-

der to regain accuracy after pruning, we need to re-train the

network for a smaller number of epochs than those required

for training. After a round of pruning and re-training, we

obtain a network with sparse filters and minimal reduction

in performance on Task I. The surviving parameters of Task

I, those in gray in Figure 1 (b), are hereafter kept fixed.

Next, we train the network for a new task, Task II, and let

the pruned weights come back from zero, obtaining orange

colored weights as shown in Figure 1 (c). Note that the filter

for Task II makes use of both the gray and orange weights,

i.e. weights belonging to the previous task(s) are re-used. We

once again prune the network, freeing up some parameters

used for Task II only, and re-train for Task II to recover from

pruning. This gives us the filter illustrated in Figure 1 (d).

At this point onwards, the weights for Tasks I and II are kept

fixed. The available pruned parameters are then employed

for learning yet another new task, resulting in green-colored

weights shown in Figure 1 (e). This process is repeated until

all the required tasks are added or no more free parameters

are available. In our experiments, pruning and re-training is

about 1.5× longer than simple fine-tuning, as we generally

re-train for half the training epochs.

Pruning Procedure. In each round of pruning, we remove

a fixed percentage of eligible weights from every convolu-

tional and fully connected layer. The weights in a layer are

sorted by their absolute magnitude, and the lowest 50% or

75% are selected for removal, similar to [7]. We use a one-

shot pruning approach for simplicity, though incremental

pruning has been shown to achieve better performance [8].

As previously stated, we only prune weights belonging to the

current task, and do not modify weights that belong to a prior

task. For example, in going from filter (c) to (d) in Figure 1,

we only prune from the orange weights belonging to Task

II, while gray weights of Task I remain fixed. This ensures

no change in performance on prior tasks while adding a new

task.

We did not find it necessary to learn task-specific biases

similar to EWC [14], and keep the biases of all the layers

fixed after the network is pruned and re-trained for the first

time. Similarly, in networks that use batch normalization,

we do not update the parameters (gain, bias) or running

averages (mean, variance), after the first round of pruning

and re-training. This choice helps reduce the additional per-

task overhead, and it is justified by our results in the next

section and further analysis performed in Section 5.

The only overhead of adding multiple tasks is the storage

of a sparsity mask indicating which parameters are active

for a particular task. By following the iterative training

procedure, for a particular Task K, we obtain a filter that is

the superposition of weights learned for that particular task

and weights learned for all previous Tasks 1, · · · ,K − 1. If

a parameter is first used by Task K, it is used by all tasks

K, · · · , N , where N is the total number of tasks. Thus, we

need at most log
2
(N) bits to encode the mask per parameter,

instead of 1 bit per task, per parameter. The overhead for

adding one and three tasks to the initial ImageNet-trained

VGG-16 network (conv1 1 to fc 7) of size 537 MB is

only ∼17 MB and ∼34 MB, respectively. A network with

four tasks total thus results in a 1/16 increase with respect to

the initial size, as a typical parameter is represented using 4

bytes, or 32 bits.1

Inference. When performing inference for a selected task,

the network parameters are masked so that the network state

matches the one learned during training, i.e. the filter from

Figure 1 (b) for inference on Task I, Figure 1 (d) for infer-

ence on Task II, and so on. There is no additional run-time

overhead as no extra computation is required; weights only

have to be masked in a binary on/off fashion during multipli-

1In practice, we store masks inside a PyTorch ByteTensor (1 byte = 8

bits) due to lack of support for arbitrary-precision storage.
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cation, which can easily be implemented in the matrix-matrix

multiplication kernels.

It is important to note that our pruning-based method is

unable to perform simultaneous inference on all tasks as

responses of a filter change depending on its level of sparsity,

and are no longer separable after passing through a non-

linearity such as the ReLU. Performing filter-level pruning,

in which an entire filter is switched on/off, instead of a single

parameter, can allow for simultaneous inference. However,

we show in Section 5.5 that such methods are currently

limited in their pruning ability and cannot accommodate

multiple tasks without significant loss in performance.

4. Experiments and Results

Datasets and Training Settings. We evaluate our method

on two large-scale image datasets and three fine-grained

classification datasets, as summarized in Table 1.

Dataset #Train #Eval #Classes

ImageNet [25] 1,281,144 50,000 1,000

Places365 [30] 1,803,460 36,500 365

CUBS Birds [29] 5,994 5,794 200

Stanford Cars [15] 8,144 8,041 196

Flowers [21] 2,040 6,149 102

Table 1: Summary of datasets used.

In the case of the Stanford Cars and CUBS datasets, we

crop object bounding boxes out of the input images and

resize them to 224× 224. For the other datasets, we resize

the input image to 256× 256 and take a random crop of size

224 × 224 as input. For all datasets, we perform left-right

flips for data augmentation.

In all experiments, we begin with an ImageNet-trained

network, as it is essential to have a good starting set of

parameters. The only change we make to the network is

the addition of a new output layer per each new task. After

pruning the initial ImageNet-trained network, we fine-tune

it on the ImageNet dataset for 10 epochs with a learning

rate of 1e-3 decayed by a factor of 10 after 5 epochs. For

adding fine-grained datasets, we use the same initial learning

rate, decayed after 10 epochs, and train for a total of 20

epochs. For the larger Places365 dataset, we fine-tune for a

total of 10 epochs, with learning rate decay after 5 epochs.

When a network is pruned after training for a new task, we

further fine-tune the network for 10 epochs with a constant

learning rate of 1e-4. We use a batch size of 32 and the

default dropout rates on all networks.

Baselines. The simplest baseline method, referred to as

Classifier Only, is to extract the fc7 or pre-classifier fea-

tures from the initial network and only train a new classifier

for each specific task, meaning that the performance on Im-

ageNet remains the same. For training each new classifier

layer, we use a constant learning rate of 1e-3 for 20 epochs.

The second baseline, referred to as Individual Networks,

trains separate models for every task, achieving the highest

possible accuracies by dedicating all the resources of the

network for that single task. To obtain models for individual

fine-grained tasks, we start with the ImageNet-trained net-

work and fine-tune on the respective task for 20 epochs total

with a learning rate of 1e-3 decayed by factor of 10 after 10

epochs.

Another baseline used in prior work [18, 22] is Joint

Training of a network for multiple tasks. However, joint

fine-tuning is rather tricky when dataset sizes are different

(e.g. ImageNet and CUBS), so we do not attempt it for

our experiments with fine-grained datasets, especially since

individually trained networks provide higher reference accu-

racies in any case. Joint training works better for similarly-

sized datasets, thus, when combining ImageNet and Places,

we compare with the jointly trained network provided by the

authors of [30].

Our final baseline is our own re-implementation of

LwF [18]. We use the same default settings as in [18],

including a unit tradeoff parameter between the distillation

loss and the loss on the training data for the new task. For

adding fine-grained datasets with LwF, we use an initial

learning rate of 1e-3 decayed after 10 epochs, and train for

a total of 20 epochs. In the first 5 epochs, we train only the

new classifier layer, as recommended in [18].

Multiple fine-grained classification tasks. Table 2 summa-

rizes the experiments in which we add the three fine-grained

tasks of CUBS, Cars, and Flowers classification in varying

orders to the VGG-16 network. By comparing the Classifier

Only and Individual Networks columns, we can clearly see

that the fine-grained tasks benefit a lot by allowing the lower

convolutional layers to change, with the top-1 error on cars

and birds classification dropping from 56.42% to 13.97%,

and from 36.76% to 22.57% respectively.

There are a total of six different orderings in which the

three tasks can be added to the initial network. The Pruning

columns of Table 2 report the averages of the top-1 errors

obtained with our method across these six orderings, with

three independent runs per ordering. Detailed exploration of

the effect of ordering will be presented in the next section.

By pruning and re-training the ImageNet-trained VGG-16

network by 50% and 75%, the top-1 error slightly increases

from the initial 28.42% to 29.33% and 30.87%, respectively,

and the top-5 error slightly increases from 9.61% to 9.99%

and 10.93%. When three tasks are added to the 75% pruned

initial network, we achieve errors CUBS, Stanford Cars, and

Flowers that are only 2.38%, 1.78%, and 1.10% worse than

the Individual Networks best case. At the same time, the er-

rors are reduced by 11.04%, 30.41%, and 10.41% compared

to the Classifier Only baseline. Not surprisingly, starting

with a network that is initially pruned by a higher ratio re-

sults in better performance on the fine-grained tasks, as it
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Dataset
Classifier

LwF
Pruning (ours) Individual

Only 0.50, 0.75, 0.75 0.75, 0.75, 0.75 Networks

ImageNet
28.42 39.23 29.33 30.87 28.42

(9.61) (16.94) (9.99) (10.93) (9.61)

CUBS 36.76 30.42 25.72 24.95 22.57

Stanford Cars 56.42 22.97 18.08 15.75 13.97

Flowers 20.50 15.21 10.09 9.75 8.65

# Models (Size) 1 (562 MB) 1 (562 MB) 1 (595 MB) 1 (595 MB) 4 (2,173 MB)

Table 2: Errors on fine-grained tasks. Values in parentheses are top-5 errors, while all others are top-1 errors. The numbers at the top of the

Pruning columns indicate the ratios by which the network is pruned after each successive task. For example, 0.50, 0.75, 0.75 indicates that

the initial ImageNet-trained network is pruned by 50%, and after each task is added, 75% of the parameters belonging to that task are set to 0.

The results in the Pruning columns are averaged over 18 runs with varying order of training of the 3 datasets (6 possible orderings, 3 runs per

ordering), and those in the LwF column are over 1 run per ordering. Classifier Only and Individual Network values are averaged over 3 runs.

Dataset
Jointly Trained Pruning (ours) Individual

Network∗ 0.50 0.75 Networks

ImageNet
33.49 29.33 30.87 28.42

(12.25) (9.99) (10.93) (9.61)

Places365
45.98 47.44 46.99 46.35

(15.59) (16.67) (16.24) (16.14)∗

# Models (Size) 1 (559 MB) 1 (576 MB) 1 (576 MB) 2 (1,096 MB)

Table 3: Results when an ImageNet-trained VGG-16 network is pruned by 50% and 75% and the Places dataset is added to it. Values

in parentheses are top-5 errors, while all others are top-1 errors. ∗ indicates models downloaded from https://github.com/

CSAILVision/places365, trained by [30].

makes more parameters available for them. This especially

helps the challenging Cars classification, reducing top-1 er-

ror from 18.08% to 15.75% as the initial pruning ratio is

increased from 50% to 75%.

Our approach also consistently beats LwF on all datasets.

As seen in Figure 2, while training for a new task, the error

on older tasks increases continuously in the case of LwF,

whereas it remains fixed for our method. The unpredictable

change in older task accuracies for LwF is problematic, es-

pecially when we want to guarantee a specific level of per-

formance.

Finally, as shown in the last row of Table 2, our pruning-

based model is much smaller than training separate networks

per task (595 MB v/s 2,173 MB), and is only 33 MB larger

than the classifier-only baseline.

Adding another large-scale dataset task. Table 3 shows

the results of adding the large-scale Places365 classifi-

cation task to a pruned ImageNet network. By adding

Places365, which is larger than ImageNet (1.8 M images

v/s 1.3 M images), to a 75% pruned ImageNet-trained net-

work, we achieve top-1 error within 0.64% and top-5 error

within 0.10% of an individually trained network. By con-

trast, the jointly trained baseline obtains performance much

worse than an individual network for ImageNet (33.49% v/s

28.42% top-1 error). This highlights a common problem

associated with joint training, namely, the need to balance

mixing ratios between the multiple datasets which may or

may not be complementary, and accommodate their possi-

bly different hyperparamter requirements. In comparison,

iterative pruning allows for a controlled decrease in prior

task performance and for the use of different training hyper-

parameter settings per task. Further, we trained the pruned

network on Places365 for 10 epochs only, while the joint

and individual networks were trained for 60-90 epochs [30].

Extension to other networks. The results presented so far

were obtained for the vanilla VGG-16 network, a simple and

large network, well known to be full of redundancies [2].

Newer architectures such as ResNets [9] and DenseNets [11]

are much more compact, deeper, and better-performing. For

comparison, the Classifier Only models of VGG-16, ResNet-

50, and DenseNet-121 have 140 M, 27 M, and 8.6 M pa-

rameters respectively. It is not obvious how well pruning

will work on the latter two parameter-efficient networks.

Further, one might wonder whether sharing batch normal-

ization parameters across diverse tasks might limit accuracy.

Table 4 shows that our method can indeed be applied to

all these architectures, which include residual connections,

skip connections, and batch normalization. As described in

Section 3, the batch normalization parameters (gain, bias,

running means, and variances) are frozen after the network is

pruned and retrained for ImageNet. In spite of this constraint,

we achieve errors much lower than the baseline that only

trains the last classifier layer. In almost all cases, we obtain

errors within 1-2% of the best case scenario of one network
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Figure 2: Change in errors on prior tasks as new tasks are added for LwF (left) and our method (right). For LwF, errors on prior datasets

increase with every added dataset. For our pruning-based method, the error remains the same even after a new dataset is added.

Dataset
Classifier Pruning (ours) Individual

Only 0.50, 0.75, 0.75 Networks

VGG-16 with Batch Normalization

ImageNet
26.63 27.18 26.63

(8.49) (8.69) (8.49)

CUBS 35.26 21.89 19.83

Stanford Cars 57.21 14.57 13.29

Flowers 21.79 7.45 6.04

Size 562 MB 595 MB 2,173 MB

ResNet-50

ImageNet
23.84 24.29 23.84

(7.13) (7.18) (7.13)

CUBS 34.83 21.13 19.56

Stanford Cars 58.15 13.75 12.99

Flowers 18.53 7.10 8.50

Size 107 MB 112 MB 389 MB

DenseNet-121

ImageNet
25.56 25.60 25.56

(8.02) (7.89) (8.02)

CUBS 28.88 21.84 19.72

Stanford Cars 47.65 15.55 13.15

Flowers 17.12 7.71 8.02

Size 34 MB 36 MB 119 MB

Table 4: Results on additional network types. Values in parentheses

are top-5 errors, while all others are top-1 errors. The results in the

pruning column are averaged over 18 runs with varying order of

training of the 3 datasets (6 possible orderings, 3 runs per ordering).

Classifier Only and Individual Network values are averaged over 3

runs.

per task. While we tried learning separate batchnorm pa-

rameters per task and this further improved performance, we

chose to freeze batchnorm parameters since it is simpler and

avoids the overhead of storing these separate parameters (4

vectors per batchnorm layer).

The deeper ResNet and DenseNet networks with 50 and

121 layers, respectively, are very robust to pruning, losing

just 0.45% and 0.04% top-1 accuracy on ImageNet, respec-

tively. Top-5 error increases by 0.05% for ResNet, and

decreases by 0.13% for DenseNet. In the case of Flowers

classification, we perform better than the individual network,

probably because training the full network causes it to overfit

to the Flowers dataset, which is the smallest. By using the

fewer available parameters after pruning, we likely avoid

this issue.

Apart from obtaining good performance across a range

of networks, an additional benefit of our pruning-based ap-

proach is that for a given task, the network can be pruned

by small amounts iteratively so that the desirable trade-off

between loss of current task accuracy and provisioning of

free parameters for subsequent tasks can be achieved. Note

that the fewer the parameters, the lower the mask storage

overhead of our methods, as seen in the Size rows of Table 4.

5. Detailed Analysis

In this section, we investigate the factors that affect per-

formance while using our method, and justify choices made

such as freezing biases of the network. We also compare our

weight-pruning approach with a filter-pruning approach, and

confirm its benefits over the latter.

5.1. Effect of training order

As more tasks are added to a network, a larger fraction

of the network becomes unavailable for tasks that are sub-

sequently added. Consider the 0.50, 0.75, 0.75 pruning

ratio sequence for the VGG-16 network. The layers from

conv1 1 to fc 7 contain around 134 M parameters. After

the initial round of 50% pruning for Task I (ImageNet classi-

fication), we have ∼67 M free parameters. After the second

round of training followed by 75% pruning and re-training,
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Figure 3: Dependence of errors on individual tasks on the order of

task addition (see text for details). Each displayed value and error

bar are obtained from 6 different runs. We use an initial pruning

ratio of 50% for the ImageNet-trained VGG-16 and a pruning ratio

of 75% after each dataset is added. 0.50, 0.75, 0.75 pruning column

of Table 2 reports the average over orderings.

16.75 M parameters are used by Task II, and 50.25 M free

parameters available for subsequent tasks. Likewise, Task III

uses around 13 M parameters and leaves around 37 M free

parameters for Task IV. Accordingly, we observe a reduction

of accuracy with order of training, as shown in Figure 3. For

example, the top-1 error increases from 16.00% to 18.34%

to 19.91% for the Stanford Cars dataset as we delay its ad-

dition to the network. For the datasets considered, the error

increases by 3% on average when the order of addition is

changed from first to third. Note that the results reported

in Table 2 are averaged over all orderings for a particular

dataset. These findings suggest that if it is possible to decide

the ordering of tasks beforehand, the most challenging or

unrelated task should be added first.

5.2. Effect of pruning ratios

In Figure 4, we measure the effect of pruning and re-

training for a task, when it is first added to a 50% pruned

VGG-16 network (except for the initial ImageNet task). We

consider this specific case in order to isolate the effect of

pruning from the order of training discussed above. We ob-

serve that the errors for a task increase immediately upon

pruning (⋆ markers) due to sudden change in network con-

nectivity. However, upon re-training, the errors reduce, and

might even drop below the original unpruned error, as seen

for all datasets other than ImageNet at the 50% pruning ratio,

in line with prior work [7] which has shown that pruning and

retraining can function as effective regularization. Multi-step

pruning will definitely help reduce errors on ImageNet, as

reported in [8]. This plot shows that re-training is essential,

especially when the pruning ratios are large.
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Figure 4: This plot measures the change in top-1 error with pruning.

The values above correspond to the case when the respective dataset

is added as the first task, to an ImageNet-trained VGG-16 that is

50% pruned, except for the values corresponding to the ImageNet

dataset which correspond to initial pruning. Note that the 0.75

pruning ratio values correspond to the blue bars in Figure 3.

Interestingly, for a newly added task, 50% and 75% prun-

ing without re-training does not increase the error by much.

More surprisingly, even a very aggressive single-shot prun-

ing ratio of 90% followed by re-training results in a small

error increase compared to the unpruned errors (top-1 error

increases from 15.75% to 17.84% for Stanford Cars, 24.13%

to 24.72% for CUBS, and 8.96% to 9.48% for Flowers). This

indicates effective transfer learning as very few parameter

modifications (10% of the available 50% of total parameters

after pruning, or 5% of the total VGG-16 parameters) are

enough to obtain good accuracies.

5.3. Effect of training separate biases

We do not observe any noticeable improvement in perfor-

mance by learning task-specific biases per layer, as shown in

Table 5. Sharing biases reduces the storage overhead of our

proposed method, as each convolutional, fully-connected,

or batch-normalization layer can contain an associated bias

term. We thus choose not to learn task-specific biases in our

reported results.

Dataset
Pruning 0.50, 0.75, 0.75

Separate Bias Shared Bias

CUBS 25.62 25.72

Stanford Cars 18.17 18.08

Flowers 10.11 10.09

Table 5: No noticeable difference in performance is observed by

learning task-specific biases. Values are averaged across all 6

task orderings, with 3 runs per ordering. The shared bias column

corresponds to the 0.50, 0.75, 0.75 Pruning column of Table 2.
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Figure 5: This figure shows that having free parameters in the

lower layers of the network is essential for good performance. The

numbers above are obtained when a task is added to the 50% pruned

VGG-16 network and the only the specified layers are finetuned,

without any further pruning.

5.4. Is training of all layers required?

Figure 5 measures the effect of modifying freed-up pa-

rameters from various layers for learning a new task. For this

experiment, we start with the 50% pruned ImageNet-trained

vanilla VGG-16 network, and add one new task. For the new

task, we train pruned neurons from the specified layers only.

Fine-tuning the fully connected layers improves accuracy

over the classifier only baseline in all tasks. Further, fine-

tuning the convolutional layers provides the biggest boost in

accuracy, and is clearly necessary for obtaining good perfor-

mance. By using our method, we can control the number of

pruned parameters at each layer, allowing one to make use

of task-specific requirements, when available.

5.5. Comparison with filterbased pruning

For completeness, we report experiments with filter-based

pruning [20], which eliminates entire filters, instead of spar-

sifying them. The biggest advantage of this strategy is that

it enables simultaneous inference to be performed for all

the trained tasks. For filters that survive a round of pruning,

incoming weights on all filters that did not survive pruning

(and are hence available for subsequent tasks) are set to 0.

As a result, when new filters are learned for a new task, their

outputs would not be used by filters of prior tasks. Thus, the

output of a filter for a prior task would always remain the

same, irrespective of filters learned for tasks added later. The

method of [20] ranks all filters in a network based on their

importance to the current dataset, as measured by a metric re-

lated to the Taylor expansion of the loss function. We prune

400 filters per each epoch of ∼40,000 iterations, for a total

of 10 epochs. Altogether, this eliminates 4,000 filters from

a total of 12,416 in VGG-16, or ∼30% pruning. We could

Dataset
Classifier Pruning

Only Filters Weights

ImageNet
28.42 30.70 29.33

(9.61) (10.92) (9.99)

CUBS 36.76 35.73 24.23

Stanford Cars 56.42 34.78 13.97

Flowers 20.50 13.31 8.79

Table 6: Comparison of filter-based and weight-based pruning for

ImageNet-trained VGG-16. This table reports errors after adding

only one task to the 30% filter-pruned and 50% weight-pruned

network. Values in the Weights column correspond to the blue bars

in Figure 3. Values in parentheses are top-5 errors, and the rest are

top-1 errors.

not prune more aggressively without substantially reducing

accuracy on ImageNet. A further unfavorable observation is

that most of the pruned filters (3,730 out of 4,000) were cho-

sen from the fully connected layers (Liu et al. [19] proposed

a different filter-based pruning method and found similar be-

havior for VGG-16). This frees up too few parameters in the

lower layers of the network to be able to fine-tune effectively

for new tasks. As a result, filter-based pruning only allowed

us to add one extra task to the ImageNet-trained VGG-16

network, as shown in Table 6. A final disadvantage of filter-

based pruning methods is that they are more complicated

and require careful implementation in the case of residual

networks and skip connections, as noted by Li et al. [17].

6. Conclusion

In this work, we have presented a method to “pack” mul-

tiple tasks into a single network with minimal loss of per-

formance on prior tasks. The proposed method allows us to

modify all layers of a network and influence a large number

of filters and features, which is necessary to obtain accura-

cies comparable to those of individually trained networks

for each task. It works not only for the relatively “roomy”

VGG-16 architecture, but also for more compact parameter-

efficient networks such as ResNets and DenseNets.

In the future, we are interested in exploring a more gen-

eral framework for multi-task learning in a single network

where we jointly train both the network weights and binary

sparsity masks associated with individual tasks. In our cur-

rent approach, the sparsity masks per task are obtained as a

result of pruning, but it might be possible to learn such masks

using techniques similar to those for learning networks with

binary weights [12, 23].
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