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Abstract

In this paper we propose a technique to adapt a convolu-

tional neural network (CNN) based object counter to addi-

tional visual domains and object types while still preserving

the original counting function. Domain-specific normalisa-

tion and scaling operators are trained to allow the model

to adjust to the statistical distributions of the various visual

domains. The developed adaptation technique is used to

produce a singular patch-based counting regressor capable

of counting various object types including people, vehicles,

cell nuclei and wildlife. As part of this study a challenging

new cell counting dataset in the context of tissue culture

and patient diagnosis is constructed. This new collection,

referred to as the Dublin Cell Counting (DCC) dataset, is the

first of its kind to be made available to the wider computer

vision community. State-of-the-art object counting perfor-

mance is achieved in both the Shanghaitech (parts A and

B) and Penguins datasets while competitive performance

is observed on the TRANCOS and Modified Bone Marrow

(MBM) datasets, all using a shared counting model.

1. Introduction

Vision-based object counting is an important analysis step

in many observational scenarios including wildlife studies,

microscopic imaging and CCTV surveillance. An accurate

object counting system can provide valuable insights such

as the congestion level of a public square (crowd counting),

the level of traffic on a motorway (vehicle counting), the

inferred migration patterns of a penguin colony (wildlife

counting) or the proliferation of cancerous cells in a patient

(cell counting). There is a common set of challenges for

vision-based object counting which limit counting accuracy

in all of these domains. These challenges include object scale

Figure 1: Examples of the challenging images encountered

in different object counting domains.

and perspective issues, visual occlusion and poor illumina-

tion. To date, these highly related counting tasks have been

tackled separately with algorithms engineered specifically

to perform object counting in a given domain. Examples of

these challenges are shown across several visual domains in

Figure 1.

Vision based object counting has been tackled using both

object detection [1, 2, 3] and count regression techniques

[4, 5, 6, 7, 8] with both types of approach having their own

specific weakness (visual occlusion and model overfitting

respectively). The utilisation of convolutional neural net-
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works (CNN) and hardware accelerated optimisation has lead

to significant improvements in the accuracy of regression-

based counting approaches across several visual domains

[9, 10, 11]. This paper looks to build upon this work and

investigate if a patch-based object count regressor can be

adapted to additional object types and visual domains while

maintaining accuracy in the original counting task. The po-

tential benefits of a modular counting architecture include

transfer learning and the removal of redundant model pa-

rameters. The significant variation in statistical distribu-

tion between visual domains is one of the main obstacles

to domain adaptation in computer vision [12]. This chal-

lenge is addressed in our approach by including a set of

domain-specific scaling and normalization layers distributed

throughout the network which make up only a small fraction

of the overall parameter count [12]. A sequential training

procedure inspired by the work of Rebuffi et al. [12] allows

the network to be extended to new counting tasks over time

while preserving all previously learned counting functions.

The set of count estimates produced using the proposed

patch-based counting model are then refined using an effi-

cient fully convolutional neural network which utilises the

wider scene context to mitigate possible count errors. The

proposed framework is also extended to perform a visual

domain classification in the event of the observed domain

being unknown, highlighting the versatility and modular na-

ture of the approach. The core contributions of this paper

can be summarised as follows:

• An extendable CNN architecture for patch-based, multi-

domain object counting is developed for the first time;

• A fully convolutional neural network is utilised to refine

a set of count estimates for an entire image;

• A challenging, representative dataset for cell counting

in a tissue culture/patient diagnosis setting is proposed;

• Domain adaptation in object counting is shown to pro-

duce more efficient, higher accuracy counting models;

• State-of-the-art counting accuracy is observed on lead-

ing benchmarks for several object types including the

Shanghaitech [13] and Penguins [14] datasets.

The remainder of this paper is organised as follows: Sec-

tion 2 presents the related work found in the literature. Sec-

tion 3 describes the proposed multi-domain object counting

approach while Section 4 details the construction of a chal-

lenging new cell counting dataset. Finally, Section 5 presents

a comprehensive set of experiments highlighting the devel-

opment of our technique and the benefits associated with

multi-domain object counting.

2. Related work

Crowd Counting. Crowd counting has been approached

using a wide variety of techniques, from HOG-based head

detectors [15] to CNN-based regressors [9]. Heatmap-based

crowd counting using a fully convolutional neural network

was firstly investigated by Zhang et al. [13] and subsequently

by Marsden et al. [16], with notable performance gains ob-

served. A novel model switching technique for crowd count-

ing was proposed by Sam et al. [17] which firstly classifies

the crowd density level of an image region before performing

heatmap-based counting using a network which has been

optimised for the detected crowd density level. The standard

datasets for evaluating crowd counting techniques include

the UCF CC 50 [15] and Shanghaitech [13] datasets.

Cell counting. Cell nuclei counting techniques have

evolved from SIFT-based heatmap estimation [6] to fully

convolutional neural networks [18, 19], with significant im-

provements in accuracy observed. Significant variation in

cell morphology and visual occlusion limit the accuracy of

these techniques. The VGG Cell dataset [20] (made up en-

tirely of synthetic images) is the main public benchmark used

to compare cell counting techniques. Recently the Modified

Bone Marrow (MBM) dataset [19] was introduced, contain-

ing images of real cells observed in histological slides (a

2D cross section of a 3D tissue structure). However, a cell

counting dataset in the context of tissue culture and patient

diagnosis is still needed. Cell counting in tissue culture is of-

ten done by hand on a daily basis, especially in cases where

highly expensive automated systems are not available. A

vision-based cell counting system for tissue culture can lead

to a more affordable solution and faster diagnoses overall.

Vehicle counting. Vehicle counting has been tackled us-

ing a variety of techniques including SIFT-based regression

[21], CNN regression [10], density heatmap generation [22]

as well as an LSTM (Long Short-Term Memory) based ap-

proach from Zhang et al. [23] which adds a temporal dimen-

sion to vehicle counting. Vehicle counting techniques are

trained and evaluated using the WebCamT [23] and TRAN-

COS [21] datasets.

Wildlife counting. Counting of wildlife in ecological

studies has not received significant attention from the com-

puter vision community. The core work in this area is that

of Arteta et al. [14] who produced a large-scale dataset for

counting penguin colonies.

Domain adaptation and shared learning models.

While this paper focuses primarily on domain adaptation it

also touches on concepts including transfer learning, feature

extraction and learning without forgetting (LwF). The ability

to train a machine learning model to perform additional tasks

over time while maintaining accuracy in previous tasks has

generated significant interest in the computer vision com-

munity. This notion is inspired largely by the human visual

system, which learns a universal representation for vision in

8071



the early life and uses this representation for a variety of prob-

lems [12]. Fine-tuning is a common process used to adapt a

given neural network to a new task, the main downside being

that the original function is often lost during optimisation.

Multi-Task learning (MTL) approaches attempt to train a

model to simultaneously perform several tasks, often within

a specific visual domain. MTL approaches typically involve

including sets of task specific layers at end of a given neural

network and jointly training to perform all tasks. This type

of approach is cumbersome to extend to new tasks and visual

domains as all tasks must be retrained.

While intra-domain, multi-objective learning has been uti-

lized heavily to extend the functionality of neural networks,

training a model to perform tasks in various distinct visual

domains (CCTV scenes, medical imaging) has proven to be

more challenging due to the observed variation in statisti-

cal distributions between domains. These issues have been

addressed by Bilen et al. [24] who trained a CNN model

to learn a universal vision representation which can jointly

perform non-related tasks from distinct visual domains by

including domain-specific scaling and normalisation layers

throughout the network. This work was extended by Re-

buffi et al. [12] who added domain-specific convolutions and

proposed a sequential training procedure for learning new

tasks over time without discarding the previously learned

functions.

3. Our approach

The proposed object counting technique consists of a

patch-based CNN regressor with significant inter-domain

parameter sharing that can be quickly switched between a

learned set of visual domains by interchanging a subset of

domain specific parameters. The estimated object count for a

given image is calculated by summing the object count for all

patches. A patch based approach to counting enables a more

robust regressor to be learned as objects within a smaller

image region are observed to be approximately uniform

in size. A lightweight fully convolutional neural network

is then used to refine a set of patch estimates for a given

image by including the context of adjacent patch estimates

to mitigate possible errors.

3.1. Base object counting regressor

The base object counting regressor (shown in Figure 2)

consists of two distinct steps. First a set of high-level fea-

tures are extracted from each image patch using a pre-trained

image classification network, the parameters of which are

frozen during model training. The N feature maps generated

by the given image classification network’s final convolu-

tional layer are average pooled globally to produce an N -

dimensional feature representation. This N -dimensional fea-

ture representation is then mapped to an object count value

using a fully connected neural network. This fully connected

network consists of 5 layers with the following configuration

of neurons 256-128-64-64-1. Rectified linear unit (ReLU)

activations are applied after each fully connected layer. The

trainable portion of the network consists of just 330,000

parameters when the pre-trained base network produces a

1024-D descriptor. A variety of pre-trained object classifi-

cation networks and image patch sizes are investigated in

Section 5.

3.2. Domain­specific layers

To enable the proposed counting regressor to adapt to

various visual domains (e.g. people, vehicles, wildlife, cell

nuclei) a set of domain-specific modules are included be-

fore each fully connected layer and then after the final fully

connected layer. These domain-specific modules are inter-

changed during training and inference depending on the

chosen visual domain (this switching concept is highlighted

in Figure 3). Each domain-specific module contains the

residual adapter of Rebuffi et al. [12] which has been ad-

justed to work the fully connected layers of the proposed

network. An input vector input of length N is firstly fed

through a 1-D batch normalisation layer, then a 1-D convo-

lutional layer with a single Nx1 convolutional kernel and

finally another 1-D batch normalisation layer, with a residual

skip connection also included to improve model convergence.

The structure of the proposed adapter module is shown in fig-

ure 4. Each adapter module requires just 9N + 1 parameters

where N is the input vector length. These residual adapter

modules allows for the network to adapt to the distinct sta-

tistical distributions of the various visual domains through

domain-specific normalisation and scaling [25].

3.3. Sequential training

A sequential training procedure inspired by the work of

Rebuffi et al. [12] is used to allow the proposed counting

regressor to be extended to new domains over time while

still performing the original set of counting tasks. First the

network is primed by training to convergence on a given vi-

sual domain (e.g. crowd counting), after which the domain-

agnostic parameters (i.e. the fully connected layers) are

frozen and only the subset of domain-specific parameters

are trained to convergence for each of the remaining visual

domains, one at a time. Freezing the domain-agnostic pa-

rameters enables the network to retain the original counting

regression function it has learned. Euclidean distance, given

in equation 1 is optimised during training. Θ corresponds

to the set of network parameters to optimise, N is the batch

size, Xi is the ith batch image while Fi is the corresponding

ground truth count value. F (Xi; Θ) is the estimated count

value for a given batch image Xi.

Ll2(Θ) =
1

2N

N
∑

i=1

‖F (Xi; Θ)− Fi‖
2

2
. (1)
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Figure 2: Network architecture for the proposed patch-based object counting regressor

Figure 3: Domain specific modules are interchanged during

training and inference depending on the chosen counting

task (red path).

Figure 4: The residual adapter module of Rebuffi et al. [12].

The AdaGrad optimiser [26] is used to avoid learning

rate selection issues with the initial learning rate set to 1×
10−1. L2 weight regularisation (i.e. weight decay) is also

included during model training with λ set to 1×10−3. Model

weights are initalised using the uniform initaliser of Glorot

and Bengio [27] while the bias terms are initalised to zero.

Training is carried out for 10,000 iterations for each domain.

The choice of visual domain used to prime the network is

investigated in section 5.

3.4. Fully convolutional refinement network

A patch-based counting regressor does not include the

wider scene context when processing a given image as

patches are analysed on an individual basis. To address

this, a fully convolutional neural network is trained to refine

a grid of patch estimates for a given image. The proposed

fully convolutional network, shown in Figure 5, consists of

4 convolutional layers with the following number of kernels

per layer: 16,16,16,1. Rectified linear unit (ReLU) activa-

tions are applied after each layer. All convolutional kernels

are 3× 3 resulting in a total parameter count of 4950.

A refinement model can be trained for the count regres-

sor of a given domain by firstly producing a grid of patch

estimates for each training image used as well as a corre-

sponding ground truth grid. Training is then carried out using

these grid pairs for 10,000 iterations with Euclidean distance

again minimised. Once trained, a refinement model can be

applied to a set of count estimates of any width and height

due to the fully convolutional nature of the model. During

inference this step results in a near negligible increase in

processing time.

Figure 5: Fully convolutional network used for count estima-

tion refinement.

3.5. Domain classification

If the visual domain observed during inference is un-

known this can be predicted by extending the core network

to also perform domain classification. To accomplish this

the final fully connected layer is interchanged with a K-

neuron fully connected layer, where K is the number of

visual domains to distinguish between. Following this final

layer a softmax activation is applied and the subsequent do-

main adapter module is not included. Training can then be

performed by freezing the common model parameters (the

initial 4 fully connected layers) and creating a fresh set of

adapter modules. Categorical cross-entropy loss, defined as:
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LCCE(Θ) = −
1

N

N
∑

i=1

K
∑

j=1

Sij log(Ŝij), (2)

is then minimized. Θ corresponds to the set of trainable

network parameters, N and K are the batch size and number

of visual domains to be distinguished between while Ŝij is

the predicted probability score for concept j in the ith batch

image and Sij is the corresponding ground truth value.

4. Dublin cell counting dataset

When considering the application of computer vision

to tissue culture and patient diagnosis there is a clear lack

of publicly available and fully annotated cell microscopy

datasets. The main dataset used to evaluate techniques for

this task consists entirely of synthetic images [18]. To ad-

dress this, the Dublin Cell Counting (DCC) dataset was

constructed.

This dataset consists of 177 images containing a wide

array of tissues and species. Amongst these are examples

of stem cells derived from embryonic mice, isolated hu-

man lung adenocarcinoma and examples of primary human

monocytes isolated from a healthy human volunteer. Sev-

eral factors were varied during image capture to provide a

more representative set of images. First, the density of cells

loaded onto the slide naturally varies as cell lines proliferate

at different rates. Second, the morphology and size of the

cells for each cell line can vary significantly. Furthermore,

the objective lens used during imaging was varied as was

the diameter of the diaphragm which controls the amount

of light hitting the sample. Finally, the haemocytometer

grid size was varied to produce a representative set of non-

cellular image artifacts. Cell images were obtained via a

camera mounted on an Olympus CKX41 microscope using

both 4× and 10× objectives. The high levels of variation in

this collection allow for a more robust cell counting function

to be learned. After the full set of image were acquired, a

dot annotation process was performed by a domain expert

with a background in molecular biology.

The mean cell count across these images is 34.1 with a

standard deviation of 21.8, showing the significant variation

in cell density. 100 images are used for training and valida-

tion while the remaining 77 form an unseen test set. Sample

images from this collection are shown in Figure 6.

5. Experiments

The proposed multi-domain object counting technique

is evaluated using a challenging and representative dataset

for each visual domain including the proposed DCC dataset.

These collections are detailed in full in Table 1. Horizontal

flips are used for training set augmentation in all cases. A

30% subset of the provided training data is set aside as

Figure 6: DCC dataset examples showing the significant

variation within this collection.

a validation set for all model selection experiments, apart

from where an explicit validation set is provided. No count

estimate refinement is applied until subsection 5.5. Counting

performance is evaluated for all visual domains using Mean

Absolute Error (MAE) and Root Mean Squared Error (MSE),

which are defined as follows:

MAE =
1

N

N
∑

i=1

|zi − ži| , (3)

MSE =

√

√

√

√

1

N

N
∑

i=1

(zi − ži)2, (4)

All network optimisation and testing is performed using an

NVIDIA GeForce GTX 970 GPU with a batch size of 256

and implemented using the Keras API [28] with a Tensorflow

backend [29].

5.1. Patch size selection

Several image patch sizes (50 × 50, 100 × 100, 200 ×
200) are compared by evaluating crowd counting validation

performance on the Shanghaitech dataset (part A). Feature

extraction for the base counting regressor is performed using

the VGG16 network of Simonyan and Zisserman [30] for

all runs. A given patch size is used during both dataset

construction and inference. Both the domain-agnostic and

domain-specific network parameters are optimised for each

run in this experiment as the network has not been primed

on any other dataset. Table 2 highlights the performance
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Visual Domain Dataset No. of Images
Count

Mean

Count

STD

Count

Range

Crowd Shanghaitech (Part A) [13] 482 501.4 456.4 33-3139

Vehicles TRANCOS [21] 1641 36.54 14.9 9-95

Wildlife Penguins [14] 80095 7.18 5.71 0-67

Cells Dublin Cell Counting 177 34.1 21.8 0-101

Table 1: Details of the datasets used to evaluate the proposed multi-domain object counting technique.

of the various patch sizes. 100 × 100 patches result in the

best overall performance and will be used in all subsequent

experiments. This size likely strikes the optimal balance

between uniform object size and the inclusion of wider scene

context needed to learn a robust function. On the other hand,

the use of 200 × 200 patches results in significantly inferior

performance due to the non-uniform object sizes observed

in larger image regions.

Patch Size MAE MSE

50 × 50 100.8 152.5

100 × 100 97.5 145.4

200 × 200 158.5 247.3

Table 2: Crowd counting validation performance of vari-

ous image patch sizes on a validation set taken from the

Shanghaitech (Part A) dataset.

5.2. Feature extractor selection

Several pre-trained image classification networks are eval-

uated as feature extractors for object counting. These net-

works include the ResNet50 network of He et al. [31] the

VGG16 network of Simonyan and Zisserman [30] as well

as the MobileNet architecture of Howard et al. [32]. Crowd

counting validation performance is again evaluated on the

Shanghaitech (Part A) dataset with a patch size of 100 ×
100 used. Table 3 details the various pre-trained networks

and presents the performance achieved by each. The num-

ber of parameters associated with each network does not

include the original set of fully connected layers (which

have been replaced entirely). The MobileNet feature ex-

tractor achieves the best overall performance despite having

significantly fewer parameters and is used for all subsequent

experiments. The use of this lightweight architecture also

potentially makes the developed method more suitable for

edge processing on low power devices.

5.3. Priming the network

In the work of Rebuffi et al. [12] a multi-domain image

classification network is primed on the ImageNet dataset

[33] due to it’s size and variety before being adapted to other

domains. However, for the proposed multi-domain object

counting model the choice of which domain with which to

Net Parameters MAE MSE

VGG16 [30] 14M 101.2 151.4

Resnet50 [31] 24M 97.5 145.4

MobileNet (α = 1.0) [32] 3.5M 94.1 138.9

Table 3: Validation performance on the Shanghaitech dataset

(part A) for various image classification networks being used

for feature extraction.

prime the network is not clear. Therefore all 4 domains

(crowds, vehicles, wildlife, cells) are evaluated for this pur-

pose by priming the network from scratch and then adapting

to the remaining 3 domains one by one using the sequential

training process discussed previously. Table 4 presents the

MAE score observed for each pairing. Each row in this table

corresponds to the domain used to prime the network while

each column corresponds to the MAE performance achieved

when adapting the model. The diagonal entries correspond

to the performance achieved when training the network from

scratch for each domain. A concurrent training baseline

is also included, where the model is trained to perform all

4 counting tasks, switching between them in round robin

fashion.

It can be seen that priming the network on the cell do-

main using the DCC dataset results in the best overall per-

formance, achieving optimal MAE on 3 of the 4 domains.

Adapting from the cell domain achieves performance supe-

rior to training from scratch on both the crowd and wildlife

domains, which is noteworthy given the small number of

domain-specific parameters trained. The high performance

observed across domains when adapting from a cell counting

model is likely due to the significant morphological variation

observed between cell objects in the DCC dataset, resulting

in a broader set of learned features. In all subsequent experi-

ments the counting network is primed on the cell counting

task.

5.4. Comparison with feature extraction based net­
work adaptation

Feature extraction based network adaptation involves

freezing the majority of a given neural network and retrain-

ing the final few layers for a new task (with the task-specific

parameters then interchanged as required). This approach
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Visual Domain Crowd (Tested) Vehicles (Tested) Wildlife (Tested) Cells (Tested) Best Overall

Crowd (Primed) 94.1 10.3 6.8 12.9 0/4

Vehicles (Primed) 96.2 9.9 6.1 11.5 1/4

Wildlife (Primed) 95.3 10.3 6.05 10.2 0/4

Cells (Primed) 90.2 10.2 5.7 9.5 3/4

Concurrent Training 92.6 9.95 5.93 10.1 0/4

Table 4: The MAE validation performance achieved when priming the network using each of the 4 visual domains.

retains the original function but often requires a large num-

ber of new parameters to be trained. In this experiment we

compare the Rebuffi domain adapter [12] with feature ex-

traction as a domain adaptation strategy. The approaches

are evaluated in terms of MAE performance in the target do-

main and the quantity of new model parameters introduced.

The number of retrained fully connected layers is varied to

investigate the difference in performance. All adapter mod-

ules placed before trainable layers are re-trained while those

before frozen layers are also frozen. A given cell counting

model is adapted to perform crowd counting on the Shang-

haitech dataset (part A) in each case. Figure 5 highlights the

superior performance of the Rebuffi domain adapter when

adapting to crowd counting, despite using significantly fewer

parameters.

Approach Extra Parameters MAE

From Scratch 330K 94.1

Final 4 layers re-trained 50K 128.3

Final 3 layers re-trained 15K 232.2

Final 2 layers re-trained 5K 245.5

Rebuffi et al. [12] 16K 90.2

Table 5: MAE validation performance on the Shanghaitech

dataset (part A) for various domain adaptation strategies.

5.5. Prediction refinement

A fully convolutional refinement model is trained for

each of the 4 visual domains and compared to the validation

performance of the base regressor model in each case. Re-

sults of this experiment are shown in table 6. This efficient

post-processing step has a near negligible impact on infer-

ence time but results in significant performance boosts in the

crowd and cell counting benchmarks. Examples of the final

count regressor in action across all 4 domains are shown in

figure 7.

5.6. Domain classification performance

A domain classifier is trained by firstly producing a repre-

sentative dataset taken from all 4 visual domains used in this

study. 300 full scene images are taken from each collection

and a 6:4 training/test split is then applied, ensuring an even

number of images are taken from each domain. Horizontal

Visual Domain Base MAE Refined-MAE

Crowds 90.2 86.5

Vehicles 10.2 10.1

Wildlife 5.7 5.6

Cells 9.5 8.4

Table 6: The MAE observed on the validation sets of all 4

visual domains for the base regressor and after the proposed

refinement step has been applied.

image flips are applied to produce a 300 image set from the

smaller DCC dataset. Table 7 compares classifier accuracy

when training from scratch, when adapting from a cell count-

ing network using a fresh set of adapter modules and when

adapting from a cell counting network and just training the

final fully connected layer.

Near perfect domain classification accuracy is observed

when training the network from scratch and also when adapt-

ing from the a cell counting network using a new set of

adapter modules. However, when we only train the final

fully connected layer to perform classification we observe

significant performance degradation, showing the impor-

tance of the included domain adapter modules despite their

low parameter count.

Primer Training Approach Accuracy

None Entire Network Trained 99.7%

Cells Adapter Modules + Final Layer 98.2%

Cells Final Layer Only 56.3%

Table 7: Domain classification accuracy as the training ap-

proach is varied and domain adapter modules are included.

5.7. Comparison with the state­of­the­art

The developed object counting technique is compared

to the leading techniques across the 4 visual domains used

in this study. Evaluation is performed in all cases on a

previously unseen test set. The network is primed on cell

counting using the DCC dataset. The proposed refinement

step is applied for each domain. Table 8 compare crowd

counting performance on the Shanghaitech dataset (parts

A and B), with state-of-the-art performance achieved on
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a) Domain: Crowd

Predicted: 801.3 GT: 819
b) Domain: Cells

Predicted: 25.6 GT: 25

c) Domain: Vehicles

Predicted: 29.2 GT: 29

d) Domain: Wildlife

Predicted: 25.2 GT: 26

Figure 7: The robust performance of the proposed counting model is highlighted on images taken from each of the 4 visual

domains used in this study.

Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [13] 110.2 173.2 26.4 41.3

Marsden et al. [16] 126.5 173.5 23.76 33.12

Switch-CNN [17] 90.4 135.0 21.6 33.12

Our-Approach 85.7 131.1 17.7 28.6

Table 8: Comparing the performance of various crowd count-

ing approaches on the Shanghaitech dataset.

Method MAE

Hydra-CNN [10] 10.99

Our Approach 9.7

Zhang et al. [23] 4.2

Table 9: Comparing performance of various vehicle counting

approaches on the TRANCOS dataset.

Method N=5 N=10 N=15

[18] 28.9 ± 22.6 22.2± 11.6 21.3± 9.4

Ours 23.6± 4.6 21.5± 4.2 20.5± 3.5

[11] 12.6± 3.0 10.7± 2.5 8.8±2.3

Table 10: Cell counting MAE performance on the MBM

dataset. Out of the 44 images in this collection, N are used

for training, N for validation and an unseen 14 images for

testing. At least 10 runs using random dataset splits are

performed for the each N value.

both. The commonly used UCF CC 50 dataset [15] has

been deemed inappropriate for benchmarking as it contains

crowds too dense for the human eye to count [34] and is

therefore not used to evaluate the proposed technique. Table

9 compares the proposed technique with the leading vehicle

counting techniques on the TRANCOS dataset while table 10

highlights cell counting performance on the Modified Bone

Marrow dataset [11]. Finally, Table 11 shows the superior

performance of our technique on the Penguins dataset [14].

Method MAE

Arteta et al. [14] 8.11

Our Approach 5.8

Table 11: Comparing performance of various counting tech-

niques on the Penguins dataset test set. MAE is computed

w.r.t the max count on each image (as there are multiple

annotators). The separate site dataset split is used and no

depth information is utilised.

6. Conclusion

In this paper we propose a new multi-domain object count-

ing technique that employs significant parameter sharing and

achieves state-of-the-art benchmarking performance for sev-

eral visual domains. This model can be extended to new

counting tasks over time while still maintaining identical

performance in all prior tasks. The benefits of this singular

approach to object counting include the removal of redundant

model parameters as well as noticeable increases in counting

accuracy over single-domain baseline runs. The Dublin Cell

Counting (DCC) dataset was also introduced as part of this

study. This new collection is the first of it’s kind and contains

a challenging and highly-varied set of cellular images. The

developed single-model approach achieves state-of-the-art

object counting performance in the Shanghaitech dataset

(parts A and B) as well as the Penguins dataset. Future work

in this area will look to extend the proposed counting model

to perform additional regression and classification tasks.
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