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Abstract

We consider the problem of automatically generating se-

quences of structured-light patterns for active stereo trian-

gulation of a static scene. Unlike existing approaches that

use predetermined patterns and reconstruction algorithms

tied to them, we generate patterns on the fly in response

to generic specifications: number of patterns, projector-

camera arrangement, workspace constraints, spatial fre-

quency content, etc. Our pattern sequences are specifically

optimized to minimize the expected rate of correspondence

errors under those specifications for an unknown scene, and

are coupled to a sequence-independent algorithm for per-

pixel disparity estimation. To achieve this, we derive an

objective function that is easy to optimize and follows from

first principles within a maximum-likelihood framework. By

minimizing it, we demonstrate automatic discovery of pat-

tern sequences, in under three minutes on a laptop, that can

outperform state-of-the-art triangulation techniques.

1. Introduction

A key tenet in structured-light triangulation is that the
choice of projection patterns matters a lot. Over the years,
the field has seen significant boosts in performance—in ro-
bustness, 3D accuracy, speed and versatility—due to new
types of projection patterns, and new vision algorithms tai-
lored to them [1, 2]. These advances continue to this day,
for improved robustness to indirect light [3–10]; compu-
tational efficiency [4, 11, 12]; high-speed imaging [13],
outdoor 3D scanning [14, 15]; and for 3D imaging with
specialized computational cameras [16], consumer-oriented
devices [17, 18] and time-of-flight cameras [19–22].

Underlying all this work is a fundamental question: what
are the optimal patterns to use and what algorithm should
process the images they create? This question was origi-
nally posed by Horn and Kiryati twenty years ago [23] but
the answer was deemed intractable and not pursued. Since
then, pattern design has largely been driven by practical
considerations [24–28] and by intuitive concepts borrowed
from many fields (e.g., communications [29], coding the-
ory [2], number theory [25], numerical analysis [30], etc.)

In this paper we present the first computational approach to
optimal design of patterns for structured light. We focus on
the oldest, most accuracy-oriented version of this task: pro-
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Figure 1: Overview. Top: A projection pattern is a 1D im-

age projected along a projector’s rows. A sequence of them de-

fines a code matrix, whose columns encode pixel position. We

present a framework for computing stereo correspondences us-

ing optimal code matrices, which we generate on the fly. These

matrices minimize the expected number of stereo errors that oc-

cur when the individual matrix columns are not very distinctive

(red=similar, blue=dissimilar). Middle: A whole space of optimal

matrices exists, for different numbers of projection patterns, image

signal-to-noise ratio, spatial frequency content (sample patterns

shown above), etc. Bottom: We use two automatically-generated

four-pattern sequences to compute the depth map of the object

shown on left. Both are optimized for a one-pixel tolerance for

stereo errors, without (middle) and with (right) a bounding-box

constraint. Both depth maps are unprocessed (please zoom in).

jecting a sequence of patterns one by one onto a static scene
and using a camera to estimate per-pixel depth by triangu-
lation. Starting from first principles, we formally derive an
objective function over the space of pattern sequences that
quantifies the expected number of incorrect stereo corre-
spondences, and then minimize it using standard tools [31].

Our optimization takes as input the projector’s resolution
and the desired number of projection patterns. In addition
to these parameters, however, it can generate patterns that
are precisely optimized for 3D accuracy on the system at
hand (Figure 1): for the specific arrangement of projector
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and camera; the shape and dimensions of the 3D scanning
volume; the noise properties and peak signal-to-noise ra-
tio of the overall imaging system; the defocus properties of
the projector lens; a desired upper bound on the patterns’
spatial frequency; and any unknown scene geometry. Thus,
in contrast to prior work, we do not provide a closed-form
expression or “codebook” for a one-size-fits-all pattern se-
quence; we give a way to generate scene-independent pat-
tern sequences on the fly at near-interactive rates—less than
three minutes on a standard laptop—so that the patterns and
the associated reconstruction algorithm can be easily and
automatically adapted for best performance. We call this
paradigm structured light à la carte.

At the heart of our approach lies an extremely simple
maximum-likelihood decoding algorithm for computing
stereo correspondences independently of projection pattern.
This algorithm is not only competitive with state-of-the-art
pattern-specific decoders (MPS [3], EPS [4], XOR [5]), but
also makes the pattern optimization problem itself tractable:
by giving us a way to quantify the expected errors a pattern
sequence will cause, it leads to an objective function over
sequences that can be optimized numerically.

From a conceptual point of view our work makes four im-
portant contributions over the state of the art. First and fore-
most, our optimization-based approach turns structured-
light imaging from a problem of algorithm design (for creat-
ing patterns [1], unwrapping phases [4, 32–34], computing
correspondences [24], handling projector defocus [7, 35])
into one of problem specification (how many patterns, what
working volume, what imaging system, etc.). The rest
is handled automatically by pattern sequence optimization
and maximum-likelihood decoding. Second, we demon-
strate discovery of pattern sequences that can outperform
state-of-the-art encoding schemes on hard cases: low num-
bers of patterns, geometrically-complex scenes, low signal-
to-noise ratios. These are especially important in settings
where speed and low-power imaging are of the essence.
Third, the emergence of imaging systems that confer ro-
bustness to indirect light without restrictions on frequency
content [16, 36] is giving us newfound degrees of freedom
for pattern optimization; this larger design space can be ex-
plored automatically with our approach. Fourth, our formu-
lation gives rise to new families of pattern sequences with
unique properties, including (1) sequences designed to re-
cover approximate, rather than exact, correspondences and
(2) sequences designed with information about free space
and stereo geometry already built in. This encodes geo-
metric scene constraints directly into the optical domain for
added reliability—via the patterns themselves—rather than
enforcing them by post-processing less reliable 3D data.

2. Optimal Structured Light

Fundamentally, structured-light triangulation requires ad-
dressing two basic questions: (1) what patterns to project

projector (N pixels per row) camera (M pixels per row)
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Figure 2: Viewing geometry. We assume the projector-camera

system has been rectified, i.e., epipolar lines are along rows.

onto the scene and (2) how to compute projector-camera
stereo correspondences from the images captured. Spec-
ifying a “good” set of projection patterns can be thought
of as solving a one-dimensional position encoding problem
for pixels on an epipolar line. Conversely, computing the
stereo correspondence of a camera pixel can be thought of
as a position decoding problem. We begin by formulating
both problems in a probabilistic framework.

The code matrix A set of K projection patterns implic-
itly assigns a K-dimensional code vector cp to each pixel p
on the epipolar line (Figure 2). The elements of cp are the
pixel’s intensity in the individual patterns, they can be non-
binary, and must be chosen so that each code vector is as
distinctive as possible. This becomes harder to do as K de-
creases (i.e., vectors with fewer dimensions are less distinc-
tive) and as the number of pixels increases (i.e., there are
more vectors to be distinguished). We represent the code
vectors of an epipolar line with a code matrix C. This ma-
trix has size K ×N for an epipolar line with N pixels.

Position decoding Consider a camera pixel q. The K in-
tensities observed at that pixel define a K-dimensional ob-
servation vector oq. Given this vector and the code matrix
C, the goal of position decoding is to infer its correspond-
ing projector pixel p∗. This is a difficult problem because
observations are corrupted by measurement noise and be-
cause the relation between observation vectors and code
vectors can be highly non-trivial for general scenes. Fol-
lowing the communications literature [29], we formulate it
as a maximum-likelihood (ML) problem:

p∗ = Decode(oq ,C) (1)

Decode(oq ,C)
def
= argmax

1≤p≤N

Pr(oq | cp) , (2)

where Pr(oq | cp) is the likelihood that the code vector of
pixel q’s true stereo correspondence is column p of C. This
formulation is close in spirit to recent work on Bayesian
time-of-flight depth estimation [22] but our image forma-
tion model and decoding procedure are very different. Note
that the inferred correspondence p∗ may or may not agree
with the true correspondence p (Figure 2).

Position encoding The code matrix C should be chosen to
minimize decoding error. For a given projector-camera sys-
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Figure 3: Generative model of image formation for a single epipolar line across K images. Each column of matrix O is an observation

vector (red) and each row collects the observations from a single image across all pixels on the epipolar line (yellow). All yellow rows

are associated with the same input image and all red columns are associated with the same camera pixel q. The gray column and row are

associated with the same projector pixel p.

tem and a specific scene, we quantify this error by counting
the incorrect correspondences produced by the ML decoder:

Error(C, ǫ)
def
=

M∑

q=1

1

(
∣
∣Decode(oq ,C)−Match(q)

∣
∣ > ǫ

)

(3)

where Match(q) is the true stereo correspondence of image
pixel q; ǫ is a tolerance threshold that permits small cor-
respondence errors; 1() is the indicator function; and the
summation is over all pixels on the epipolar line. Note that
evaluating the error function in Eq. (3) for a given scene and
imaging system requires optimization, i.e., solving the ML
decoding problem in Eq. (2).

We now formulate optimal position encoding as the prob-
lem of finding a code matrix C

∗

ǫ that minimizes the ex-
pected number of incorrect correspondences:

C
∗
ǫ = argmin

C

E
[
Error(C, ǫ)

]
(4)

whereE
[ ]

denotes expectation over a user-specified domain
of plausible scenes and imaging conditions. We call C∗

ǫ the
optimal code matrix for tolerance ǫ.

Key objective We seek a solution to the nested optimiza-
tion problem in Eq. (4) that is efficient to compute and
can exploit imaging-system-specific information and user
constraints. To do this, we cast the problem as an optimiza-
tion in the space of plausible epipolar transport matrices

(Section 3). This leads to a correlation-based ML decoder
for structured-light reconstruction that is nearly optimal
in low-noise settings (Section 4). Using this decoder,
we derive a softmax-based approximation to the objective
function of Eq. (4) and minimize it to get patterns that mini-
mize the expected number of stereo mismatches (Section 5).

3. Epipolar-Only Image Formation

To simplify our formal analysis we assume that all light
transport is epipolar. Specifically, we assume that observa-
tion vectors depend only on code vectors on the correspond-
ing epipolar line. This condition applies to conventionally-
acquired images when global light transport, projector de-
focus and camera defocus are negligible.1 It also applies

1See Figure 8 and [37] for experiments with scenes with significant

indirect light, where this condition does not strictly hold.

to all images captured by an epipolar-only imaging system
regardless of scene content–even in the presence of severe
global light transport [36].

When epipolar-only imaging holds and the system has been
calibrated radiometrically, the relation between code vec-
tors and observation vectors is given by (Figure 3):

[
o1 · · · oM

]

︸ ︷︷ ︸

observation matrix O

=
[
c1 · · · cN

]

︸ ︷︷ ︸

code matrix C

T+ 1
[
a1 · · · aM

]

︸ ︷︷ ︸

ambient vector a

+E (5)

where o1, . . . ,oM are the observation vectors of all pixels
on an epipolar line; a1, . . . , aM are contributions of ambient
illumination to these pixels; 1 is a column vector of all ones;
matrix E is the observation noise; and T is the N × M
epipolar transport matrix. Element T[p, q] of this matrix
describes the total flux transported from projector pixel p to
camera pixel q by direct surface reflection, global transport,
and projector or camera defocus.

3.1. Plausible Epipolar Transport Matrices

The epipolar-only model of Eq. (5) encodes the geometry
and reflectance of the scene as well as the scene’s imaging
conditions. It follows that the expectation in the position-
encoding objective function of Eq. (4) is expressed most ap-
propriately as an expectation over plausible epipolar trans-
port matrices T, ambient vectors a, and noise matrices E.

Let us first consider the space of plausible matrices T. Even
though the space of N × M matrices is extremely large,
the matrices relevant to structured-light imaging belong to a
much smaller space. This is because the elements of T as-
sociated with indirect light generally have far smaller mag-
nitude than direct elements—and can thus be ignored [36].
This in turn makes likelihoods and expectations very effi-
cient to compute. In particular, we consider ML-decoding
and optimal encoding for the following three families:

(A) Direct-only T, unconstrained: The non-zero ele-
ments of T represent direct surface reflections and each
camera pixel receives light from at most one projector pixel.
It follows that each column of T contains at most one non-
zero element. Moreover, the location of that element is a
true stereo correspondence. The observation vector is there-
fore a noisy scaled-and-shifted code vector:

oq = T[p, q] · cp + aq + eq (6)
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Figure 4: Geometric constraints. (a) Top view of the epipolar

plane. (b) T is always lower triangular because the 3D rays of all

other elements intersect behind the camera. (c) T’s non-zero ele-

ments are restricted even further by knowledge of the working vol-

ume (e.g., black square in (a)): its depth range (red) and its angular

extent from the projector (green) and the camera (blue) define re-

gions in T whose intersection contains all valid correspondences.

where vector eq denotes noise. We assume that the location
of the non-zero element in each column of T is drawn ran-
domly from the set {1, . . . , N} and its value, T[p, q], is a
uniform i.i.d random variable over [0, 1]. This amounts to
being completely agnostic about the location and magnitude
of T’s non-zero elements.

(B) Direct-onlyT with geometry constraints We now re-
strict the above family to exclude geometrically-implausible
stereo correspondences. These are elements of T whose as-
sociated 3D rays either intersect behind the image plane or
outside a user-specified working volume (Figure 4a). We
specify these invalid elements with a binary indicator ma-
trix G (Figure 4b, 4c). Given this matrix, we assume that
the location of the non-zero element in each column of T is
drawn uniformly from the column’s valid elements.

(C) Direct-only T with projector defocus The above
two families do not model projector defocus. This not
only prevents correct modeling of the defocused projection
patterns that may illuminate some points [7], but also ig-
nores the rich shape information available in the defocus
cue [38]. Accounting for projector defocus in our frame-
work is straightforward. Since a camera pixel may receive
light from multiple projector pixels, the observation vector
is a noisy scaled-and-shifted mixture of code vectors:

oq = T[p, q] ·

( N∑

i=1

bpqi ci

)

+ aq + eq (7)

where T is a direct-only transport matrix from families (A)
or (B). The coefficients b

pq
i in Eq. (7) account for the de-

focus kernel. This kernel is depth dependent and thus each
matrix element T[p, q] is associated with a different set of
coefficients. The coefficients themselves can be computed
by calibrating the projector [39]. Equation (7) can be made
to conform to the epipolar image formation model of Eq. (5)
by setting the scene’s transport matrix to be a new matrix T

′

whose i-th row is T′[i, q] = T[p, q]bpqi . See [37] for details.

Observation noise and ambient vector The optimality of
our ML position decoder (Section 4) relies on noise be-
ing signal independent and normally distributed. The po-
sition encoder of Section 5, on the other hand, can accom-

modate any model of sensor noise as long as its parame-
ters are known. We assume that the elements of the am-
bient vector a follow a uniform distribution over [0, amax],
where amax is the maximum contribution of ambient light
expressed as a fraction of the maximum pixel intensity.

4. Optimal Position Decoding

Now suppose we are given a code matrix C and an obser-
vation vector oq that conforms to the epipolar-only image
formation model. Our task is to identify the stereo corre-
spondence of pixel q. We seek a generic solution to this
problem that does not impose constraints on the contents of
the code matrix: it can contain code vectors defined a pri-

ori—such as MPS [3] or XOR [5] codes—or be a general
matrix computed automatically through optimization.

Fortunately there is an extremely simple and near-optimal
algorithm to do this: just compute the zero-mean normal-
ized cross-correlation (ZNCC) [40] between oq and the
code vectors, and choose the one that maximizes it. This
algorithm becomes optimal as noise goes to zero and as the

variance of individual code vectors become the same:2

Proposition 1 (ZNCC Decoding) If observation vectors and

code vectors are related according to Eq. (6) then

lim
v→0

σ→0

(

argmax
1≤p≤N

Pr(oq | cp)

)

= argmax
1≤p≤N

ZNCC(oq, cp) (8)

where

ZNCC(oq , cp) =
oq −mean(oq)

‖oq −mean(oq)‖
·

cp −mean(cp)

‖cp −mean(cp)‖
, (9)

v is the variance of the variances of the N code vectors:

v = var({ var(c1), . . . , var(cN )}) , (10)

mean() and var() are over the elements of a code vector, σ is the

noise standard deviation, and Pr(oq | cp) is defined by marginal-

izing over ambient contributions and values of T[p, q]:

Pr(oq | cp)
def
=

∫∫

Pr(oq | cp,T[p, q]=x, aq=y)Pr(x)Pr(x)dxdy .

Definition 1 (ZNCC Decoder)

Decode(oq,C) = argmax
1≤p≤N

ZNCC(oq, cp) . (11)

Corollary 1 (Defocused ZNCC Decoding) If observation vec-

tors and code vectors are related according to Eq. (7) then

lim
v→0

σ→0

(

argmax
1≤p≤N

Pr(oq | cp)

)

= Decode(oq ,CT
q) (12)

where the N × N matrix T
q holds the defocus kernel at camera

pixel q for all possible corresponding pixels p, i.e., Tq[i, p] = bpqi .

2See [37] for the proof. This result is a direct generalization of the

widely known correlation-based ML decoder for communication channels

corrupted by additive white Gaussian noise [29].
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Figure 5: ZNCC versus native decoding. Left: We project K
MPS patterns [3] of maximum frequency F onto a known planar

target and compute correspondence errors using our ZNCC de-

coder (red) and the one by the MPS authors (black). Right: A sim-

ilar comparison for 10 Gray codes (purple) and 10 XOR-04 codes

(green), projected along with their binary complement. We used

the binarization technique in [24] for “native” decoding. Since

these codes have no frequency bound we plot them against image

PSNR. In all cases, ZNCC decoding yields comparable results.

The near-optimality of the ZNCC decoder has two impor-
tant implications. First, it suggests that there is potentially
no accuracy advantage to be gained by designing decoding
algorithms tailor-made for specific codes3 (Figure 5). Sec-
ond, it allows us to transform the nested position-encoding
optimization of Eq. (4) into a conventional non-linear op-
timization. This opens the door to automatic generation of
optimized code matrices, discussed next.

5. Optimal Position Encoding

We begin by developing a continuous approximation to the
function Error() in Eq. (3). This function counts the decod-
ing errors that occur when a given code matrix C is applied
to a specific scene and imaging condition, i.e., a specific
transport matrix T, observation noise E, and ambient vec-
tor a. To evaluate the position-encoding objective function
on matrix C, we draw S fair samples over T, E and a:

E
[
Error(C, ǫ)

]
= (1/S)

∑

T,E,a

Error(T,E,a,C, ǫ) . (13)

Softmax approximation of decoding errors Consider a
binary variable that tells us whether or not the optimal de-
coder matched camera pixel q to a projector pixel p. We
approximate this variable by a continuous function in three
steps using Eqs. (15)-(17): Equation (15) states that in or-
der for projector pixel p to be matched to q, the likelihood
of p’s code vector must be greater than all others. Equa-
tion (16) then follows from Proposition 1, allowing us to
replace likelihoods with ZNCC scores. Last but not least,
Eq. (17) approximates the indicator variable with a softmax

3Strictly speaking this applies to decoders that estimate depth at each

pixel independently, and to code vectors that have approximately the same

variance. Note that ZNCC decoding does incur a computational penalty: it

requires O(N) operations versus O(K) of most specialized decoders.

ratio; as the scalar µ goes to infinity, the ratio tends to 1 if
pixel p’s ZNCC score is the largest and tends to 0 otherwise:

1

(

|Decode(oq,C)−p | = 0

)

= (14)

= 1

(

Pr(oq | cp) = max
1≤r≤N

Pr(oq | cr)

)

(15)

=
v→0

σ→0

1

(

ZNCC(oq, cp) = max
1≤r≤N

ZNCC(oq, cr)

)

(16)

=
µ→∞

exp

(

µ · ZNCC(oq , cp)

)

∑N

r=1
exp

(

µ · ZNCC(oq, cr)

) (17)

def
= fµ(C,oq, p) . (18)

To count all correct matches on an epipolar line, we evaluate
the softmax ratio at the true stereo match of every pixel q,
and then compute their sum. Using the notation in Eq. (18):

Correct(T,E,a,C) =

M∑

q=1

fµ(C,oq ,Match(q)) . (19)

Finally, incorporating the tolerance parameter ǫ to permit
small errors in stereo correspondences we get:

Correct(T,E, a,C, ǫ) =
M∑

q=1

ǫ∑

r=−ǫ

fµ(C,oq ,Match(q) + r) (20)

Error(T,E, a,C, ǫ) = M − Correct(T,E,a,C, ǫ) . (21)

Sampling scenes and imaging conditions Constructing
fair samples of the observation noise E and ambient vec-
tor a is straightforward and omitted. To construct a direct-
only matrix whose geometric constraints are a matrixG, we
proceed as follows. We first randomly assign a valid stereo
correspondence to each camera pixel according to G. This
specifies the location of the single non-zero element in each
column of T (Figure 3). We then assign a random value to
each of those elements independently. The result is a valid
direct-only transport matrix, i.e., a sample from family (B)
in Section 4. To construct a family-(C) sample T

′ that ac-
counts for projector defocus and geometric constraints, we
construct a direct-only matrixT according toG and then in-
corporate the depth-dependent defocus kernels (Section 4).

Optimization We use the Adam optimizer [31] to per-
form stochastic gradient descent on the objective function
in Eq. (13) with a fixed learning rate of 0.01. The user-
specified parameters are (1) the number of projector pixels
N ; (2) the number of camera pixels M ; (3) the number of
projection patterns K; (4) the desired tolerance parameter
ǫ; and (5) the geometric constraint matrix G. The result of
the optimization is a code matrix C

∗

ǫ .

We initialize the optimization with a random K × N code
matrix C and draw a total of S = 500 samples (T,E, a)
at iteration 1 to define the objective function of Eq. (13).
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Figure 6: A walk in the space of optimal codes. To better visualize code structure, the pairwise scores ZNCC(ci, cj) of code vectors

are shown as a jet-color-mapped matrix (deep red =1, deep blue =−1). These can be treated as a confusion matrix. Row 1: We set the

maximum spatial frequency of the patterns to F =4 and the image PSNR to be maximal for our imaging conditions (frame rate=50Hz,

camera gain=1, known read noise, pixel intensity that spans the full interval [0, 1]). We then compute the optimal code matrix for our

608-pixel projector for different numbers of patterns and no other constraints. Row 2: We then choose K =4 (outlined in red in Row 1)

and compute optimal matrices for different bounds on the maximum spatial frequency, with everything else fixed as above. Row 3: We now

set the frequency to 8 (outlined in red in Row 2) and compute optimal matrices for different values of pixel PSNR (i.e., the maximum image

intensity gets increasingly smaller), again with everything else fixed as above. Rows 4 and 5: We follow the exact same process for different

lower bounds on disparity (i.e., the maximum scene depth is increasingly being restricted), and different tolerances in correspondence error.

These samples act as a “validation set” and remain fixed
until convergence. For gradient calculations we use a mini-
batch containing two new randomly-drawn samples per iter-
ation. Optimization converges in around 250 iterations (152
seconds on an 8-core 2.3GHz MacBook Pro laptop for a
six-pattern matrix). We found that increasing the number of
samples had no appreciable effect on the quality of C∗

ǫ (i.e.,
the number of decoding errors on other randomly-generated
scenes and imaging conditions). What does make a big
difference, however, is the value of the softmax multiplier
µ: there is significant degradation in quality for µ < 300,
but increasing it beyond that value has little effect. We use
µ = 300 for all results shown. See [37] for more details.

Frequency-constrained projection patterns Many
structured-light techniques advocate use of projection pat-
terns with spatial frequency no larger than a user-specified
threshold F [3, 4, 41]. This can be viewed as an additional
design constraint on the optimal code matrix. To explicitly
enforce it, we project the code matrix computed at each it-
eration onto the space of matrices satisfying the constraint.4

4This can be achieved using a projection-onto-convex-set (POCS) algo-

Advanced sensor noise modeling Although the ZNCC
decoder is optimal only for additive Gaussian noise, the ob-
jective function in Eq.(13) can incorporate any sensor noise
model: we simply draw samples of E from the camera’s
noise distribution. We found that this improves significantly
the real-world performance of the optimized codes.

6. Experimental Results

The space of optimal code matrices Figure 6 shows
several code matrices generated by our optimizer. It is
clear by inspection that the codes exhibit a very diverse
structure that adapts significantly in response to user
specifications. Increasing the frequency content (Row 2)
produces confusion matrices with much less structure—as
one would intuitively expect from vectors that are more

rithm [42]; in practice, two iterations will yield a close point to the feasible

space. Specifically, for each row of C, we (1) clip its elements to [0, 1],
(2) compute the Discrete Fourier Transform, (3) set to zero all DFT coeffi-

cients above F , (4) compute the inverse DFT of the result, and (5) clip it to

[0, 1] again. This yields a code matrix C′ that is fed to the next iteration.
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distinctive. Interestingly, codes adapted to lower peak
signal-to-noise ratio (PSNR) conditions have confusion
matrices with coarser structure. We did not, however,
observe an appreciable difference in the real-world perfor-
mance of those matrices. Row 3 of Figure 6 illustrates the
codes’ adaptation to geometric constraints. Specifically,
only points on the plane at infinity can have Decode(q)=q
and for 3D points that are closer, a camera pixel can only
be matched to a projector pixel on its right (Figure 4b).
Comparing the code matrix for an unrestricted T (red box
on Row 3) to that of a lower-triangular T (first column in
Row 4) one sees significant re-organization in the confusion
matrix; the optimization effectively “focuses” the codes’
discriminability to only those code vectors that yield valid
3D points. On the other hand, code matrices that compute
approximate, rather than exact correspondences, exhibit
coarser structure in their confusion matrix (Row 4).

Experimental system We acquired all images at 50Hz
and 8 bits with a 1280×1024monochrome camera supplied
by IDS (model IDS UI-3240CP-M), fitted with a Lensation
F/1.6 lens (model CVM0411). For pattern projection we
used a 100-lumen DLP projector by Keynote Photonics
(model LC3000) with a native resolution of 608× 684 and
only the red LED turned on. We disabled gamma correc-
tion, verified the system’s linear radiometric response, and
measured the sensor’s photon transfer curve. This made it
possible to get a precise measure of PSNR independently
for each pixel on the target. We experimented with three
different models of pixel noise for our position-encoding
optimization: (1) additive Gaussian, (2) Poisson shot noise
with additive read noise, and (3) exponential noise [43]
with additive read noise.

Ground truth We printed a random noise pattern of
bounded frequency onto a white sheet of paper and placed
it on a planar target 60cm away from the stereo pair (Fig-
ure 7, bottom row, third column). We used two different
pattern sequences to obtain “ground-truth” disparity maps:
160 conventional phase-shifted patterns and 20 XOR
patterns (including the complement codes). We adjusted
the aperture so that the maximum image intensity was 200
for a white projection pattern (i.e., a high-PSNR regime
at the brightest pixels) and focused the lens on the target.
For 97% of pixels the disparities were identical in the two
maps; the rest differed by ±1 disparity. Thus, correctness
above 97% against these maps is not significant. We
optimize all of our code matrices for these high-PSNR
conditions with the exponential-plus-read-noise model
(see [37] for performance evaluation of other two models).

Quantitative evaluation We focus here on the most
challenging cases: very small number of patterns and low
PSNR. To evaluate low-PSNR performance, we reduced
the aperture so that the brightest pixel intensity under a
white projection pattern is 60, and counted the pixels whose
correspondences are within ǫ of the ground truth. Figure 7
compares our optimized code matrices against those of
MPS and EPS, using the same ZNCC decoder for all codes.

Several observations can be made from these results. First,
our code matrices outperform MPS and EPS—which
represent the current state of the art—in all cases shown.
This performance gap, however, shrinks for larger numbers
of patterns. Second, our codes perform significantly better
than EPS and MPS at higher spatial frequencies. This is
despite the fact that those coding schemes were specifically
designed to produce high-frequency patterns. It is also
worth noting that the performance degradation of MPS and
EPS at high frequencies cannot be explained by camera
defocus because the camera’s aperture was small in these
experiments (i.e., large depth of field). Third, geometric
constraints confer a major performance advantage to all
codes at low pattern counts. The gain, however, is higher
for our codes since they are optimized precisely for them.
Fourth, code matrices that are geometry-constrained and
optimized for a small error tolerance tend to produce low
root-mean-squared errors (RMSE) for most frequencies.

Qualitative results Reconstructions of several objects are
shown in Figure 1 (using four patterns) and Figure 8 (using
five and six patterns). The comparison in Figure 1 indicates
that computing geometry-constrained codes has a clear ef-
fect on the quality of the results—a trend observed in our
quantitative comparisons as well. In Figure 8 we specifi-
cally chose to reconstruct a dark scene as well as a scene
with significant indirect light to compare performance un-
der low-PSNR conditions and general light transport. We
observe that our depth maps have significantly fewer out-
liers than EPS and MPS and are less influenced by depth
discontinuities. Moreover, despite not being specifically op-
timized for indirect light, we obtain better depth maps there
as well.

7. Concluding Remarks

We believe this is just a small first step in designing op-
timized codes for structured light. The specific imaging
regime we chose to study—small numbers of patterns, low-
PSNR conditions—leaves a lot of room for further explo-
ration. On the high-accuracy end of the spectrum, the abil-
ity to quickly optimize patterns after an initial 3D scan
could lead the way to new adaptive 3D scanning tech-
niques [5, 44].

Although derived from first principles, our position-
encoding objective function can be viewed as an extremely
simple one-layer neural network. Understanding how to
best exploit the power of deeper architectures for active tri-
angulation is an exciting direction for future work.
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Figure 7: Quantitative evaluation. Top row and first two columns of bottom row: Each data point represents three independent acqui-

sitions with the same pattern sequence. Error bars indicate the smallest and largest fraction of correct correspondences in those runs. We

used ǫ=0 for optimization in the top row and ǫ=1 in the bottom. Solid lines show results when no geometry constraints are imposed on

code optimization and on decoding. Dashed lines show what happens when we use a depth-constrained geometry matrix G (Figure 4c).

For EPS and MPS, the constraint is used only for decoding, i.e., we search among the valid correspondences for the one that maximizes the

ZNCC score. Our codes, on the other hand, are optimized for that constraint and decoded with it as well. Bottom row, right: RMSE plots.
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Figure 8: Qualitative comparisons. We acquired depth maps for the scenes on the left using three methods, with the same ZNCC decoder

and the same triangular geometry matrix G (Figure 4b). For each method, we reconstructed the scenes for several maximum frequencies

in the range [4, 32] and show depth maps for each method’s best-performing frequency. Top row: Reconstructing a dark, varnished and

sculpted wooden trunk with five patterns. Middle row: Reconstructing a scene with significant indirect transport (a bowl, candle, and

convex wedge) using conventional imaging and six patterns. Bottom row: Depth map acquired with many more patterns, along with cross-

sections of the above depth maps (blue points) and a histogram of disparity errors (please zoom in to the electronic copy). For reference,

we include the cross-sections of depth maps acquired using epipolar-only imaging [36] with the exact same patterns (green points), as well

as of “ground truth” depth maps acquired with 160 shifted cosine patterns of frequencies 16 to 31 using epipolar-only imaging (red points).
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