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Abstract

We introduce an interactive learning framework for the

development and testing of intelligent visual systems, called

learning-by-asking (LBA). We explore LBA in context of the

Visual Question Answering (VQA) task. LBA differs from

standard VQA training in that most questions are not ob-

served during training time, and the learner must ask ques-

tions it wants answers to. Thus, LBA more closely mim-

ics natural learning and has the potential to be more data-

efficient than the traditional VQA setting. We present a

model that performs LBA on the CLEVR dataset, and show

that it automatically discovers an easy-to-hard curriculum

when learning interactively from an oracle. Our LBA gener-

ated data consistently matches or outperforms the CLEVR

train data and is more sample efficient. We also show that

our model asks questions that generalize to state-of-the-art

VQA models and to novel test time distributions.

1. Introduction

Machine learning models have led to remarkable

progress in visual recognition. However, while the train-

ing data that is fed into these models is crucially important,

it is typically treated as predetermined, static information.

Our current models are passive in nature: they rely on train-

ing data curated by humans and have no control over this

supervision. This is in stark contrast to the way we humans

learn — by interacting with our environment to gain infor-

mation. The interactive nature of human learning makes

it sample efficient (there is less redundancy during training)

and also yields a learning curriculum (we ask for more com-

plex knowledge as we learn).

In this paper, we argue that next-generation recognition

systems need to have agency — the ability to decide what

information they need and how to get it. We explore this in

the context of visual question answering (VQA; [4, 23, 58]).

Instead of training on a fixed, large-scale dataset, we pro-

pose an alternative interactive VQA setup called learning-

by-asking (LBA): at training time, the learner receives only
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Figure 1: The Learning-by-Asking (LBA) paradigm. We

present an open-world Visual Question Answering (VQA)

setting in which an agent interactively learns by asking

questions to an oracle. Unlike standard VQA training,

which assumes a fixed dataset of questions, in LBA the

agent has the potential to learn more quickly by asking

“good” questions, much like a bright student in a class.

LBA does not alter the test-time setup of VQA.

images and decides what questions to ask. Questions asked

by the learner are answered by an oracle (human supervi-

sion). At test-time, LBA is evaluated exactly like VQA us-

ing well understood metrics.

The interactive nature of LBA requires the learner to

construct meta-knowledge about what it knows and to se-

lect the supervision it needs. If successful, this facilitates

more sample efficient learning than using a fixed dataset,

because the learner will not ask redundant questions.

We explore the proposed LBA paradigm in the context

of the CLEVR dataset [23], which is an artificial universe

in which the number of unique objects, attributes, and rela-

tions are limited. We opt for this synthetic setting because

there is little prior work on asking questions about images:

CLEVR allows us to perform a controlled study of the al-

gorithms needed for asking questions. We hope to transfer

the insights obtained from our study to a real-world setting.

Building an interactive learner that can ask questions is

a challenging task. First, the learner needs to have a “lan-

guage” model to form questions. Second, it needs to un-

derstand the input image to ensure the question is relevant

and coherent. Finally (and most importantly), in order to

be sample efficient, the learner should be able to evaluate

its own knowledge (self-evaluate) and ask questions which
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will help it to learn new information about the world. The

only supervision the learner receives from the interaction is

the answer to the questions it poses. Interestingly, recent

work [43] shows that even humans are not good at asking

informative questions.

We present and study a model for LBA that combines

ideas from visually grounded language generation [38],

curriculum learning [6], and VQA. Specifically, we de-

velop an epsilon-greedy [51] learner that asks questions and

uses the corresponding answers to train a standard VQA

model. The learner focuses on mastering concepts that it

can rapidly improve upon, before moving to new types of

questions. We demonstrate that our LBA model not only

asks meaningful questions, but also matches the perfor-

mance of human-curated data. Our model is also sample

efficient and by interactively asking questions it reduces the

number of training samples needed to obtain the baseline

question-answering accuracy by 40%.

2. Related Work

Visual question answering (VQA) is a surrogate task

designed to assess a system’s ability to thoroughly under-

stand images. It has gained popularity in recent years due

to the release of several benchmark datasets [4, 35, 58]. Mo-

tivated by the well-studied difficulty of analyzing results on

real-world VQA datasets [22, 41, 57], Johnson et al. [23] re-

cently proposed a more controlled, synthetic VQA dataset

that we adopt in this work.

Current VQA approaches follow a traditional supervised

learning paradigm. A large number of image-question-

answer triples are collected and a subset of this data is

randomly selected for training. Learning-by-asking (LBA)

uses an alternative and more challenging setting: train-

ing images are drawn from a distribution, but the learner

decides what question it needs to ask to learn the most.

The learner receives only answer level supervision from

these interactions. It must learn to formulate questions as

well as model its own knowledge to remove redundancy in

question-asking. LBA also has the potential to generalize to

open-world scenarios.

There is also significant progress on building mod-

els for VQA using LSTMs with convolutional networks

[19, 31], stacked attention networks [55], module networks

[3, 21, 24], relational networks [46], and others [40]. LBA

is independent of the backbone VQA model and can be used

with any existing architecture.

Visual question generation (VQG) was recently pro-

posed as an alternative to image captioning [34, 38, 42].

Our work is related to VQG in the sense that we require the

learner to generate questions about images, however, our

objective in doing so is different. Whereas VQG focuses on

asking questions that are relevant to the image content, LBA

requires the learner to ask questions that are both relevant

and informative to the learner when answered. A positive

✗ What size is the purple cube? ✗ What color is the shiny sphere?

✗ What size is the red thing in front

of the yellow cylinder?

✗ What is the color of the cube to

the right of the brown thing?

Figure 2: Examples of invalid questions for images in the

CLEVR universe. Even syntactically correct questions can

be invalid for a variety of reasons such as referring to absent

objects, incorrect object properties, invalid relationships in

the scene or being ambiguous, etc.

side effect is that LBA circumvents the difficulty of evaluat-

ing the quality of generated questions (which also hampers

image captioning [2]), because the question-answering ac-

curacy of our final model directly correlates with the quality

of the questions asked. Such evaluation has also been used

in recent works in the language community [54, 56].

Active learning (AL) involves a collection of unlabeled

examples and a learner that selects which samples will be

labeled by an oracle [26, 33, 48, 53]. Common selection

criteria include entropy [25], boosting the margin for classi-

fiers [1, 12] and expected informativeness [20]. Our setting

is different from traditional AL settings in multiple ways.

First, unlike AL where an agent selects the image to be la-

beled, in LBA the agent selects an image and generates a

question. Second, instead of asking for a single image level

label, our setting allows for richer questions about objects,

relationships etc. for a single image. While [11, 49] did

use simple predefined template questions for AL, templates

offer limited expressiveness and a rigid query structure. In

our approach, questions are generated by a learned language

model. Expressive language models, like those used in our

work, are likely necessary for generalizing to real-world

settings. However, they also introduce a new challenge:

there are many ways to generate invalid questions, which

the learner must learn to discard (see Figure 2).

Exploratory learning centers on settings in which an

agent explores the environment to acquire supervision [37,

50]; it has been studied in the context of, among oth-

ers, computer games and navigation [28, 39], multi-user

games [36], inverse kinematics [5], and motion planning for

humanoids [14]. Exploratory learning problems are gener-

ally framed with reinforcement learning in which the agent

receives (delayed) rewards, which are used to learn a pol-

icy that maximizes the expected rewards. A key difference

in the LBA setting is that it does not have sparse delayed

rewards. Contextual multi-armed bandits [9, 30, 32] are an-

other class of reinforcement learning algorithms that more

closely resemble LBA. However, unlike bandits, online per-

formance is irrelevant in LBA: our aim is not to minimize

regret, but to minimize the error of the final VQA model.
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Figure 3: Our approach to the learning-by-asking setting for VQA. Given an image I, the agent generates a diverse set

of questions using a question generator g. It then filters out “irrelevant” questions using a relevance model r to produce a list

of question proposals. The agent then answers its own questions using the VQA model v. With these predicted answers and

its self-knowledge of past performance, it selects one question from the proposals to be answered by the oracle. The oracle

provides answer-level supervision from which the agent learns to ask informative questions in subsequent iterations.

3. Learning by Asking

We now formally introduce the learning-by-asking

(LBA) setting. We denote an image by I, and assume there

exists a set of all possible questions Q and a set of all possi-

ble answers A. At training time, the learner receives as in-

put: (1) a training set of N images, Dtrain = {I1, . . . , IN},

sampled from some distribution ptrain(I); (2) access to an

oracle o(I, q) that outputs an answer a ∈ A given a ques-

tion q ∈ Q about image I; and (3) a small bootstrap set of

(I, q, a) tuples, denoted Binit.

The learner receives a budget of B answers that it can re-

quest from the oracle. Using these B oracle consultations,

the learner aims to construct a function v(a|I, q) that pre-

dicts a score for answer a to question q about image I. The

small bootstrap set is provided for the learner to initialize

various model components; as we show in our experiments,

training on Binit alone yields poor results.

The challenge of the LBA setting implies that, at train-

ing time, the learner must decide which question to ask

about an image and the only supervision the oracle pro-

vides are the answers. As the number of oracle requests is

constrained by a budget B, the learner must ask questions

that maximize (in expectation) the learning signal from each

image-question pair sent to the oracle.

At test time, we assume a standard VQA setting and

evaluate models by their question-answering accuracy. The

agent receives as input M pairs of images and questions,

Dtest = {(IN+1, qN+1), . . . , (IN+M , qN+M )}, sampled

from a distribution ptest(I, q). The images in the test set

are sampled from the same distribution as those in the train-

ing set:
∑

q∈Q
ptest(I, q) = ptrain(I). The agent’s goal is

to maximize the proportion of test questions that it answers

correctly, that is, to maximize:

1

M

M
∑

m=1

I[argmax
a

v(a|IN+m, qN+m) = o(IN+m, qN+m)].

We make no assumptions on the marginal distribution over

test questions, ptest(q).

4. Approach

We propose an LBA agent built from three modules: (1)

a question proposal module that generates a set of ques-

tion proposals for an input image; (2) a question answering

module (or VQA model) that predicts answers from (I, q)
pairs; and (3) a question selection module that looks at

both the answering module’s state and the proposal mod-

ule’s questions to pick a single question to ask the oracle.

After receiving the oracle’s answer, the agent creates a tu-

ple (I, q, a) that is used as the online learning signal for all

three modules. Each of the modules is described in a sep-

arate subsection below; the interactions between them are

illustrated in Figure 3.

For the CLEVR universe, the oracle is a program inter-

preter that uses the ground-truth scene information to pro-

duce answers. As this oracle only understands questions

in the form of programs (as opposed to natural language),

our question proposal and answering modules both repre-

sent questions as programs. However, unlike [21, 24], we

do not exploit prior knowledge of the CLEVR programming

language in any of the modules; instead, it is treated as a

simple means that is required to communicate with the ora-

cle. See supplementary material for examples of programs

and details on the oracle.

When the LBA model asks an invalid question, the oracle

returns a special answer indicating (1) that the question was

invalid and (2) whether or not all the objects that appear in

the question are present in the image.

4.1. Question Proposal Module

The question proposal module aims to generate a diverse

set of questions (programs) that are relevant to a given im-

age. We found that training a single model to meet both

these requirements resulted in limited diversity of ques-

tions. Thus, we employ two subcomponents: (1) a question

generation model g that produces questions qg ∼ g(q|I);
and (2) a question relevance model r(I, qg) that predicts

whether a generated question qg is relevant to an image I.

Figure 2 shows examples of irrelevant questions that need

to be filtered by r. The question generation and relevance
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models are used repeatedly to produce a set of question pro-

posals, Qp ⊆ Q.

Our question generation model, g(q|I), is an image-

captioning model that uses an LSTM conditioned on image

features (first hidden input) to generate a question. To in-

crease the diversity of generated questions, we also condi-

tion the LSTM on the “question type” while training [13]

(we use the predefined question types or families from

CLEVR). Specifically, we first sample a question type qtype
uniformly at random and then sample a question from the

LSTM using a beam size of 1 and a sampling temperature

of 1.3. For each image, we filter out all the questions that

have been previously answered by the oracle.

Our question relevance model, r(I, q), takes the ques-

tions from the generator g as input and filters out irrelevant

questions to construct a set of question proposals, Qp. The

special answer provided by the oracle whenever an invalid

question is asked (as described above) serves as the online

learning signal for the relevance model. Specifically, the

model is trained to predict (1) whether or not an image-

question pair is valid and (2) whether or not all objects that

are mentioned in the question are all present in the image.

Questions for which both predictions are positive (i.e., that

are deemed by the relevance model to be valid and to con-

tain only objects that appear in the image) are put in the

question proposal set, Qp. We sample from the generator

until we have 50 question proposals per image that are pre-

dicted to be valid by r(I, q).

4.2. Question Answering Module (VQA Model)

Our question answering module is a standard VQA

model, v(a|I, q), that learns to predict the answer a given an

image-question pair (I, q). The answering module is trained

online using the supervision signal from the oracle.

A key requirement for selecting good questions to ask

the oracle is the VQA model’s capability to self-evaluate

its current state. We capture the state of the VQA model

at LBA round t by keeping track of the model’s question-

answering accuracy st(a) per answer a on the training data

obtained so far. The state captures information on what the

answering module already knows; it is used by the question

selection module.

4.3. Question Selection Module

The question selection module defines a policy,

π(Qp; I, s1,...,t), that selects the most informative question

to ask the oracle from the set of question proposals Qp. To

select an informative question, the question selection mod-

ule uses the current state of the answering module (how well

it is learning various concepts) and the difficulty of each of

the question proposals. These quantities are obtained from

the state st(a) and the beliefs of the current VQA model,

v(a|I, q) for an image-question pair, respectively.

The state st(a) contains information about the current

knowledge of the answering module. The difference in the

state values at the current round, t, and a past round, t−∆,

measures how fast the answering module is improving for

each answer. Inspired by curriculum learning [5, 6, 29, 45],

we use this difference to select questions on which the an-

swering module can improve the fastest. Specifically, we

compute the expected accuracy improvement under the an-

swer distribution for each question qp ∈ Qp:

h(qp; I, s1,...,t) =
∑

a∈A

v(a|I, qp)

(

st(a)− st−∆(a)

st(a)

)

.

(1)

We use the expected accuracy improvement as an infor-

mativeness value that the learner uses to pick a question

that helps it improve rapidly (thereby enforcing a curricu-

lum). In particular, our selection policy, π(Qp; I, s1,...,t),
uses the informativeness scores to select the question to

ask the oracle using an epsilon-greedy policy [51]. The

greedy part of the selection policy is implemented via

argmaxqp∈Qp
h(qp; I, s1,...,t), and we set ǫ=0.1 to encour-

age exploration. Empirically, we find that our policy auto-

matically discovers an easy-to-hard curriculum (see Figures

6 and 8). In all experiments, we set ∆=20; whenever t<∆,

we set st−∆(a)=0.

4.4. Training Phases

Our model is trained in three phases: (1) an initialization

phase in which the generation, relevance, and VQA mod-

els (g, r and v) are pre-trained on a small bootstrap set,

Binit, of (I, q, a) tuples; (2) an online learning-by-asking

(LBA) phase in which the model learns by interactively ask-

ing questions and updates r and v; and (3) an offline phase

in which a new VQA model voffline is trained from scratch

on the union of the bootstrap set and all of the (I, q, a) tuples

obtained by querying the oracle in the online LBA phase.

Online LBA training phase. At each step in the LBA

phase (see Figure 3), the proposal module picks an image

I from the training set Dtrain uniformly at random.1 It then

generates a set of relevant question proposals, Qp for the

image. The answering module tries to answer each ques-

tion proposal. The selection module uses the state of the

answering module along with the answer distributions ob-

tained from evaluating the answering module to pick an in-

formative question, q, from the question proposal set. This

question is asked to the oracle o, which provides just the

answer a = o(I, q) to generate a training example (I, q, a).
This training example is used to perform a single gradient

step on the parameters of the answering module v and the

relevance model r. The language generation model g re-

mains fixed because the oracle does not provide a direct

learning signal for it. This process is repeated until the train-

ing budget of B oracle answer requests is exhausted.

Offline VQA training phase. We evaluate the quality of

1A more sophisticated image selection policy may accelerate learning.

We did not explore this in our study.
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the asked questions by training a VQA model voffline from

scratch on the union of the bootstrap set, Binit, and the

(I, q, a) tuples generated in the LBA phase. We find that of-

fline training of the VQA model leads to slightly improved

question-answering accuracy and reduces variance.

4.5. Implementation Details

The LSTM in g has 512 hidden units. After a linear pro-

jection, the image features are fed as its first hidden state.

We input a discrete variable representing the question type

as the first token into the LSTM before starting generation.

Following [24], we use a prefix-tree program representation

for the questions.

We implement the relevance model, r, and the VQA

model, v, using the stacked attention network architec-

ture [55] using the implementation of [24]. The only mod-

ification we make is to concatenate the spatial coordinates

to the image features before computing attention as in [46].

We do not share weights between r and v.

To generate the invalid pairs (I, q) for bootstrapping the

relevance model, we permute the pairs from the bootstrap

set Binit and assume that all such permuted pairs are invalid.

Note that the bootstrap set does not have the special answer

indicating whether invalid questions ask about objects not

present in the image, and these answers are obtained only

in the online LBA phase.

Our models use image features from a ResNet-101 [17]

pre-trained on ImageNet [44], in particular, from the

conv4_23 layer of that network. We use ADAM [27] with

a fixed learning rate of 5e−4 to optimize all models. Ad-

ditional implementation details are presented in the supple-

mentary material.

5. Experiments

Datasets. We evaluate our LBA approach in the CLEVR

universe [23], which provides a training set (train) with

70k images and 700k (I, q, a) tuples. We use 70k of these

tuples as our bootstrap set, Binit. We evaluate the quality

of the data collected by LBA by measuring the question-

answering accuracy of the final VQA model, voffline, on the

CLEVR validation (val) [23] set. As CLEVR train and

val have identical answer and question-type distributions,

this gives models trained on CLEVR train an inherent

advantage. Thus, we also measure question-answering ac-

curacy on the CLEVR-Humans [24] dataset, which has a

different distribution; see Figure 9.2

Models. Unless stated otherwise, we use the stacked atten-

tion model as the answering module v and evaluate three

different choices for the final offline VQA model voffline:

CNN+LSTM encodes the image using a CNN, the question

using an LSTM, and predicts answers using an MLP.

2To apply our VQA models to CLEVR-Humans we translate English

to CLEVR-programming language using [24]; see supplementary material

for details.
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Figure 4: Top: CLEVR val accuracy for VQA models

trained on CLEVR train (diamonds) vs. LBA-generated

data (circles). Bottom: Accuracy on CLEVR-Humans for

the same set of models. Shaded regions denote one standard

deviation in accuracy. On CLEVR-Humans, LBA is 50%
more sample efficient than CLEVR train.

CNN+LSTM+SA extends CNN+LSTM with the stacked

attention (SA) model [55] described in Section 4.2. This is

the same as our default answering module v.

FiLM [40] uses question features from a GRU [10] to mod-

ulate the image features in each CNN layer.

Unless stated otherwise, we use CNN+LSTM+SA mod-

els in all ablation analysis experiments, even though it has

lower VQA performance than FiLM, because it trains much

faster (6 hours vs. 3 days). For all voffline models, we use

the training hyperparameters from their respective papers.

5.1. Quality of LBAGenerated Questions

In Figure 4, we compare the quality of the LBA-

generated questions to CLEVR train by measuring the

question-answering accuracy of VQA models trained on

both datasets. The figure shows (top) CLEVR val accu-

racy and (bottom) CLEVR-Humans accuracy. From these

plots, we draw four observations.

(1) Using the bootstrap set alone (leftmost point) yields poor

accuracy and LBA provides a significant learning signal.

(2) The quality of the LBA-generated training data is at least

as good as that of the CLEVR train. This is an impres-

sive result given that CLEVR train has the dual advan-

tage of matching the distribution of CLEVR val and being

human curated for training VQA models. Despite these ad-
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Figure 5: Top: Histogram of answers to questions gener-

ated by g with and without question-type conditioning. Bot-

tom: Percentage of invalid questions sent to the oracle.

vantages, LBA matches and sometimes surpasses its perfor-

mance. More importantly, LBA shows better generalization

on CLEVR-Humans which has a different answer distribu-

tion (see Figure 9).

(3) LBA data is sometimes more sample efficient than

CLEVR train: for instance, on both CLEVR val and

CLEVR-Humans. The CNN+LSTM+SA model only re-

quires 60% of (I, q, a) LBA tuples to achieve the accuracy

of the same model trained on all of CLEVR train.

(4) Finally, we also observe that our LBA agents have low

variance at each sampled point during training. The shaded

error bars show one standard deviation computed from 5 in-

dependent runs using different random seeds. This is an im-

portant property for drawing meaningful conclusions from

interactive training environments (c.f ., [18]).

Qualitative results. Figure 6 shows five samples from the

LBA-generated data at various iterations t. They provide

insight into the curriculum discovered by our LBA agent.

Initially, the model asks simple questions about colors (row

1) and shapes (row 2). It also makes basic mistakes (right-

most column of rows 1 and 2). As the answering module v

improves, the selection policy π asks more complex ques-

tions about spatial relationships and counts (rows 3 and 4).

5.2. Analysis: Question Proposal Module

Analyzing the generator g. We evaluate the diversity of

the generated questions by looking at the distribution of

corresponding answers. In Figure 5 (top) we use the final

LBA model to generate 10 questions for each image in the

training set. We plot the histogram of the answers to these

questions for generators with and without “question type”

conditioning. The histogram shows that conditioning the

generator g on question type leads to better coverage of the

answer space. We also note that about 4% of the generated

Budget B

Generator g Relevance r 0k 70k 210k 350k 560k 630k

I None 49.4 43.2 45.4 49.8 52.9 54.7

I+ qtype None 49.4 46.3 49.5 58.7 60.5 63.4

I+ qtype, τ=0.3 Ours 49.4 60.6 67.4 70.2 70.8 70.1

I+ qtype, τ=0.7 Ours 49.4 60.2 70.5 76.7 77.5 77.6

I+ qtype, τ=1.3 Ours 49.4 60.3 71.4 76.9 79.8 78.2

I+ qtype Perfect 49.4 67.7 75.7 80.0 81.2 81.1

Table 1: CLEVR val accuracy for six budgets B. We con-

dition the generator on the image (I) or on the image and

the question type (I + qtype), vary the generator sampling

temperatures τ , and use three different relevance models.

We re-run the LBA pipeline for each of these settings.

Budget B

voffline Model 0k 70k 210k 350k 560k 630k

CNN+LSTM 47.1 48.0 49.2 49.1 52.3 52.7

CNN+LSTM+SA 49.4 63.9 68.1 76.1 78.4 82.3

FiLM 51.2 76.2 92.9 94.8 95.2 97.3

Table 2: CLEVR val accuracy for three voffline models

when FiLM is used as the online answering module v.

questions have invalid programming language syntax.

We observe in the top two rows of Table 1 that

the increased question diversity translates into improved

question-answering accuracy. Diversity is also controlled

by the sampling temperature, τ , used in g. Rows 3-5 show

that a lower temperature, which gives less diverse question

proposals, negatively impacts final accuracy.

Analyzing the relevance model r. Figure 5 (bottom) dis-

plays the percentage of invalid questions sent to the oracle

at different time steps during online LBA training. The in-

valid question rate decreases during training from 25% to

5%, even though question complexity appears to be increas-

ing (Figure 6). This result indicates that the relevance model

r improves significantly during training.

We can also decouple the effect of the relevance model

r from the rest of our setup by replacing it with a “perfect”

relevance model (the oracle) that flawlessly filters all invalid

questions. Table 1 (row 6) shows that the accuracy and sam-

ple efficiency differences between the “perfect” relevance

model and our relevance model are small, which suggests

our model performs well.

5.3. Analysis: Question Answering Module

Thus far we have tested our policy π with only one type

of answering module v, CNN+LSTM+SA. Now, we ver-

ify that π works with other choices by implementing v as

the FiLM model and rerunning LBA. As in Section 5.1, we

evaluate the LBA-generated questions by training the three

voffline models. The results in Table 2 suggest that our se-

lection policy generalizes to a new choice of v.

5.4. Analysis: Question Selection Module

To investigate the role of the selection policy in LBA, we

compare four alternatives: (1) random selection from the
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yellow object? A: sphere
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small object? A: cube

Q: What is the shape of

the small brown object? A:

sphere
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Q: What is the shape of the
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as the yellow object? A: ✗
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Q: Is the number of green

things greater than the num-

ber of brown things? A: no

Q: Is the number of objects

to the left of the small cylin-

der greater than the number

of purple objects? A: yes

Q: What is the shape of the

object to the right of the red

thing? A: sphere

Q: Is the gray sphere of the

same material as the large

blue object? A: no

Q: What is the shape of the

red rubber object? A: ✗
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Q: How many large metal

spheres? A: 3

Q: Are the number of gray

things greater than the num-

ber of brown things? A: no

Q: Is the number of large ob-

jects less than the number of

cubes? A: yes

Q: How many objects have

the same size as the purple

thing? A: 6

Q: What is the shape of the

brown object to the left of the

metal cube? A: ✗

Figure 6: Example questions asked by our LBA agent at different iterations (manually translated from programs to English).

Our agent asks increasingly sophisticated questions as training progresses — starting with simple color questions and moving

on to shape and count questions. We also see that the invalid questions (right column) become increasingly complex.
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Figure 7: Accuracy of CNN+LSTM+SA trained using LBA

with four different policies for selecting question proposals

(Sec 4.3). Our selection policy is more sample efficient.

question proposals; (2) using the prediction entropy of the

answering module v for each proposal after four forward

passes with dropout (like in [47]); (3) using the variation

ratio [15] of the prediction; and (4) our curriculum policy

from Section 4.3. We run LBA training with five differ-

ent random seeds and report the mean accuracy and stdev

of a CNN+LSTM+SA model for each selection policy in

Figure 7. In line with results from prior work [47], the

entropy-based policies perform worse than random selec-

tion. By contrast, our curriculum policy substantially out-

performs random selection of questions. Figure 8 plots the

normalized informativeness score h (Equation 1) and the

training question-answering accuracy (s(a) grouped by per

answer type). These plots provide insight into the behav-

ior of the curriculum selection policy, π. Specifically, we

observe a delayed pattern: a peak in the the informative-

ness score (blue arrow) for an answer type is followed by

an uptick in the accuracy (blue arrow) on that answer type.

We also observe that the policy’s informativeness score sug-

gests an easy-to-hard ordering of questions: initially (after

64k requests), the selection policy prefers asking the easier

color questions, but it gradually moves on to size and

shape questions and, eventually, to the difficult count
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Figure 8: Top: Accuracy during training (solid lines) and

chance level (dashed lines) per answer type. Bottom: Nor-

malized informative scores per answer type, averaged over

10k questions. See Section 5.4 for details.

questions. We emphasize that this easy-to-hard curriculum

is learned automatically without any extra supervision.

5.5. Varying the Size of the Bootstrap Data

We vary the size of the bootstrap set Binit used for ini-

tializing the g, r, v models and analyze its effect on the LBA

generated data. In Table 3 we show the accuracy of the fi-

nal voffline model on CLEVR val. A smaller bootstrap set

results in reduced performance. We also see that with less

than 5% (rows 1 and 2) of the CLEVR training dataset as

our bootstrap set, LBA asks questions that can match the

performance using the entire CLEVR training set. Empir-

ically, we observed that the generator g performs well on

smaller bootstrap sets. However, the relevance model r

needs enough valid and invalid (permuted) (I, q, a) tuples

in the bootstrap set to filter irrelevant question proposals.

As a result, a smaller bootstrap set affects the sample effi-

ciency of LBA.

Budget B

|Binit| 0k 70k 140k 210k 350k 560k 630k

20k 48.2 56.4 63.5 66.9 72.6 75.8 76.2

35k 48.8 58.6 64.3 68.7 74.9 76.1 76.3

70k 49.4 61.1 67.6 72.8 78.0 78.2 79.1

Table 3: Accuracy on CLEVR validation data at different

budgets B as a function of the bootstrap set size, |Binit|.

6. Discussion and Future Work

This paper introduces the learning-by-asking (LBA)

paradigm and proposes a model in this setting. LBA moves

away from traditional passively supervised settings where

human annotators provide the training data in an interac-

tive setting where the learner seeks out the supervision it
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Figure 9: Answer distribution of CLEVR train, LBA-

generated data, and the CLEVR-Humans dataset.

needs. While passive supervision has driven progress in vi-

sual recognition [16, 17], it does not appear well suited for

general AI tasks such as visual question answering (VQA).

Curating large amounts of diverse data which generalizes to

a wide variety of questions is a difficult task. Our results

suggest that interactive settings such as LBA may facilitate

learning with higher sample efficiency. Such high sample

efficiency is crucial as we move to increasingly complex vi-

sual understanding tasks.

An important property of LBA is that it does not tie the

distribution of questions and answers seen at training time

to the distribution at test time. This more closely resembles

the real-world deployment of VQA systems where the dis-

tribution of user-posed questions to the system is unknown

and difficult to characterize beforehand [8]. The CLEVR-

Humans distribution in Figure 9 is an example of this. This

issue poses clear directions for future work [7]: we need to

develop VQA models that are less sensitive to distributional

variations at test time; and not evaluate them under a single

test distribution (as in current VQA benchmarks).

A second major direction for future work is to develop a

“real-world” version of a LBA system in which (1) CLEVR

images are replaced by natural images and (2) the oracle

is replaced by a human annotator. Relative to our current

approach, several innovations are required to achieve this

goal. Most importantly, it requires the design of an effective

mode of communication between the learner and the human

“oracle”. In our current approach, the learner uses a simple

programming language to query the oracle. A real-world

LBA system needs to communicate with humans using di-

verse natural language. The efficiency of LBA learners may

be further improved by letting the oracle return privileged

information that does not just answer an image-question

pair, but that also explains why this is the right or wrong

answer [52]. We leave the structural design of this privi-

leged information to future work.
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