
Efficient Optimization for Rank-based Loss Functions

Pritish Mohapatra∗ Michal Rolı́nek∗

IIIT Hyderabad MPI Tübingen

C.V. Jawahar Vladimir Kolmogorov M. Pawan Kumar

IIIT Hyderabad IST Austria University of Oxford, Alan Turing Institute

Abstract

The accuracy of information retrieval systems is often

measured using complex loss functions such as the aver-

age precision (AP) or the normalized discounted cumula-

tive gain (NDCG). Given a set of positive and negative

samples, the parameters of a retrieval system can be es-

timated by minimizing these loss functions. However, the

non-differentiability and non-decomposability of these loss

functions does not allow for simple gradient based opti-

mization algorithms. This issue is generally circumvented

by either optimizing a structured hinge-loss upper bound to

the loss function or by using asymptotic methods like the

direct-loss minimization framework. Yet, the high compu-

tational complexity of loss-augmented inference, which is

necessary for both the frameworks, prohibits its use in large

training data sets. To alleviate this deficiency, we present

a novel quicksort flavored algorithm for a large class of

non-decomposable loss functions. We provide a complete

characterization of the loss functions that are amenable

to our algorithm, and show that it includes both AP and

NDCG based loss functions. Furthermore, we prove that

no comparison based algorithm can improve upon the com-

putational complexity of our approach asymptotically. We

demonstrate the effectiveness of our approach in the context

of optimizing the structured hinge loss upper bound of AP

and NDCG loss for learning models for a variety of vision

tasks. We show that our approach provides significantly bet-

ter results than simpler decomposable loss functions, while

requiring a comparable training time.

1. Introduction

Information retrieval systems require us to rank a set of

samples according to their relevance to a query. The risk of

the predicted ranking is measured by a user-specified loss

∗The first two authors contributed equally and can be reached at pri-

tish.mohapatra@research.iiit.ac.in, michal.rolinek@tuebingen.mpg.de re-

spectively.

function. Several intuitive loss functions have been pro-

posed in the literature. These include simple decompos-

able losses (that is, loss functions that decompose over each

training sample) such as 0-1 loss [16, 20] and the area under

the ROC curve [1, 11], as well as the more complex non-

decomposable losses (that is, loss functions that depend on

the entire training data set) such as the average precision

(AP) [5, 27] and the normalized discounted cumulative gain

(NDCG) [6].

When learning a retrieval system, one can use a train-

ing objective that is agnostic to the risk, such as in the

case of LambdaMART [4]. In this work, we focus on ap-

proaches that explicitly take into account the loss function

used to measure the risk. Such approaches can use any one

of the many machine learning frameworks such as struc-

tured support vector machines (SSVM) [24, 25], deep neu-

ral networks [23], decision forests [14], or boosting [21].

To estimate the parameters of the framework, they employ

a training objective that is closely related to the empirical

risk computed over a large training data set. Specifically,

it is common practice to employ either a structured hinge

upper bound to the loss function [6, 27], or an asymptotic

alternative such as direct loss minimization [10, 22].

The feasibility of both the structured hinge loss and the

direct loss minimization approach depends on the compu-

tational efficiency of the loss-augmented inference proce-

dure. When the loss function is decomposable, the loss-

augmented inference problem can be solved efficiently by

independently considering each training sample. However,

for non-decomposable loss functions, it presents a hard

computational challenge. For example, given a training data

set with P positive (relevant to the query) and N negative

(not relevant to the query) samples, the best known algo-

rithms for loss-augmented inference for AP and NDCG loss

functions have a complexity of O(PN +N logN) [6, 27].

Since the number of negative samples N can be very large

in practice, this prohibits their use on large data sets.

In order to address the computational challenge of non-

decomposable loss functions such as those based on AP and

13693

NDCG, we make three contributions. First, we character-

ize a large class of ranking based loss functions that are

amenable to a novel quicksort flavored optimization algo-

rithm for the corresponding loss-augmented inference prob-

lem. We refer to the class of loss functions as QS-suitable.

Second, we show that the AP and the NDCG loss func-

tions are QS-suitable, which allows us to reduce the com-

plexity of the corresponding loss-augmented inference to

O(N logP). Third, we prove that there cannot exist a com-

parison based method for loss-augmented inference that can

provide a better asymptotic complexity than our quicksort

flavored approach. It is worth noting that our work is com-

plementary to previous algorithms that have been proposed

for the AP based loss functions [18]. Specifically, while the

method of [18] cannot improve the asymptotic complexity

of our loss-augmented inference algorithm, it can be used

to reduce the runtime of a subroutine.

For the sake of clarity, we limit our discussion to the

structured hinge loss upper bound to the loss function.

However, as our main contribution is to speed-up loss-

augmented inference, it is equally applicable to direct loss

minimization. We demonstrate the efficacy of our approach

on the challenging problems of action recognition, object

detection and image classification, using publicly available

data sets. Rather surprisingly, we show that in case of

some models, parameter learning by optimizing complex

non-decomposable AP and NDCG loss functions can be car-

ried out faster than by optimizing simple decomposable 0-1

loss. Specifically, while each loss-augmented inference call

is more expensive for AP and NDCG loss functions, it can

take fewer calls in practice to estimate the parameters of the

corresponding model.

2. Background

We begin by providing a brief description of a general re-

trieval framework that employs a rank-based loss function,

hereby referred to as the ranking framework. Note that this

framework is the same as or generalizes the ones employed

in previous works [6, 12, 18, 22, 27]. The two specific in-

stantiations of the ranking framework that are of interest to

us employ the average precision (AP) loss and the normal-

ized discounted cumulative gain (NDCG) loss respectively.

A detailed description of the two aforementioned loss func-

tions is provided in the subsequent subsection.

2.1. The Ranking Framework

Input. The input to this framework is a set of n samples,

which we denote by X = {xi, i = 1, . . . , n}. For example,

each sample can represent an image and a bounding box of

a person present in the image. In addition, we are also pro-

vided with a query, which in our example could represent

an action such as ‘jumping’. Each sample can either belong

to the positive class (that is, the sample is relevant to the

query) or the negative class (that is, the sample is not rele-

vant to the query). For example, if the query represents the

action ‘jumping’ then a sample is positive if the correspond-

ing person is performing the jumping action, and negative

otherwise. The set of positive and the negative samples are

denoted by P and N respectively. which we assume are

provided during training, but are not known during testing.

Output. Given a query and a set of n samples X, the de-

sired output of the framework is a ranking of the samples

according to their relevance to the query. This is often rep-

resented by a ranking matrix R ∈ {−1, 0, 1}n×n such that

Rx,y = 1 if x is ranked higher than y, -1 if x is ranked

lower than y and 0 if x and y are ranked the same. In other

words, the matrix R is an anti-symmetric that represents the

relative ranking of a pair of samples.

Given the sets P and N during training, we construct

a ground truth ranking matrix R∗, which ranks each pos-

itive sample above all the negative samples. Formally, the

ground truth ranking matrix R∗ is defined such that R∗
x,y =

1 if x ∈ P and y ∈ N , -1 if x ∈ N and y ∈ P , and 0 if

x,y ∈ P or x,y ∈ N . Note that the ground truth rank-

ing matrix only defines a partial ordering on the samples

since R∗
i,j = 0 for all pairs of positive and negative sam-

ples. We will refer to rankings where no two samples are

ranked equally as proper rankings. Without loss of gener-

ality, we will treat all rankings other than the ground truth

one as a proper ranking by breaking ties arbitrarily.

Discriminant Function. Given an input set of samples

X, the discriminant function F (X,R;w) provides a score

for any candidate ranking R. Here, the term w refers to the

parameters of the discriminant function. We assume that

the discriminant function is piecewise differentiable with

respect to its parameters w. One popular example of the dis-

criminant function used throughout the ranking literature is

the following:

F (X,R;w) =
1

|P| |N |

∑

x∈P

∑

y∈N

Rx,y(φ(x;w)−φ(y;w)).

(1)

Here, φ(x;w) is the score of an individual sample, which

can be provided by a structured SVM or a deep neural net-

work with parameters w.

Prediction. Given a discriminant function F (X,R;w)
with parameters w, the ranking of an input set of samples X

is predicted by maximizing the score, that is, by solving the

following optimization problem:

R(w) = argmax
R

F (X,R;w). (2)

The special form of the discriminant function in equa-

tion (1) enables us to efficiently obtain the predicted ranking

R(w) by sorting the samples in descending order of their

3694

individual scores φ(x;w). We refer the reader to [12, 27]

for details.

Parameter Estimation. We now turn towards estimat-

ing the parameters of our model given input samples X,

together with their classification into positive and negative

sets P and N respectively. To this end, we minimize the risk

of prediction computed using a user-specified loss function

∆(R∗,R(w)), where R∗ is the ground truth ranking that is

determined by P and N and R(w) is the predicted ranking

as shown in equation (2). We estimate the parameters of our

model as

w∗ = min
w

E[∆(R∗,R(w))]. (3)

In the above equation, the expectation is taken with respect

to the data distribution.

Optimization for Parameter Estimation. For many

intuitive rank based loss functions such as AP loss and

NDCG loss, owing to their non-differentiability and non-

decomposability, problem (3) can be difficult to solve using

simple gradient based methods. One popular approach is to

modify problem (3) to instead minimize a structured hinge

loss upper bound to the user-specified loss. We refer the

reader to [27] for further details about this approach.

Formally, the model parameters can now be obtained by

solving the following problem:

w∗ = min
w

E[J(w)] (4)

J(w) = max
R

∆(R∗,R) + F (X,R;w)− F (X,R∗;w)

The function J(w) in problem (4) is continuous and piece-

wise differentiable, and is amenable to gradient based opti-

mization. The semi-gradient 1 of J(w) takes the following

form:

∇wJ(w) = ∇wF (X, R̄;w)−∇wF (X,R∗;w), (5)

with, R̄ = argmax
R

∆(R∗,R) + F (X,R;w). (6)

Borrowing terminology from the structured prediction lit-

erature [13, 27], we call R̄ the most violating ranking and

problem (6) as the loss-augmented inference problem. An

efficient procedure for loss-augmented inference is key to

solving problem (4).

While we focus on using loss-augmented inference for

estimating the semi-gradient, it can also be used as the cut-

ting plane [13] and the conditional gradient of the dual of

problem (4). In addition to this, loss-augmented inference

is also required for solving problem (3) using the direct loss

minimization framework [22].

1For a continuous function f(x) defined on a domain of any generic

dimension, we can define semi-gradient ∇sf(x) to be a random picking

from the set {∇f(t) : ||x− t|| < ǫ}, for a sufficiently small ǫ.

2.2. Loss Functions

While solving problem (6) is non-trivial, especially for

non-decomposable loss functions, the method we propose

in this paper allows for an efficient loss-augmented infer-

ence procedure for such complex loss functions. For our

discussion, we focus on two specific non-decomposable

loss functions. The first is the average precision (AP) loss,

which is very popular in the computer vision community as

evidenced by its use in the various challenges of PASCAL

VOC [8]. The second is the normalized discounted cumula-

tive gain (NDCG) loss, which is very popular in the informa-

tion retrieval community [6].

Notation. In order to specify the loss functions, and our

efficient algorithms for problem (4), it would be helpful to

introduce some additional notation. We define ind(x) to

be the index of a sample x according to the ranking R.

Note that the notation does not explicitly depend on R as

the ranking will always be clear from context. If x ∈ P
(that is, for a positive sample), we define ind+(x) as the in-

dex of x in the total order of positive samples induced by R.

For example, if x is the highest ranked positive sample then

ind+(x) = 1 even though ind(x) need not necessarily be 1

(in the case where some negative samples are ranked higher

than x). For a negative sample x ∈ N , we define ind−(x)
analogously: ind−(x) is the index of x in the total order of

negative samples induced by R.

AP Loss. Using the above notation, we can now concisely

define the average precision (AP) loss of a proper ranking R

given the ground truth ranking R∗ as follows:

∆AP (R
∗,R) = 1−

1

|P|

∑

x∈P

ind+(x)

ind(x)
.

For example, consider an input X = {x1, · · · ,x8} where
xi ∈ P for 1 ≤ i ≤ 4, and xi ∈ N for 5 ≤ i ≤ 8, that is,

the first 4 samples are positive while the last 4 samples are

negative. If the proper ranking R induces the order

(x1,x3,x8,x4,x5,x2,x6,x7), (7)

then, ∆AP (R
∗,R) = 1−

1

4

(

1

1
+

2

2
+

3

4
+

4

6

)

≈ 0.146.

NDCG Loss. We define a discount 2 D(i) = 1/ log2(1+i)
for all i = 1, · · · , |N | + |P|. This allows us to obtain a

loss function based on the normalized discounted cumula-

tive gain as

∆NDCG(R
∗,R) = 1−

∑

x∈P D(ind(x))
∑|P|

i=1 D(i)
.

For example, consider the aforementioned input where the

first four samples are positive and the last four samples are

2Chakrabarti et al. [6] use a slightly modified definition of the dis-

count D(·). For a detailed discussion about it the reader can refer to the

Appendix (Supplementary).

3695

negative. For the ranking R that induces the order (7), we

can compute

∆NDCG(R̂,R) = 1−
1 + log−1

2 3 + log−1
2 5 + log−1

2 7

1 + log−1
2 3 + log−1

2 4 + log−1
2 5

≈ 0.056.

Both AP loss and NDCG loss are functions of the entire

dataset and are not decomposable onto individual samples.

3. Quicksort Flavored Optimization

In order to estimate the parameters w in the ranking

framework by solving problem (4), we need to compute the

semi-gradient of J(w). To this end, given the current esti-

mate of parameters w, as well as a set of samples X, we are

interested in obtaining the most violated ranking by solving

problem (6). At first glance, the problem seems to require

us to obtain a ranking matrix R̄. However, it turns out that

we do not explicitly require a ranking matrix.

In more detail, our algorithm uses an intermediate rep-

resentation of the ranking using the notion of interleaving

ranks. Given a ranking R and a negative sample x, the in-

terleaving rank rank(x) is defined as one plus the number

of positive samples preceding x in R. Note that, similar

to our notation for ind(·), ind+(·) and ind−(·), we have

dropped the dependency of rank(·) on R as the ranking

matrix would be clear from context. The interleaving rank

of all the samples does not specify the total ordering of all

the samples according to R as it ignores the relative rank-

ing of the positive samples among themselves, and the rel-

ative ranking of the negative samples among themselves.

However, as will be seen shortly, for a large class of rank-

ing based loss functions, interleaving ranks corresponding

to the most violating ranking are sufficient to compute the

semi-gradient as in equation (5).

In the rest of the section, we discuss the class of loss

functions that are amenable to a quicksort flavored algo-

rithm, which we call QS-suitable loss functions. We then

describe and analyze our quicksort flavored approach for

finding the interleaving rank in some detail. For brevity and

simplicity of exposition, in the following sub-section, we

restrict our discussion to the properties of QS-suitable loss

functions that are necessary for an intuitive explanation of

our algorithm. For a thorough discussion on the characteri-

zation and properties of QS-suitable loss functions, we refer

the interested reader to the full version of the paper [19].

3.1. QS­Suitable Loss Functions

As discussed earlier, many popular rank-based loss func-

tions happen to be non-decomposable. That is, they

can not be additively decomposed onto individual sam-

ples. However, it turns out that a wide class of such non-

decomposable loss functions can be instead additively de-

composed onto the negative samples. Formally, for some

functions δj : {1, . . . , |P|+1} → R for j = 1, . . . , |N |, for

a proper ranking R one can write

∆(R∗,R) =
∑

x∈N

δind−(x)(rank(x)).

We will call this the negative-decomposability property.

Further, many of those rank-based loss functions do not

depend on the relative order of positive or negative sam-

ples among themselves. Rather, the loss for a ranking R,

∆(R∗,R), depends only on the interleaving rank of posi-

tive and negative samples corresponding to R. We will call

this the interleaving-dependence property.

As will be evident later in the section, the above proper-

ties in a loss function allows for an efficient quicksort fla-

vored divide and conquer algorithm to solve the loss aug-

mented problem. We formally define the class of loss func-

tions that allow for such a quicksort flavored algorithm as

QS-suitable loss functions. The following proposition es-

tablishes the usefulness for such a characterization.

Proposition 1 Both ∆AP and ∆NDCG are QS-suitable.

The proof of the above proposition is provided in Appendix

(supplementary). Having established that both the AP and

the NDCG loss are QS-suitable, the rest of the section will

deal with a general QS-suitable loss function. A reader who

is interested in employing another loss function need only

check whether the required conditions are satisfied in order

to use our approach.

3.2. Key Observations for QS­Suitable Loss

Before describing our algorithm in detail, we first pro-

vide some key observations which enable efficient opti-

mization for QS-suitable loss functions. To this end, let

us define an array {s+i }
|P|
i=1 of positive sample scores and

an array {s−i }
|N |
i=1 of negative sample scores. Furthermore,

for purely notational purposes, let {s∗i } be the array {s−i }
sorted in descending order. For j ∈ {1, . . . |N |} we denote

the index of s−j in {s∗i } as j∗.

With the above notation, we describe some key obser-

vations regarding QS-suitable loss functions. Their proofs

are for most part straightforward generalizations of results

that appeared in [18, 27] in the context of the AP loss and

can be found in Appendix (Supplementary). Using the

interleaving-dependence property of QS-suitable loss func-

tions and structure of the discriminant function as defined

in equation (1), we can make the following observation.

Observation 1 An optimal solution R̄ of problem (6)

would have positive samples appearing in the descending

order of their scores s+i and also the negative samples ap-

pearing in descending order of their scores s−i .

Now, in order to find the optimal ranking R̄, it would seem

natural to sort the arrays {s+i } and {s−i } in descending or-

der and then find the optimal interleaving ranks rank(x)

3696

for all x ∈ N . However, we are aiming for complexity be-

low O(|N | log |N |), therefore we can not afford to sort the

negative scores. On the other hand, since |P| << |N |, we

are allowed to sort the array of positive scores {s+i }.

Let opti be the optimal interleaving rank for the neg-

ative sample with the ith rank in the sorted list {s∗i } and

opt = {opti|j = 1, . . . , |N |} be the optimal interleaving

rank vector. A certain subtle monotonicity property QS-

suitable loss functions (see Supplementary) and the struc-

ture of the discriminant function given in (1) gives us the

opportunity to compute the interleaving rank for each neg-

ative sample independently. However, we actually need not

do this computation for all the |N | negative samples. This

is because, since the interleaving rank for any negative sam-

ple can only belong to [1, |P| + 1] and |P| << |N |, many

of the negative samples would have the same interleaving

rank. This fact can be leveraged to improve the efficiency

of the algorithm for finding opt by making use of the fol-

lowing observation.

Observation 2 If i < j, then opti ≤ optj .

Knowing that opti = optj for some i < j, we can con-

clude that opti = optk = optj for each i < k < j. This

provides a cheap way to compute some parts of the vec-

tor opt if an appropriate sequence is followed for comput-

ing the interleaving ranks. Even without access to the fully

sorted set {s∗j}, we can still find s∗j , the j-highest element

in {s−i }, for a fixed j, in O(|N |) time. This would lead to

an O(|P| |N |) algorithm but we may at each step modify

{s−i } slowly introducing the correct order. This will make

the future searches for s∗j more efficient.

3.3. Divide and Conquer

Algorithm 1 describes the main steps of our approach.

Briefly, we begin by detecting s∗|N|/2 that is the median

score among the negative samples. We use this to compute

opt|N |/2. Given opt|N |/2, we know that for all j < |N | /2,

optj ∈ [1, opt|N |/2] and for all j > |N | /2, optj ∈
[opt|N |/2, |P| + 1]. This observation allows us to employ

a divide-and-conquer recursive approach.

In more detail, we use two classical linear time array ma-

nipulating procedures MEDIAN and SELECT. The first one

outputs the index of the median element. The second one

takes as its input an index of a particular element x. It re-

arranges the array such that x separates higher-ranked el-

ements from lower-ranked elements (in some total order).

For example, if array s− contains six scores [a b 4.5 6 1 c]
then Median(3, 5) would return 3 (the index of score 4.5),

while calling Select(3, 3, 5) would rearrange the array to

[a b 1 4.5 6 c] and return 4 (the new index of 4.5). The SE-

LECT procedure is a subroutine of the classical QUICKSORT

algorithm.

Using the two aforementioned procedures in conjunction

with the divide-and-conquer strategy allows us to compute

Algorithm 1: Recursive procedure for finding all inter-

leaving ranks.

Description: The function finds optimal interleaving

rank for all i ∈ [ℓ−, r−] given that

(i) array s− is partially sorted, namely

MAX(s−[1 . . . ℓ− − 1]) ≤ MIN(s−[ℓ− . . . r−]) and

MAX(s−[ℓ− . . . r−]) ≤ MIN(s−[r− + 1 . . . |N |]);
(ii) optimal interleaving ranks for i ∈ [ℓ−, r−] lie in

the interval [ℓ+, r+].

1 function OptRanks(int ℓ−, int r−, int ℓ+, int r+)

2 if ℓ+ = r+ then

3 set opti = ℓ+ for each i ∈ [ℓ−, r−] and return

4 end

5 m = Median(ℓ−, r−) ⊲ gives the index of the

median score in a subarray of s−

6 m = Select(m, ℓ−, r−) ⊲ splits the subarray

by s = s−[m], returns the new index of s
7 Find optm by trying all options in [ℓ+, r+]
8 if ℓ− < m then OptRanks(ℓ−, m−1, ℓ+, optm)

9 if m < r− then OptRanks(m+1, r−, optm, r+)

the entire interleaving rank vector opt and this in turn al-

lows us to compute the semi-gradient ∇wJ(w), as in equa-

tion (5), efficiently.

Figure 1 provides an illustrative example of our divided-

and-conquer strategy. Here, |N | = 11 and |P| = 2. We

assume that the optimal interleaving rank vector opt is

[1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3]. Let us now go through the pro-

cedure in which Algorithm 1 computes this optimal inter-

leaving rank vector. Before starting the recursive proce-

dure, we only sort the positive samples according to their

scores and do not sort the negative samples. To start with,

we call OptRanks(1, 11, 1, 3). We find the negative sam-

ple with the median score (6th highest in this case) and

compute its optimal interleaving rank opt6 to be 2. In the

next step of the recursion, we make the following calls:

OptRanks(1, 5, 1, 2) and OptRanks(7, 11, 2, 3). These

calls compute opt3 and opt9 to be 2. In the next set of re-

cursion calls however, the calls OptRanks(4, 5, 2, 2) and

OptRanks(7, 8, 2, 2), get terminated in step 4 of Algo-

rithm 1 and optj for j = 4, 5, 7, 8 are assigned without

any additional computation. We then continue this proce-

dure recursively for progressively smaller intervals as de-

scribed in Algorithm 1. Leveraging the fact stated in obser-

vation 2, our algorithm has to explicitly compute the inter-

leaving rank for only 6 (shown in square brackets) out of

the 11 negative samples. In a typical real data set, which

is skewed more in favor of the negative samples, the ex-

pected number of negative samples for which is the inter-

leaving rank has to be explicitly computed is far less than

|N |. In contrast, the algorithm proposed by Yue et al. in

3697

[2]

[2] [2] [2]

[2] [2] 2 2 [2] 2 2 [2] [3]

[1] [2] [2] 2 2 [2] 2 2 [2] [3] 3

Figure 1. Example illustrating the path followed by the quick

sort flavored recursive algorithm while computing the interleaving

rank vector opt. Row correspond to the status of opt at selected

time steps.

[27] first sorts the entire negative set in descending order of

their scores and explicitly computes the interleaving rank

for each of the |N | negative samples.

3.4. Computational Complexity

The computational complexity of the divide-and-

conquer strategy to estimate the output of problem (6), is

given by the following theorem.

Theorem 2 If ∆ is QS-suitable, then the task (6) can be

solved in time O(|N | log |P| + |P| log |P| + |P| log |N |),
which in the most common case |N | > |P| reduces

to O(|N | log |P|) and any comparison-based algorithm

would require Ω(|N | log |P|) operations.

Proof. Please refer to Appendix (Supplementary). �

Note that the above theorem not only establishes the su-

perior runtime of our approach (O(|N | log |P|) compared

to O(|N | log |N |) of [27] and [18]), it also provides an

asymptotic lower bound for comparison based algorithms.

However, it does not rule out the possibility of improving

the constants hidden within the asymptotic notation for a

given loss function. For example, as mentioned earlier, one

can exploit the additional structure of the AP loss, as pre-

sented in [18], to further speed-up our algorithm.

4. Experiments

We demonstrate the efficacy of our approach on three vi-

sion tasks with increasing level of complexity. First, we use

the simple experimental setup of doing action classification

on the PASCAL VOC 2011 data set using a shallow model.

This experimental set up allow us to thoroughly analyze the

performance of our method as well as the baselines by vary-

ing the sample set sizes. Second, we apply our method to

a large scale experiment of doing object detection on the

PASCAL VOC 2007 data set using a shallow model. This

demonstrates that our approach can be used in conjunction

with a large data set consisting of millions of samples. Fi-

nally, we demonstrate the effectiveness of our method for

layer wise training of a deep network on the task of image

classification using the CIFAR-10 data set.

4.1. Action Classification

Data set. We use the PASCAL VOC 2011 [8] action classi-

fication data set for our experiments. This data set consists

of 4846 images, which include 10 different action classes.

The data set is divided into two parts: 3347 ‘trainval’ per-

son bounding boxes and 3363 ‘test’ person bounding boxes.

We use the ‘trainval’ bounding boxes for training since their

ground-truth action classes are known. We evaluate the ac-

curacy of the different models on the ‘test’ bounding boxes

using the PASCAL evaluation server.

Model. We use structured SVM models as discriminant

functions and use the standard poselet [17] activation fea-

tures to define the sample feature for each person bounding

box. The feature vector consists of 2400 action poselet ac-

tivations and 4 object detection scores. We refer the reader

to [17] for details regarding the feature vector.

Methods. We show the effectiveness of our method in op-

timizing both AP loss and NDCG loss to learn the model pa-

rameters. Specifically, we report the computational time for

the loss-augmented inference evaluations. For AP loss, we

compare our method (referred to as AP QS) with the loss-

augmented inference procedure described in [27] (referred

to as AP). For NDCG loss, we compare our method (referred

to as NDCG QS) with the loss-augmented inference proce-

dure described in [6] (referred to as NDCG). We also report

results for loss-augmented inference evaluations when us-

ing the simple decomposable 0-1 loss function (referred to

as 0-1). The hyperparameters involved are fixed using 5-

fold cross-validation on the ‘trainval’ set.

Results. When we minimize AP loss on the training set

to learn the model parameters, we get a mean AP of 51.196

on the test set. In comparison, minimizing 0-1 loss to learn

model parameters leads to a mean AP value of 47.934 on

the test set. Similarly, minimizing NDCG loss for parameter

learning gives a superior mean NDCG value of 85.521 on the

test set, compared to that of 84.3823 when using 0-1 loss.

The AP and NDCG values obtained on the test set for indi-

vidual action classes can be found in the supplementary ma-

terial. This clearly demonstrates the usefulness of directly

using rank based loss functions like AP loss and NDCG loss

for learning model parameters, instead of using simple de-

composable loss functions like 0-1 loss as surrogates.

The time required for the loss augmented inference eval-

0-1 AP AP QS NDCG NDCG QS

0.0694 0.7154 0.0625 6.8019 0.0473

Table 1. Total computation time (in seconds) when using the differ-

ent methods, for multiple calls to loss augmented inference during

model training. The reported time is averaged over the training

for all the action classes.

0-1 AP AP QS NDCG NDCG QS

0.48±0.03 16.29±0.18 1.48±0.39 71.07±1.57 0.55±0.11

Table 2. Mean computation time (in milli-seconds) when using the

different methods, for single call to loss augmented inference. The

reported time is averaged over all training iterations and over all

the action classes.

3698

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of total samples −−>

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 −
−

>

0−1

AP

AP_QS

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No. of negative samples −−>

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 −
−

>

0−1

AP

AP_QS

20 40 60 80 100 120 140 160 180 200 220
0

0.01

0.02

0.03

0.04

0.05

0.06

No. of positive samples −−>

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 −
−

>

0−1

AP

AP_QS

Figure 2. Total computation time for multiple calls to loss augmented inference during model training, when the number of total, negative

and positive samples are varied. Here, 0-1, AP and AP QS correspond to loss augmented inference procedures for 0-1 loss, for AP loss

using [27] and for AP loss using our method respectively. It can be seen that our method scales really well with respect to sample set sizes

and takes computational time that is comparable to what is required for simpler 0-1 decomposable loss.

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

5

10

15

No. of total samples −−>

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 −
−

>

0−1

NDCG

NDCG_QS

500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

20

No. of negative samples −−>

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 −
−

>

0−1
NDCG
NDCG_QS

20 40 60 80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No. of positive samples −−>

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 −
−

>

0−1
NDCG
NDCG_QS

Figure 3. Total computation time for multiple calls to loss augmented inference during model training, when the number of total, negative

and positive samples are varied. Here, 0-1, NDCG and NDCG QS correspond to loss augmented inference procedures for 0-1 loss, for

NDCG loss using [6] and for NDCG loss using our method respectively. As can be seen, our approach scales elegantly with respect to

sample set sizes and is comparable to the simpler 0-1 decomposable loss in terms of computation time.

uations, while optimizing the different loss functions for

learning model parameters, are shown in Table 1. It can

be seen that using our method (AP QS, NDCG QS) leads to

reduction in computational time by a factor of more than 10,

when compared to the methods proposed in [27] and [6] for

AP loss and NDCG loss respectively. For AP loss, the method

proposed in [18] takes computational time of 0.0985 sec for

loss augmented inference. Note that, this method is specific

to AP loss, but our more general method is still around 3

times faster. It can also be observed that although the com-

putational time for each call to loss-augmented inference for

0-1 loss is slightly less than that for AP loss and NDCG loss

(Table 2), in some cases we observe that we required more

calls to optimize the 0-1 loss. As a result, in those cases

training using 0-1 loss is slower than training using AP or

NDCG loss with our proposed method.

In order to understand the effect of the size and com-

position of the data set on our approaches, we perform 3

experiments with variable number of samples for the action

class phoning. First, we vary the total number of samples

while fixing the positive to negative ratio to 1 : 10. Sec-

ond, we vary the number of negative samples while fixing

the number of positive samples to 227. Third, we vary the

number of positive samples while fixing the number of neg-

ative samples to 200. As can be seen in Fig. 2 and Fig. 3, the

time required for loss-augmented inference is significantly

lower using our approach for both AP and NDCG loss.

4.2. Object Detection

Data set. We use the PASCAL VOC 2007 [8] object detec-

tion data set, which consists of a total of 9963 images. The

data set is divided into a ‘trainval’ set of 5011 images and a

‘test’ set of 4952 images. All the images are labeled to indi-

cate the presence or absence of the instances of 20 different

object categories. In addition, we are also provided with

tight bounding boxes around the object instances, which we

ignore during training and testing. Instead, we treat the lo-

cation of the objects as a latent variable. In order to reduce

the latent variable space, we use the selective-search algo-

rithm [26] in its fast mode, which generates an average of

2000 candidate windows per image. This results in a train-

ing set size of approximately 10 million bounding boxes.

Model. For each candidate window, we use a feature rep-

resentation that is extracted from a trained Convolutional

Neural Network (CNN). Specifically, we pass the image as

input to the CNN and use the activation vector of the penulti-

mate layer of the CNN as the feature vector. Inspired by the

R-CNN pipeline of Girshick et al. [9], we use the CNN that

is trained on the ImageNet data set [7], by rescaling each

candidate window to a fixed size of 224 × 224. The length

of the resulting feature vector is 4096. However, in contrast

to [9], we do not assume ground-truth bounding boxes to be

available for training images. We instead optimize AP loss

in a weakly supervised framework to learn the parameters of

3699

the SVM based object detectors for the 20 object categories.

Methods. We use our approach to learn the parameters

of latent AP-SVMs [2] for each object category. In our ex-

periments, we fix the hyperparameters using 5-fold cross-

validation. During testing, we evaluate each candidate win-

dow generated by selective search and use non-maxima sup-

pression to prune highly overlapping detections.

Results. For this task of weakly supervised object detec-

tion, using AP loss for learning model parameters leads to

a mean test AP of 36.616 which is significantly better than

the 29.4995 obtained using 0-1 loss. The AP values obtained

on the test set by the detectors for each object class can be

found in the supplementary material. These results estab-

lish the usefulness of optimizing AP loss for learning the

object detectors. On the other hand, optimizing AP loss for

this task places high computational demands due to the size

of the data set (5011 ‘trainval’ images) as well as the latent

space (2000 candidate windows per image) amounting to

around 10 million bounding boxes. We show that using our

method for loss-augmented inference (LAI) leads to signifi-

cant saving in computational time. During training, the to-

tal time taken for LAI, averaged over all the 20 classes, was

0.5214 sec for our method which is an order of magnitude

better than the 7.623 sec taken by the algorithm proposed

in [27]. Thus, using our efficient quicksort flavored algo-

rithm can be critical when optimizing non-decomposable

loss functions like AP loss for large scale data sets.

4.3. Image Classification

Data set. We use the CIFAR-10 data set [15], which con-

sists of a total of 60,000 images of size 32×32 pixels. Each

image belongs to one of 10 specified classes. The data set

is divided into a ‘trainval’ set of 50,000 images and a ‘test’

set of 10,000 images. From the 50,000 ‘trainval’ images,

we use 45,000 for training and 5,000 for validation. For our

experiments, all the images are centered and normalized.

Model. We use a deep neural network as our classifica-

tion model. Specifically, we use a piecewise linear convo-

lutional neural network (PL-CNN) as proposed in [3]. We

follow the same framework as [3] for experiments on the

CIFAR-10 data set and use a PL-CNN architecture compris-

ing 6 convolutional layers and an SVM last layer. For all

our experiments, we use a network that is pre-trained using

softmax and cross-entropy loss.

Methods. We learn the weights of the PL-CNN by opti-

mizing AP loss and NDCG loss for the training data set. For

comparison, we also report results for parameter learning

using the simple decomposable 0-1 loss. We use the lay-

erwise optimization algorithm called LW-SVM, proposed in

[3], for optimizing the different loss functions with respect

to the network weights. Following the training regime used

in [3], we warm start the optimization with a few epochs

of Adadelta [28] before running the layer wise optimiza-

tion. The LW-SVM algorithm involves solving a structured

SVM problem for one layer at a time. This requires tens of

thousands of calls to loss augmented inference and having

a efficient procedure is therefore critical for scalability. We

compare our method for loss-augmented inference with the

methods described in [27] and [6], for AP loss and NDCG

loss respectively.

Results. We get a better mean AP of 85.28 on the test

set when we directly optimize AP loss for learning network

weights compared to that of 84.22 for 0-1 loss. Similarly,

directly optimizing NDCG loss leads to a better mean NDCG

of 96.14 on the test set compared to 95.31 for 0-1 loss. This

establishes the usefulness of optimizing non-decomposable

loss functions like the AP loss and NDCG loss. The LW-SVM

algorithm involves very high number of calls to the loss aug-

mented inference procedure. In light of this, the efficient

method for loss augmented inference proposed in this paper

leads to significant reduction in total training time. When

optimizing the AP loss, using our method leads to a total

training time of 1.589 hrs compared to that of 1.974 hrs for

the algorithm proposed in [27]. Similarly, when optimiz-

ing NDCG loss, our method leads to a total training time

of 1.632 hrs, which is significantly better than the 2.217
hrs taken for training when using the method proposed in

[6]. This indicates that using our method helps the layer-

wise training procedure scale much better.

5. Discussion

We provided a characterization of ranking based loss

functions that are amenable to a quicksort based optimiza-

tion algorithm for the loss augmented inference problem.

We proved that the our algorithm provides a better compu-

tational complexity than the state of the art methods for AP

and NDCG loss functions and also established that the com-

plexity of our algorithm cannot be improved upon asymp-

totically by any comparison based method. We empiri-

cally demonstrated the efficacy of our approach on chal-

lenging real world vision problems. In future, we would like

to explore extending our approach to other ranking based

non-decomposable loss functions like those based on the F-

measure or the mean reciprocal rank.

Acknowledgement

This work is partially funded by the EPSRC grants

EP/P020658/1 and TU/B/000048 and a CEFIPRA grant.

MR and VK were supported by the European Research

Council under the European Unions Seventh Framework

Programme (FP7/2007-2013)/ERC grant agreement no

616160. PM was partially supported by a Microsoft Re-

search Travel Grant for attending this conference.

3700

References

[1] B. Bartell, G. Cottrell, and R. Belew. Automatic combina-

tion of multiple ranked retrieval systems. In Proceedings of

the 17th annual international ACM SIGIR conference on Re-

search and development in information retrieval, 1994. 1

[2] A. Behl, C. V. Jawahar, and M. P. Kumar. Optimizing aver-

age precision using weakly supervised data. In CVPR, 2014.

8

[3] L. Berrada, A. Zisserman, and M. P. Kumar. Trusting SVM

for piecewise linear CNNs. In International Conference on

Learning Representations, 2017. 8

[4] C. Burges, R. Ragno, and Q. V. Le. Learning to rank with

nonsmooth cost functions. In Advances in neural informa-

tion processing systems, 2007. 1

[5] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes.

Ensemble selection from libraries of models. In Proceed-

ings of the twenty-first international conference on Machine

learning. ACM, 2004. 1

[6] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhat-

tacharyya. Structured learning for non-smooth ranking

losses. In KDD, 2008. 1, 2, 3, 6, 7, 8

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 7

[8] M. Everingham, L. Van Gool, C. Williams, J. Winn, and

A. Zisserman. The PASCAL visual object classes (VOC)

challenge. IJCV, 2010. 3, 6, 7

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 7

[10] T. Hazan, J. Keshet, and D. McAllester. Direct loss mini-

mization for structured prediction. In Advances in Neural

Information Processing Systems, 2010. 1

[11] A. Herschtal and B. Raskutti. Optimising area under the

ROC curve using gradient descent. In Proceedings of the

twenty-first international conference on Machine learning.

ACM, 2004. 1

[12] T. Joachims. A support vector method for multivariate per-

formance measures. In ICML, 2005. 2, 3

[13] T. Joachims, T. Finley, and C. Yu. Cutting-plane training for

structural SVMs. JMLR, 2009. 3

[14] D. Kim. Minimizing structural risk on decision tree clas-

sification. In Multi-Objective Machine Learning. Springer,

2006. 1

[15] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto. 8

[16] Y. Lin, Y. Lee, and G. Wahba. Support vector machines for

classification in nonstandard situations. Machine learning,

2002. 1

[17] S. Maji, L. Bourdev, and J. Malik. Action recognition from a

distributed representation of pose and appearance. In CVPR,

2011. 6

[18] P. Mohapatra, C. V. Jawahar, and M. P. Kumar. Efficient

optimization for average precision SVM. In NIPS, 2014. 2,

4, 6, 7

[19] P. Mohapatra, M. Rolinek, C. Jawahar, V. Kolmogorov, and

M. Kumar. Efficient optimization for rank-based loss func-

tions. arXiv preprint arXiv:1604.08269. 4

[20] K. Morik, P. Brockhausen, and T. Joachims. Combining sta-

tistical learning with a knowledge-based approach: a case

study in intensive care monitoring. Technical report, Tech-

nical Report, SFB 475: Komplexitätsreduktion in Multivari-

aten Datenstrukturen, Universität Dortmund, 1999. 1

[21] C. Shen, H. Li, and N. Barnes. Totally corrective boost-

ing for regularized risk minimization. arXiv preprint

arXiv:1008.5188, 2010. 1

[22] Y. Song, A. Schwing, R. Zemel, and R. Urtasun. Training

deep neural networks via direct loss minimization. In Inter-

national Conference on Machine Learning, 2016. 1, 2, 3

[23] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks

for object detection. In NIPS, 2013. 1

[24] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov

networks. In NIPS, 2003. 1

[25] I. Tsochantaridis, T. Hofmann, Y. Altun, and T. Joachims.

Support vector machine learning for interdependent and

structured output spaces. In ICML, 2004. 1

[26] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders.

Selective search for object recognition. IJCV, 2013. 7

[27] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support

vector method for optimizing average precision. In SIGIR,

2007. 1, 2, 3, 4, 6, 7, 8

[28] M. Zeiler. ADADELTA: an adaptive learning rate method.

In CoRR, 2012. 8

3701

