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Abstract

Delineation of curvilinear structures is an important

problem in Computer Vision with multiple practical appli-

cations. With the advent of Deep Learning, many current

approaches on automatic delineation have focused on find-

ing more powerful deep architectures, but have continued

using the habitual pixel-wise losses such as binary cross-

entropy. In this paper we claim that pixel-wise losses alone

are unsuitable for this problem because of their inability to

reflect the topological impact of mistakes in the final predic-

tion. We propose a new loss term that is aware of the higher-

order topological features of linear structures. We also ex-

ploit a refinement pipeline that iteratively applies the same

model over the previous delineation to refine the predictions

at each step, while keeping the number of parameters and

the complexity of the model constant.

When combined with the standard pixel-wise loss, both

our new loss term and an iterative refinement boost the

quality of the predicted delineations, in some cases almost

doubling the accuracy as compared to the same classifier

trained with the binary cross-entropy alone. We show that

our approach outperforms state-of-the-art methods on a

wide range of data, from microscopy to aerial images.

1. Introduction

Automated delineation of curvilinear structures, such as

those in Fig. 1(a, b), has been investigated since the incep-

tion of the field of Computer Vision in the 1960s and 1970s.

Nevertheless, despite decades of sustained effort, full au-

tomation remains elusive when the image data is noisy and

the structures are complex. As in many other fields, the ad-

vent of Machine Learning techniques in general, and Deep

Learning in particular, has produced substantial advances,

in large part because learning features from the data makes

them more robust to appearance variations [5, 17, 27, 32].

∗This work was supported by Swiss National Science Foundation.
†This work was funded by the ERC FastProof grant.
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(c) (d)

Figure 1: Linear structures. (a) Detected roads in an

aerial image. (b) Detected cell membranes in an electron

microscopy (EM) image. (c) Segmentation obtained after

detecting neuronal membranes using [21] (d) Segmentation

obtained after detecting membranes using our method. Our

approach closes small gaps, which prevents much bigger

topology mistakes.

However, all new methods focus on finding either better

features to feed a classifier or more powerful deep archi-

tectures, while still using a pixel-wise loss such as binary

cross-entropy for training purposes. Such loss is entirely

local and does not account for the very specific and some-

times complex topology of curvilinear structures penalizing

all mistakes equally regardless of their influence on geom-

etry. As a shown in Fig. 1(c,d) this is a major problem be-

cause small localized pixel-wise mistakes can result in large

topological changes.

In this paper, we show that supplementing the usual

pixel-wise loss by a topology loss that promotes results with
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appropriate topological characteristics yields a substantial

performance increase without having to change the network

architecture. In practice, we exploit the feature maps com-

puted by a pretrained VGG19 [26] to obtain high-level de-

scriptions that are sensitive to linear structures. We use

them to compare the topological properties of the ground

truth and the network predictions and estimate our topology

loss.

In addition to this we exploit iterative refinement freame-

work, which is inspired by the recurrent convolutional ar-

chitecture of Pinheiro and Collobert [20]. We show that,

unlike in the recent methods [19, 25], sharing the same ar-

chitecture and parameters across all refinement steps, in-

stead of instantiating a new network each time, results in

state of the art performance and enables keeping the num-

ber of parameters constant irrespectively of the number of

iterations. This is important when only a relatively small

amount of training data is available, as is often the case in

biomedical and other specialized applications.

Our main contribution is therefore a demonstration that

properly accounting for topology in the loss used to train

the network is an important step in boosting performance.

2. Related Work

2.1. Detecting Linear Structures

Delineation algorithms can rely either on hand-crafted or

on learned features. Optimally Oriented Flux (OOF) [12]

and Multi-Dimensional Oriented Flux (MDOF) [30], its ex-

tension to irregular structures, are successful examples of

the former. Their great strength is that they do not require

training data but at the cost of struggling with very irregular

structures at different scales along with the great variability

of appearances and artifacts.

In such challenging situations, learning-based methods

have an edge and several approaches have been proposed

over the years. For example, Haar wavelets [35] or spectral

features [8] were used as features that were then input to the

classifier. In [27], the classifier is replaced by a regressor

that predicts the distance to the closest centerline, which

enables estimating the width of the structures.

In more recent work, Deep Networks were successfully

employed. For the purpose of road delineation, this was

first done in [16], directly using image patches as input to a

fully connected neural net. While the patch provided some

context around the linear structures, it was still relatively

small due to memory limitations. With the advent of Con-

volutional Neural Networks (CNNs), it became possible to

use larger receptive fields. In [5], CNNs were used to ex-

tract features that could then be matched against words in a

learned dictionary. The final prediction was made based on

the votes from the nearest neighbors in the feature space. A

fully-connected network was replaced by a CNN in [15] for

road detection. In [14] a differentiable Intersection-over-

Union loss was introduced to obtain a road segmentation,

which is then used to extract graph of the road network. In

the task of edge detection, nested, multiscale CNN features

were utilized by Holistically-Nested Edge Detector [34] to

directly produce an edge map of entire image.

In the biomedical field, the VGG network [26] pre-

trained on real images has been fine-tuned and augmented

by specialized layers to extract blood vessels [13]. Similarly

the U-Net [21], has been shown to give excellent results for

biomedical image segmentation and is currently among the

methods that yield the best results for neuron boundaries

detection in the ISBI’12 challenge [1].

While effective, all these approaches rely on a standard

cross entropy loss for training purposes. Since they oper-

ate on individual pixels as though they were independent of

each other, they ignore higher-level statistics while scoring

the output. We will see in Section 4 that this is detrimen-

tal even when using an architecture designed to produce a

structured output, such as the U-Net.

Of course, topological knowledge can be imposed in

the output of these linear structure detectors. For exam-

ple, in [32], this is done by introducing a CRF formula-

tion whose priors are computed on higher-order cliques of

connected superpixels likely to be part of road-like struc-

tures. Unfortunately, due to the huge number of potential

cliques, it requires sampling and hand-designed features.

Another approach to model higher-level statistics is to rep-

resent linear structures as a sequence of short linear seg-

ments, which can be accomplished using a Marked Point

Process [28, 2, 24]. The inference involves Reversible Jump

Markov Chain Monte Carlo and relies on a complex objec-

tive function. More recently, it has been shown that the de-

lineation problem could be formulated in terms of finding

an optimal subgraph in a graph of potential linear structures

by solving an Integer Program [31, 18]. However, this re-

quires a complex pipeline whose first step is finding points

on the centerline of candidate linear structures.

Instead of encoding the topology knowledge explicitly,

we propose to use higher-level features extracted using a

pre-trained VGG network to score the predictions. Such

feature statistics were used for image generation [4] and

style transfer [6, 10], both tasks for which matching out-

put statistics is a necessity because no ground truth annota-

tions are available. However, delineation belongs in a differ-

ent category because precise per-pixel ground truth is avail-

able and strict per-pixel supervision could be considered to

be the most efficient approach. We show that this is not

the case and that augmenting the pixel-oriented loss with a

coarser, less localized, but semantically richer loss boosts

performance. Moreover, to the best of our knowledge, it is

the first successful attempt of using VGG features of binary

segmentation images rather than natural ones, even though
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VGG was pretrained on ImageNet [22].

2.2. Recursive Refinement

Recursive refinement of a segmentation has been exten-

sively investigated. It is usually implemented as a proce-

dure of iterative predictions [16, 20, 29], sometimes at dif-

ferent resolutions [23]. Such methods use the prediction

from a previous iteration (and sometimes the image itself)

as the input to a classifier that produces the next prediction.

This enables the classifier to better consider the context sur-

rounding a pixel when trying to assign a label to it and has

been successfully used for delineation purposes [27].

In more recent works, the preferred approach to refine-

ment with Deep Learning is to stack several deep mod-

ules and train them in an end-to-end fashion. For exam-

ple, the pose estimation network of [19] is made of eight

consecutive hourglass modules and supervision is applied

on the output of each one during training, which takes sev-

eral days. In [25] a similar idea is used to detect neuronal

membranes in electron microscopy images, but due to mem-

ory size constraints the network is limited to 3 modules. In

other words, even though such end-to-end solutions are con-

venient, the growing number of network parameters they

require can become an issue when time, memory, and avail-

able amounts of training data are limited. This problem is

tackled in [9] by using a single network that moves its atten-

tion field within the volume to be segmented. It predicts the

output for the current field of view and fills in the prediction

map.

Similarly, we also use the same network to refine its pre-

diction. In terms of network architecture, our approach is

most closely related to the recurrent network for image seg-

mentation [20], with the notable difference that, while in the

existing work each recursion/refinement step is instantiated

for a different scale, we instantiate our refinement modules

at a fixed scale and predict jointly the probability map for

the whole patch. Compared to a typical Recurrent Neural

Network [7], our architecture does not have memory. More-

over, in training, we use a loss function that is a weighted

sum of losses computed after each processing step. This

enables us to accumulate the gradients and requires neither

seeds for initialization nor processing the intermediate out-

put contrary to [9].

3. Method

We use the fully convolutional U-Net [21] as our train-

able model, as it is currently among the best and most

widely used architectures for delineation and segmentation

in both natural and biomedical images. The U-Net is usu-

ally trained to predict the probability of each pixel of being

a linear structure using a standard pixel-wise loss. As we

have already pointed out, this loss relies on local measures

and does not account for the overall geometry of curvilinear

structures, which is what we want to remedy.

In the remainder of this section, we first describe our

topology-aware loss function, and we then introduce iter-

ative procedure to recursively refine our predictions.

3.1. Notation

In the following discussion, let x 2 R
H·W be the W⇥H

input image, and let y 2 {0, 1}H·W be the corresponding

ground-truth labeling, with 1 indicating pixels in the curvi-

linear structure and 0 indicating background pixels.

Let f be our U-Net parameterized by weights w. The

output of the network is an image ŷ = f(x,w) 2
[0, 1]H·W .1 Every element of ŷ is interpreted as the prob-

ability of pixel i having label 1: ŷi ⌘ p(Yi = 1 | x,w),
where Yi is a random Bernoulli variable Yi ⇠ Ber(ŷi).

3.2. Topology-aware loss

In ordinary image segmentation problems, the loss func-

tion used to train the network is usually the standard pixel-

wise binary cross-entropy (BCE):

Lbce(x,y,w) = −
X

i

[(1− yi) · log(1− fi(x,w))

+yi · log fi(x,w)] . (1)

Even though the U-Net computes a structured output and

considers large neighborhoods, this loss function treats ev-

ery pixel independently. It does not capture the charac-

teristics of the topology, such as the number of connected

components or number of holes. This is especially impor-

tant in the delineation of thin structures: as we have seen in

Fig. 1(c, d), the misclassification of a few pixels might have

a low cost in terms of the pixel-wise BCE loss, but have a

large impact on the topology of the predicted results.

Therefore, we aim to introduce a penalty term in our loss

function to account for this higher-order information. In-

stead of relying on a hand-designed metric, which is diffi-

cult to model and hard to generalize, we leverage the knowl-

edge that a pretrained network contains about the structures

of real-world images. In particular, we use the feature maps

at several layers of a VGG19 network [26] pretrained on

the ImageNet dataset as a description of the higher-level

features of the delineations. Our new penalty term tries to

minimize the differences between the VGG19 descriptors

of the ground-truth images and the corresponding predicted

delineations:

Ltop(x,y,w) =

NX

n=1

1

MnWnHn

MnX

m=1

klmn (y)− lmn (f(x,w))k
2

2
,

(2)

1For simplicity and without loss of generality, we assume that x and ŷ

have the same size. This is not the case in practice, and usually ŷ corre-

sponds to the predictions of a cropped area of x (see [21] for details).
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ground truth Ltop = 0.2279 Ltop = 0.7795 Ltop = 0.2858 Ltop = 0.9977
(a) (b) (c) (d) (e)

Figure 2: The effect of mistakes on topology loss. (a) Ground truth (b)-(e) we flip 240 pixels in each prediction, so that Lbce is the

same for all of them, but as we see Ltop penalizes more the cases with more small mistakes, which considerably change the structure of

the prediction.

(a) (b) (c)

Figure 3: Examples of activations in VGG layers. (a)

Ground-truth (top) and corresponding prediction with errors (bot-

tom). (b) Responses of a VGG19 channel specialized in elongated

structures. (c) Responses of a VGG19 channel specialized in small

connected components. Ltop strongly encourages responses in the

former and penalizes responses in the latter.

where lmn denotes the m-th feature map in the n-th layer of

the pretrained VGG19 network, N is the number of convo-

lutional layers considered and Mn is the number of chan-

nels in the n-th layer, each of size Wn ⇥ Hn. Ltop can be

understood as a measurement of the difference between the

higher-level visual features of the linear structures in the

ground-truth and those in predicted image. These higher-

level features include concepts such as connectivity or holes

that are ignored by the simpler pixel-wise BCE loss. Fig. 2

shows examples where the pixel-wise loss is too weak to pe-

nalize properly a variety of errors that occur in the predicted

delineations, while our loss Ltop correctly measures the

topological importance of the errors in all cases: it penalizes

more the mistakes that considerably change the structure of

the image and those that do not resemble linear structures.

The reason behind the good performance of the VGG19

in this task can be seen in Fig. 3. Certain channels of the

VGG19 layers are activated by the type of elongated struc-

tures we are interested in, while others respond strongly

to small connected components. Thus, minimizing Ltop

strongly penalizes generating small false positives, which

do not exist in the ground-truth, and promotes the genera-

tion of elongated structures. On the other hand, the shape

of the predictions is ignored by Lbce.

In the end, we minimize

L(x,y,w) = Lbce(x,y,w) + µLtop(x,y,w) (3)

with respect to w. µ is a scalar weighing the relative influ-

ence of both terms. We set it so that the order of magnitude

of both terms is comparable. Fig. 4(a) illustrates the pro-

posed approach.

3.3. Iterative refinement

The topology loss term of Eq. 2 improves the quality of

the predictions. However, as we will see in Section 4, some

mistakes still remain. They typically show up in the form

of small gaps in lines that should be uninterrupted. We it-

eratively refine the predictions to eliminate such problems.

At each iteration, the network takes both the input image

and the prediction of the previous iteration to successively

provide better predictions.

In earlier works that advocate a similarly iterative ap-

proach [19, 25], a different module fk is trained for each

iteration k, thus increasing the number of parameters of the

model and making training more demanding in terms of

the amount of required labeled data. An interesting prop-

erty of this iterative approach is that the correct delineation

y should be the fixed point of each module fk, that is, feed-

ing the correct delineation should return the input

y = fk(x⊕ y), (4)

where ⊕ denotes channel concatenation and we omitted the

weights of fk for simplicity. Assuming that every mod-

ule fk is Lipschitz-continuous on y,2 we know that the

2Lipschitz continuity is a direct consequence of the assumption that

every fk will always improve the prediction of the previous iteration.
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(a) (b)

Figure 4: Network architecture. (a) We use the U-Net for delineation purposes. During training, both its output and the ground-truth

image serve as input to a pretrained VGG network. The loss Ltop is computed from the VGG responses. The loss Lbce is computed pixel-

wise between the prediction and the ground-truth. (b) Our model iteratively applies the same U-Net f to produce progressive refinements

of the predicted delineation. The final loss is a weighted sum of partial losses Lk computed at the end of each step.

fixed-point iteration

fk(x⊕ fk(x⊕ fk(. . .))) (5)

converges to y. We leverage this fixed-point property to re-

move the necessity of training a different module at each

iteration. Instead, we use the same single network f at each

step of the refinement pipeline, as depicted in Fig. 4(b). This

makes our model much simpler and less demanding of la-

beled data for training.

This approach has also been applied before in [20] for

image segmentation. Their application of the recurrent

module was oriented towards increasing the spatial context.

Rather than doing that, we keep the scale of the input to the

modules fixed, in order to exploit the capacity of the net-

work to correct its own errors. We show that it helps the

network to learn a contraction map that successively im-

proves the estimations. Our predictive model can therefore

be expressed as

ŷk+1 = f(x⊕ ŷk,w), k = 0, . . . ,K − 1 , (6)

where K is the total number of iterations and ŷK the final

prediction. We initialize the model with an empty predic-

tion ŷ0 = 0.

Instead of minimizing only the loss for the final network

output, we minimize a weighted sum of partial losses. The

k-th partial model, with k  K, is the model obtained from

iterating Eq. 6 k times. The k-th partial loss Lk is the loss

from Eq. 3 evaluated for the k-th partial model. Using this

notation, we define our refinement loss as a weighted sum

of the partial losses

Lref (x,y,w) =
1

Z

KX

k=1

kLk(x,y,w) , (7)

with the normalization factor Z =
PK

k=1
k = 1

2
K(K + 1).

We weigh more the losses associated with the final itera-

tions to boost the accuracy of the final result. However, ac-

counting for the earlier losses enables the network to learn

from all the mistakes it can make along the way and in-

creases numerical stability. It also avoids having to prepro-

cess the predictions before re-injecting them into the com-

putation, as in [9].

In practice, we first train a single module network, that

is, for K = 1. We then increment K, retrain, and iterate.

We limit K to 3 during training and testing as the results do

not change significantly for larger K values. We will show

that this successfully fills in small gaps.

4. Results

Data. We evaluate our approach on three datasets featur-

ing very different kinds of linear structures:

1. Cracks: Images of cracks in road [36]. It consists of

104 training and 20 test images. As can be seen in

Fig. 5, the multiple shadows and cluttered background

makes their detection a challenging task. Applications

include quality inspection and material characteriza-

tion.

2. Roads: The Massachusetts Roads Dataset [15] is one

of the largest publicly available collections of aerial

road images, containing both urban and rural neigh-

bourhoods, with many different kinds of roads rang-

ing from small paths to highways. The set is split into

1108 training and 49 test images, 2 of which are shown

in Fig. 6.

3. EM: We detect neuronal boundaries in Electron Mi-

croscopy images from the ISBI’12 challenge [1]

(Fig. 7). There are 30 training images, with ground

truth annotations, and 30 test images for which the

ground-truth is withheld by the organizers. Follow-

ing [23], we split the training set into 15 training and

15 test images. We report our results on this split.
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Training protocol. Since the U-Net cannot handle very

large images, we work with patches of 450⇥ 450 pixels for

training. We perform data augmentation mirroring and ro-

tating the training images by 90◦, 180◦ and 270◦. Addition-

ally, in the EM dataset, we also apply elastic deformations

as suggested in [21] to compensate for the small amount

of training data. Ground-truth of Cracks dataset consists

of centerlines, so we dilate it by margin of 4 pixels to per-

form segmentation. We use batch normalization for faster

convergence and use current batch statistics also at the test

time as suggested in [3]. We chose Adam [11] with a learn-

ing rate of 10−4 as our optimization method.

Pixel-wise metrics. Our algorithm outputs a probabilty

map, which lends itself to evaluation in terms of precision-

and recall-based metrics, such as the F1 score [23] and

the precision-recall break-even point [15]. They are well

suited for benchmarking binary segmentations, but their lo-

cal character is a drawback in the presence of thin struc-

tures. Shifting a prediction even by a small distance in a

direction perpendicular to the structure yields zero preci-

sion and recall, while still reasonably representing the data.

We therefore evaluate the results in terms of correctness,

completeness, and quality [33]. They are metrics designed

specifically for linear structures, which measure the simi-

larity between predicted skeletons and ground truth-ones.

They are more sensitive to precise locations or small width

changes of the underlying structures. Potential shifts in cen-

terline positions are handled by relaxing the notion of a true

positive from being a precise coincidence of points to not

exceeding a distance threshold. Correctness corresponds to

relaxed precision, completeness to relaxed recall, and qual-

ity to intersection-over-union. We give precise definitions in

appendix. In our experiments we use a threshold of 2 pixels

for roads and cracks, and 1 for the neuronal membranes.

Topology-based metrics. The pixel-wise metrics are

oblivious of topological differences between the predicted

and ground-truth networks. A more topology-oriented set

of measures was proposed in [32]. It involves finding

the shortest path between two randomly picked connected

points in the predicted network and the equivalent path in

the ground-truth network or vice-versa. If no equivalent

path exists, the former is classified as infeasible. It is clas-

sified as too-long/-short if the length of the paths differ by

more than 10%, and as correct otherwise. In practice, we

sample 200 paths per image, which is enough for the pro-

portion of correct, infeasible, and too-long/-short paths to

stabilize.

The organizers of the EM challenge use a performance

metric called foreground-restricted random score, oriented

at evaluating the preservation of separation between differ-

ent cells. It measures the probability that two pixels belong-

ing to the same cell in reality and in the predicted output. As

VGG layers Quality Number of iterations Quality

None 0.3924 OURS-NoRef 0.5580

layer 1 0.6408 OURS 1 iteration 0.5621

layer 2 0.6427 OURS 2 iterations 0.5709

layer 3 0.6974 OURS 3 iterations 0.5722

layers 1,2,3 0.7446 OURS 4 iterations 0.5727

Table 1: Testing different configurations. (Left) Quality scores

for OURS-NoRef method when using different VGG layers to

compute the topology loss of Eq. 2 on the Cracks dataset. (Right)

Quality scores for OURS method on the EM dataset as a function

of the number of refinement iterations. OURS-NoRef included for

comparison.

shown in Fig. 1(c,d), this kind of metric is far more sensitive

to topological perturbations than to pixel-wise errors.

Baselines and variants of the proposed method. We

compare the results of our method to the following base-

lines:

• CrackTree [36] a crack detection method based on

segmentation and subsequent graph construction

• MNIH [15], a neural network for road segmentation in

64⇥ 64 image patches,

• HED [34], a nested, multi-scale approach for edge de-

tection,

• U-Net [21], pixel labeling using the U-Net architecture

with BCE loss,

• CHM-LDNN [23], a multi-resolution recursive ap-

proach to delineating neuronal boundaries,

• Reg-AC [27], a regression-based approach to finding

centerlines and refining the results using autocontext.

We reproduce the results for HED, MNIH, U-Net and Reg-

AC, and report the results published in the original work for

CHM-LDNN. We also perform an ablation study to isolate

the individual contribution of the two main components of

our approach. To this end, we compare two variants of it:

• OURS-NoRef, our approach with the topological loss

of Eq. 3 but no refinement steps. To extract global

features we use the channels from the VGG layers

relu(conv1 2), relu(conv2 2) and relu(conv3 4), and

set µ to 0.1 in Eq. 3.

• OURS, our complete, iterative method including the

topological term and K = 3 refinement steps. It is

trained using the refinement loss of Eq. 7 as explained

in Section 3.3.

4.1. Quantitative Results

We start by identifying the best-performing configura-

tion for our method. As can be seen in Table 1(left), using

all three first layers of the VGG network to compute the

topology loss yields the best results. Similarly, we eval-

uated the impact of the number of improvement iterations

on the resulting performance on the EM dataset, which we
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Figure 5: Cracks. From left to right: image, Reg-AC, U-Net, OURS-NoRef and OURS prediction, ground-truth.

Figure 6: Roads. From left to right: image, MNIH, U-Net, OURS-NoRef and OURS prediction, ground-truth.

Method P/R Method F1

MNIH [15] 0.6822 CHM-LDNN [23] 0.8072

HED [34] 0.7107 HED [34] 0.7850

U-Net [21] 0.7460 U-Net [21] 0.7952

OURS-NoRef 0.7610 OURS-NoRef 0.8140

OURS 0.7782 OURS 0.8230

Table 2: Experimental results on the Roads and EM datasets.

(Left) Precision-recall break-even point (P/R) for the Roads

dataset. Note the results are expressed in terms of the standard

precision and recall, as opposed to the relaxed measures reported

in [15]. (Right) F1 scores for the EM dataset.

present in Table 1(right). The performance stabilizes after

the third iteration. We therefore used three refinement iter-

ations in all further experiments. Note that in Table 1(right)

the first iteration of OURS yields a result that is already bet-

ter than OURS-NoRef. This shows that iterative training

not only makes it possible to refine the results by iterating

at test time, but also yields a better standalone classifier.

We report results of our comparative experiments for the

three datasets in Tables 2, 3, and 4. Even without refine-

ment, our topological loss outperforms all the baselines.

Refinement boosts the performance yet further. The dif-

ferences are greater when using the metrics specifically de-

signed to gauge the quality of linear structures in Table 3

and even more when using the topology-based metrics in

Table 4. This confirms the hypothesis that our contributions

improve the quality of the predictions mainly in its topolog-

Dataset Method Correct. Complet. Quality

Cracks

CrackTree [36] 0.7900 0.9200 0.7392

Reg-AC [27] 0.1070 0.9283 0.1061

U-Net [21] 0.4114 0.8936 0.3924

OURS-NoRef 0.7955 0.9208 0.7446

OURS 0.8844 0.9513 0.8461

Roads

Reg-AC [27] 0.2537 0.3478 0.1719

MNIH [15] 0.5314 0.7517 0.4521

U-Net [21] 0.6227 0.7506 0.5152

OURS-NoRef 0.6782 0.7986 0.5719

OURS 0.7743 0.8057 0.6524

EM

Reg-AC [27] 0.7110 0.6647 0.5233

U-Net [21] 0.6911 0.7128 0.5406

OURS-NoRef 0.7096 0.7231 0.5580

OURS 0.7227 0.7358 0.5722

Table 3: Correctness, completeness and quality scores for ex-

tracted centerlines.

ical aspect. The improvement in per-pixel measures, pre-

sented in Table 2 suggests that the improved topology is

correlated with better localisation of the predictions.

Finally, we submitted our results to the ISBI challenge

server for the EM task. We received a foreground-restricted

random score of 0.981. This puts us in first place among

algorithms relying on a single classifier without additional

processing. In second place is the recent method of [25],

which achieves the slightly lower score of 0.978 even

though it relies on a significantly more complex classifier.
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Figure 7: EM. From left to right: image, Reg-AC, U-Net, OURS-NoRef and OURS prediction, ground-truth.

Figure 8: Iterative Refinement. Prediction after 1, 2 and 3 refinement iterations. The right-most image is the ground-truth. The red

boxes highlight parts of the image where refinement is closing gaps.

Dataset Method Correct Infeasible
2Long

2Short

Cracks

Reg-AC [27] 39.7 56.8 3.5

U-Net [21] 68.4 27.4 4.2

OURS-NoRef 90.8 6.1 3.1

OURS 94.3 3.1 2.6

Roads

Reg-AC [27] 16.2 72.1 11.7

MNIH [15] 45.5 49.73 4.77

U-Net [21] 56.3 38.0 5.7

OURS-NoRef 63.4 32.3 4.3

OURS 69.1 24.2 6.7

EM

Reg-AC [27] 36.1 38.2 25.7

U-Net [21] 51.5 16.0 32.5

OURS-NoRef 63.2 16.8 20.0

OURS 67.0 15.5 17.5

Table 4: The percentage of correct, infeasible and too-long/too-

short paths sampled from predictions and ground truth.

4.2. Qualitative Results

Figs. 5, 6, and 7 depict typical results on the three

datasets. Note that adding our topology loss term and itera-

tively refining the delineations makes our predictions more

structured and consistently eliminates false positives in the

background, without losing the curvilinear structures of in-

terest as shown in Fig. 8. For example, in the aerial images

of Fig. 6, line-like structures such as roofs and rivers are

filtered out because they are not part of the training data,

while the roads are not only preserved but also enhanced

by closing small gaps. In the case of neuronal membranes,

the additional topology term eliminates false positives cor-

responding to cell-like structures such as mitochondria.

5. Conclusion

We have introduced a new loss term that accounts for

topology of curvilinear structures by exploiting their higher-

level features. We have further improved it by applying

recursive refinement that does not increase the number of

parameters to be learned. Our approach is generic and can

be used for detection of many types of linear structures in-

cluding roads and cracks in natural images and neuronal

membranes in micrograms. We have relied on the U-Net

to demonstrate it but it could be used in conjunction with

any other network architecture. In future work, we will ex-

plore the use of adversarial networks to adapt our measure

of topological similarity and learn more discriminative fea-

tures.
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