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Abstract

Human free-hand sketches have been studied in various

contexts including sketch recognition, synthesis and fine-

grained sketch-based image retrieval (FG-SBIR). A funda-

mental challenge for sketch analysis is to deal with drasti-

cally different human drawing styles, particularly in terms

of abstraction level. In this work, we propose the first

stroke-level sketch abstraction model based on the insight

of sketch abstraction as a process of trading off between the

recognizability of a sketch and the number of strokes used

to draw it. Concretely, we train a model for abstract sketch

generation through reinforcement learning of a stroke re-

moval policy that learns to predict which strokes can be

safely removed without affecting recognizability. We show

that our abstraction model can be used for various sketch

analysis tasks including: (1) modeling stroke saliency and

understanding the decision of sketch recognition models,

(2) synthesizing sketches of variable abstraction for a given

category, or reference object instance in a photo, and (3)

training a FG-SBIR model with photos only, bypassing the

expensive photo-sketch pair collection step.

1. Introduction

Sketching is an intuitive process which has been used

throughout human history as a communication tool. Due

to the recent proliferation of touch-screen devices, sketch is

becoming more pervasive: sketches can now be drawn at

any time and anywhere on a smartphone using one’s finger.

Consequently sketch analysis has attracted increasing atten-

tion from the research community. Various sketch related

problems have been studied, including sketch recognition

[9, 47, 46], sketch based image retrieval [11, 18, 45, 40],

forensic sketch analysis [26, 33] and sketch synthesis [36,

15, 29].

These studies use free-hand sketches drawn by amateurs

based on either a category name, mental recollection, or a

reference photo of an object instance. A fundamental chal-

lenge in analyzing free-hand sketches is that sketches drawn

by different people for the same object category/instance

Figure 1: Sketch analysis is difficult because humans draw

sketches at very different abstraction levels. Top: different

shoe sketches drawn by different people given only the cat-

egory name. Bottom: sketches are now drawn by different

people with a reference photo.

often differ significantly, especially in their levels of ab-

straction. Fig. 1 shows some examples of both category-

level (drawn with only a category name) and instance-level

(drawn with a reference photo) sketches. Clearly the large

variation in abstraction levels is a challenge for either rec-

ognizing the sketch or matching it with a photo. Variation in

sketch abstraction level is expected: humans sketch to pro-

vide an abstract depiction of an object, and how abstract a

sketch is depends both on the task and the individual user’s

overall and instantaneous preference.

We present the first model of deep sketch abstraction.

Our approach to model abstraction is based on the insight

that abstraction is a process of tradeoff between recogniz-

ability and brevity/compactness (number of strokes). It is

thus intuitive that abstraction should vary with task (e.g.,

sketching for instance- rather than category-level tasks per-

mits less abstraction as the recognition task is more fine-

grained), and that abstraction varies between people as their

subjective perception (what seems to be recognizable), as

might their relative preference for brevity vs identifiabil-

ity. Based on the same insight, we develop a computational

model that learns to abstract concrete input sketches and es-

timate stroke saliency by finding the most compact subset of

input strokes for which the sketch is still recognizable. We

consider this similar to the human sketching process: be-

fore drawing an object a human has a more detailed mental

model of the object, then they work out which details can

be safely removed in conveying a compact yet recognizable

sketch depiction of the imagined object.
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Specifically, we develop a recurrent neural network

(RNN) based abstraction model, which learns to measure

the importance of each segment and make a decision on

whether to skip or keep it. The impact of any given part

removal on recognizability is interdependent with which

other parts are kept/removed. We model this dependency

as a sequential decision making process. Our RNN uses

bi-directional gated recurrent units (B-GRU) along with a

moving window MLP to capture and extract the contextual

information of each sketch-part at each time step. Such

a model cannot be learned with conventional supervised

learning. We propose a framework for training a sketch ab-

straction model with reinforcement learning (RL) using a

novel reward scheme that uses the classification rank of the

sketch at each time step to make rewards more informative.

Using our abstraction model, we can address a number

of problems: (1) Modeling sketch stroke saliency: We

can estimate stroke saliency as a byproduct of learning to

produce brief recognizable sketches. (2) Category-level

sketch synthesis with controllable abstraction: Given an

existing category-level sketch synthesizer, our model can

be used to control the level of abstraction in the synthe-

sized sketches. (3) Instance-level photo-to-sketch synthe-

sis: We propose a new approach to photo! sketch synthe-

sis motivated by human sketching rather than image trans-

lation [36, 20]. Given a photo, we extract an edge-map and

treat it as a sketch at the most concrete level. Our sketch

abstraction model is then applied to abstract the edge-map

into a free-hand style sketch. (4) FG-SBIR without photo-

sketch pairs: The photo-to-sketch synthesis model above is

used to synthesize photo-freehand sketch pairs using photo

input only. This allows us to train an instance-level fine-

grained SBIR (FG-SBIR) model without manual data anno-

tation, and moreover it generates data at diverse abstraction

levels so the SBIR model is robust to variable abstraction at

runtime.

Our contributions are as follows: (1) For the first time,

the problem of stroke-level sketch abstraction is studied. (2)

We propose a reinforcement learning framework with novel

reward for training a sketch abstraction model (3) Both

category- and instance-level sketch synthesis can be per-

formed with controllable abstraction level. We demonstrate

that the proposed photo-to-sketch approach is superior than

the state-of-the-art alternatives. (4) FG-SBIR can now be

tackled without the need to collect photo-sketch pairs. Our

experiments on two benchmark datasets show that the re-

sulting FG-SBIR model is quite competitive, thus provid-

ing the potential to scale FG-SBIR to an arbitrary number

of object categories as long as sufficient photos can be col-

lected.

2. Related Work

Sketch recognition Early work on sketch recognition fo-

cused on CAD or artistic drawings [21, 31, 41]. Inspired by

the release of the first large-scale free-hand sketch dataset

[9], subsequent work studied free-hand sketch recognition

[9, 37, 28] using various hand-crafted features together

with classifiers such as SVM. Yu et al. [47] proposed the

first deep convolutional neural network (CNN) designed

for sketch recognition which outperformed previous hand-

crafted features by a large margin. In this work we do

not directly address sketch recognition. Instead we ex-

ploit a sketch recognizer to quantify sketch recognizabil-

ity and generate recognizability-based rewards to train our

abstraction model using RL. In particular, we move away

from the conventional CNN modeling of sketches [47, 46]

where sketches are essentially treated the same as static

photos, and employ a RNN-based classifier that fully en-

codes stroke-level ordering information.

Category-level sketch synthesis Recently there has been

a surge of interest in deep image synthesis [13, 39, 25, 34].

Following this trend the first free-hand sketch synthesis

model was proposed in [15], which exploits a sequence-to-

sequence Variational Autoencoder (VAE). In this model the

encoder is a bi-directional RNN that inputs a sketch and

outputs a latent vector, and the decoder is an autoregressive

RNN that samples output sketches conditioned on a latent

vector. They combine RNN with Mixture Density Networks

(MDN) [14] in order to generate continuous data points in a

sequential way. In this paper, we use the unconditional syn-

thesizer in [15] in conjunction with our proposed abstrac-

tion model to synthesize sketches of controllable abstrac-

tion level.

Instance-level sketch synthesis A sketch can also be

synthesized with a reference photo, giving rise to the

instance-level sketch synthesis problem. This is an instance

of the well studied cross-domain image synthesis prob-

lem. Existing approaches typically adopt a cross-domain

deep encoder-decoder model. Cross-domain image syn-

thesis approaches fall into two broad categories depend-

ing on whether the input and output images have pixel-

level correspondence/alignment. The first category includes

models for super-resolution [27], restoration and inpainting

[32], which assume pixel-to-pixel alignment. The second

category relaxes this assumption and includes models for

style transfer (e.g., photo to painting) [22] and cross-domain

image-conditioned image generation [44]. Photo-to-sketch

is extremely challenging due to the large domain gap and

the fact that the sketch domain is generated by humans with

variable drawing styles. As a result, only sketch-to-photo

synthesis has been studied so far [36, 20, 29]. In this work,

we study photo-to-sketch synthesis with the novel approach

of treating sketch generation as a photo-to-sketch abstrac-

tion process. We show that our method generates more visu-
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ally appealing sketches than the existing deep cross-domain

image translation based approaches such as [36].

Sketch based image retrieval Early effort focused on

the category-level SBIR problem [10, 11, 17, 5, 6, 42, 19,

30, 18] whereby a sketch and a photo are considered to be a

match as long as they belong to the same category. In con-

trast, in instance-level fine-grained SBIR (FG-SBIR), they

are a match only if they depict the same object instance. FG-

SBIR has more practical use, e.g., with FG-SBIR one could

use sketch to search to buy a particular shoe s/he just saw

on the street [45]. It has thus received increasing attention

recently. State-of-the-art FG-SBIR models [45, 35] adopt a

multi-branch CNN to learn a joint embedding where photo

and sketch domains can be compared. They face two major

problems: collecting sufficient matching photo-sketch pairs

is tedious and expensive, which severely limits their scal-

ability. In addition, the large variation in abstraction level

exhibited in sketches for the same photo (see Fig. 1) also

makes the cross-domain matching difficult. In this work,

both problems are addressed using the proposed sketch ab-

straction and photo-to-sketch synthesis models.

Visual abstraction The only work on sketch abstraction

is that of [4] where a data-driven approach is used to study

style and abstraction in human face sketches. An edge-map

is computed and edges are then replaced by similar strokes

from a collection of artist sketches. In contrast, we take a

model-based approach and model sketch abstraction from

a very different perspective: abstraction is modeled as the

process of trading off between compactness and recogniz-

ability by progressively removing the least important parts.

Beyond sketch analysis, visual abstraction has been studied

in the photo domain including salient region detection [7],

feature enhancement [23], and low resolution image gener-

ation [12]. None of these approaches can be applied to our

sketch abstraction problem.

3. Methodology

3.1. Sketch abstraction

3.1.1 Sketch representation

Sketches are represented in a vectorized format. Strokes

are encoded as a sequence of coordinates, consisting of 3

elements (∆x,∆y, p), as in [14] for representing human

handwriting. We define data-segment as one coordinate and

stroke-segment as a group of five consecutive coordinates.

Each stroke thus comprises a variable number of stroke-

segments.

3.1.2 Problem formulation

We formulate the sketch abstraction process as the sequence

of decisions made by an abstraction agent which observes

stroke-segments in sequence and decides which to keep or

remove. The sequence of strokes may come from a model

[15] when generating abstract sketches, or a buffer when

simplifying an existing human sketch or edge-map. The

agent is trained with reinforcement learning, and learns to

estimate the saliency of each stroke in order to achieve its

goal of compactly encoding a recognizable sketch.

The RL framework is described by a Markov Decision

Process (MDP), which is a tuple hS,A, T ,Ri. Here: S
is the set of all possible states, which are observed by the

agent in the form of data-segments representing the sketch

and the index pointing at the current stroke-segment being

processed. A = {0, 1} is the set of binary action space

representing skipping (0) or keeping (1) the current stroke-

segment. T (st+1|st, at) is the transition probability density

from current state st 2 S to next state st+1 2 S when the

agent takes an action at 2 A. It updates the index and

the abstracted sketch so far. R(st, at, st+1) is the function

describing the reward in transitioning from st to st+1 with

action at. At each time step t, the agent’s decision proce-

dure is characterized by a stochastic policy ⇡✓ = ⇡(at|st, ✓)
parametrized by ✓, which represents the conditional proba-

bility of taking action at in state st.

At first time step t1, s1 corresponds to the data-segments

of the complete sketch with index pointing at the first

stroke-segment. The agent evaluates s1 and takes an action

a1 according to its policy ⇡✓, making a decision on whether

to keep or skip the first stroke-segment. The transition

T (s2|s1, a1) says: if a1 = 0 (skip), the next state s2 corre-

sponds to the updated data-segments which do not contain

the skipped stroke-segment and with the index pointing to

next stroke-segment. If a1 = 1 (keep), the next state s2
corresponds to the same data-segments as in s1 but with the

index pointing to the next stroke-segment. This goes on un-

til the last stroke-segment is reached.

Let D = (s1, a1, ..., sM , aM , sM+1) be a trajectory of

length M , corresponding to the number of stroke-segments

in a sketch. Then the goal of RL is to find the optimal policy

✓⇤ that maximizes the expected return (cumulative reward

discounted by γ 2 [0, 1]):

J(✓) = E

 

M
X

t=1

γt−1R(st, at, st+1)
∣

∣ ⇡✓

!

(1)

3.1.3 Model

Our RL-based sketch abstraction model is illustrated in

Fig. 2(a). A description of each component follows.

Agent It consists of two modules. In the first B-GRU

module, data-segments corresponding to state st are input

sequentially to a recurrent neural network (RNN), i.e., one

segment at each time step t0 (as shown in Fig. 2(b)). We

use bi-directional gated recurrent units [8] (B-GRU) in the

RNN to learn and embed past and future information at each
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(a) Reinforcement learning framework. (b) Agent architecture.

Figure 2: Schematic of our sketch abstraction model.

time step t0. This module represents input data in a com-

pact vectorized format 't by concatenating the outputs of

all time steps. The second moving window module consists

of a multi-layer perceptron (MLP) with two fully-connected

layers. The second layer is softmax activated, and generates

probabilities for agent actions φt. This module slides over

the B-GRU module and takes as input those outputs cen-

tered at the current stroke-segment under processing, using

the index in state st. The architecture of our agent is shown

in Fig 2(b).

Environment The environment implements state transi-

tion and reward generation. The state transition module

reads the action at and state st at each time step t, and

transits the environment to state st+1 by updating data-

segments and index of the stroke-segment under process-

ing. In case of a skip action, this update consists of elimi-

nating the skipped data-segments, modifying the rest appro-

priately given the created gap, and moving the index to the

next stroke-segment. In case of a keep action, only the in-

dex information is updated. The second module is a reward

generator which assigns a reward to each state transition.

We next describe in detail the proposed reward schemes.

3.1.4 Reward scheme

We want our agent to abstract sketches by dropping the least

important stroke-segments while keeping the final remain-

ing sketch recognizable. Therefore our reward is driven by

a sketch recognizability signal deduced from the classifica-

tion result of a multi-class sketch classifier. In accordance

with the vectorized sketch format that we use for RL pro-

cessing, we use a three-layer LSTM [16] classifier trained

with cross-entropy loss and Adam optimizer [24]. Using

this classifier, we design two types of reward schemes:

Basic reward scheme This reward scheme is designed

to encourage high recognition accuracy of the final ab-

stracted sketch while keeping the minimum number of

stroke-segments. For a trajectory of length M , the basic

reward bt at each time step t is defined as:

Rt = bt =

8

>

>

>

<

>

>

>

:

+1, if t < M and at = 0 (skip)

−5, if t < M and at = 1 (keep)

+100 if t = M and Class(st) = G

−100 if t = M and Class(st) 6= G

(2)

where G denotes the ground truth class of the sketch, and

Class(st) denotes the prediction of the sketch classifier on

abstracted sketch in st. From Eq. 2, it is clear that Rt is de-

fined to encourage compact/abstract sketch generation (pos-

itive reward for skip and negative reward for keep action),

while forcing the final sketch to be still recognizable (large

reward if recognized correctly, large penalty if not).

Ranked reward scheme In this scheme we extend the

basic reward by proposing a more elaborate reward com-

putation, aiming to learn the underlying saliency of stroke-

segments by integrating the classification rank information

at each time step t. The total reward is now defined as:

Rt = wb bt + wr rt (3)

rt =

(

(wc ct + wv vt) bt if t < M

0 if t = M
(4)

ct = 1−

✓

K− Ct

K

◆

(5)

vt = 1−

✓

K− (Ct − Ct−1 )

2 ·K

◆

(6)

where rt is the ranked reward, wb and wr are weights for the

basic and ranked reward respectively, Ct is the predicted

rank of ground-truth class and K is the number of sketch

classes. The current ranked reward ct prefers the ground-

truth class to be highly ranked. Thus improving the rank

of the ground truth is rewarded even if the classification is

not yet correct – a form of reward-shaping [43]. The varied

ranked reward vt is given when the ground-truth class rank
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improves over time steps. wc and wv are weights for current

ranked reward and varied ranked reward respectively. For

example, assuming wb = wr = 0.5, at time step t, if at = 0
(skip), then Rt would be 0.5 when ct = 0, vt = 0, and

Rt = 1.0 when ct = 1, vt = 1; on the other hand if at = 1
(keep), then Rt would be −2.5 when ct = 0, vt = 0, and

Rt = −5.0 when ct = 1, vt = 1.

The basic vs ranked reward weights wb 2 [0, 1] and

wr 2 [0, 1] (wb + wr = 1) are computed dynamically as

a functions of time step t. At the first time step t = 1, wr

is 0; subsequently it increases linearly to the fixed final wrf

value at the last time step t = M . Weights wc and wv are

static with fixed values, such that wc + wv = 1.

3.1.5 Training procedure

We use a policy gradient method to find the optimal pol-

icy ✓⇤ that maximizes the expected return value defined in

Eq. 1. Thus the training consists of sampling the stochas-

tic policy and adjusting the parameters ✓ in the direction of

greater expected return via gradient ascent:

✓  − ✓ − ⌘ r✓J(✓), (7)

where ⌘ is the learning rate. In order to have a more ro-

bust training, we process multiple trajectories accumulating

hst, at, Rt, st+1i in a Buffer B (see Fig. 2(a), and update

parameters ✓ of the agent every N trajectories.

3.1.6 Controlling abstraction level

Our trained agent can be used to perform abstraction in a

given sketch by sampling actions at 2 {1, 0} from the

agent’s output distribution φt in order to keep or skip stroke-

segments. We attempt to control the abstraction level by

varying the temperature parameter of the softmax function

in the moving window module of our agent. However em-

pirically we found out that it does not give the satisfactory

result, so instead we introduce a shift δ in the φt distribution

to obtain different variants of φt, denoted as φ⇤

t :

φ⇤

t = (φt(at = 0) + δ, φt(at = 1)− δ) (8)

where, φt(at = 0) + φt(at = 1) = 1 and δ 2 [−1, 1]. By

varying the δ value we can obtain arbitrary level of abstrac-

tion in the output sketch by biasing towards skip or keep.

The code for our abstraction model will be made available

from the SketchX website: http://sketchx.eecs.

qmul.ac.uk/downloads/.

3.2. Sketch stroke saliency

We use the agent trained with the proposed ranked re-

ward and exploit its output distribution φt to compute a

saliency value S 2 [0, 1] for each stroke in a sketch as:

Sl =

Plmax

t=lmin
φt(at = 1)

lmax − lmin

(9)

where l 2 {1, 2, · · ·L} is the stroke index, L is the total

number of strokes in a sketch, lmin is the time step t cor-

responding to the first stroke-segment in the stroke with in-

dex l and lmax corresponding to the last one. Thus strokes

which the agent learns are important to keep for obtaining

high recognition (or ranking) accuracy are more salient.

3.3. Category-level sketch synthesis

Combining our abstraction model with the VAE RNN

category-level sketch synthesis model in [15], we obtain

a sketch synthesis model with controllable abstraction.

Specifically, once the synthesizer is trained to generate

sketches for a given category, we use it to generate a sketch

of that category. This is then fed to our abstraction model,

which can generate different versions of the input sketch at

the desired abstraction level as explained in Sec. 3.1.6.

3.4. Photo to sketch synthesis

Based on our abstraction model, we propose a novel

photo-to-sketch synthesis model that is completely different

from prior cross-domain image synthesis methods [36, 20]

based on encoder-decoder training. Our approach consists

of the following steps (Fig. 3). (1) Given a photo p, its

edge-map ep is extracted using an existing edge detection

method [48]. (2) We do not use a threshold to remove the

noisy edges as in [48]. Instead, we keep the noisy edge de-

tector output as it is and use a line tracing algorithm [2] to

convert the raster image to a vector format, giving vector-

ized edge-maps vp. (3) Since contours in human sketch are

much less smooth than those in a photo edge-map, we ap-

ply non-linear transformations/distortions to vp both at the

stroke and the whole-sketch (global) level. At global-level,

these transformations include rotation, translation, rescal-

ing, and skew both along x-axis and y-axis. At stroke-level

they include translation and jittering of stroke curvature.

After these distortions, we obtain dp, which has rougher

contours as in a human free-hand sketch (see Fig. 3). (4)

The distorted edge-maps are then simplified to obtain sp
to make them more compatible with the type of free-hand

sketch data on which our abstraction model is trained. This

consists of fixed-length re-sampling of the vectorized repre-

sentation to reduce the number of data-segments. (5) After

all these preprocessing steps, sp is used as input to our ab-

straction model to generate abstract sketches corresponding

to the input photo p. Before that, the abstraction model is

fine-tuned on pre-processed edge-maps sp.

3.5. Fine-grained SBIR

Armed with the proposed sketch abstraction model and

the photo-to-sketch synthesis model presented in Sec. 3.4,

we can now train a FG-SBIR given photos only.

Given a set of training object photo images, we take each

photo p and generate its simplified edge-map sp. This is
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Figure 3: Pre-processing before photo-to-sketch synthesis.

Figure 4: The FG-SBIR model [45].

then fed into the abstraction model to get three levels of

abstraction a1p, a2p and a3p, by setting δ to −0.1, 0.0 and

+0.1 respectively (see Eq. 8). This procedure provides

three sketches for each simplified edge-map of a training

photo, which can be treated as photo-sketch pairs for train-

ing a FG-SBIR model. Concretely, we employ the triplet

ranking model [45] illustrated in Fig. 4. It is a three-branch

Siamese CNN. The input to the model is a triplet including

a query sketch s, a positive photo p+ and negative photo

p−. The network branches aim to learn a joint embedding

for comparing photos and sketch such that the distance be-

tween s and p+ is smaller than that between s and p−. This

leads to a triplet ranking loss:

L%

(

s, p+, p−
)

= max(0,∆+D
(

f% (s) , f%
(

p+
))

−D
(

f% (s) , f%
(

p−
))

)
(10)

where % denotes the model parameters, f%(·) denotes the

output of the corresponding network branch, D(·, ·) denotes

Euclidean distance between two input representations and

∆ is the required margin between the positive query and

negative query distance. During training we use sp, a1p, a2p
and a3p with various distortions (see Sec. 4.4) in turn as the

query sketch s. The positive photo p+ is the photo used to

synthesize the sketches, and the negative photo is any other

training photo of a different object.

During testing, we have a gallery of test photos which

have no overlap with the training photos (containing com-

pletely different object instances), and the query sketch now

is a real human free-hand sketch. To deal with the variable

abstraction in human sketches (see Fig. 1), we also apply

our sketch abstraction model to the query test sketch and

generate three abstracted sketches as we did in the training

stage. The four query sketches are then fed to the trained

FG-SBIR model and the final result is obtained by score-

level fusion over the four sketches.

4. Experiments

4.1. Sketch abstraction

Datasets We use QuickDraw [15] to train our sketch ab-

straction model. It is the largest free-hand sketch dataset

to date. We select 9 categories (cat, chair, face, fire-truck,

mosquito, owl, pig, purse, shoe) with 75000 sketches in

each category, using 70000 for training and the rest for test-

ing.

Implementation details Our code is written in Tensor-

flow [3]. We implement the B-GRU module of the agent

using a single layered B-GRU with 128 hidden cells, which

is trained with a learning rate ⌘ of 0.0001. The RL envi-

ronment is implemented using standard step and reset func-

tions. In particular, the step function includes the data up-

dater and reward generator module. The sketch classifier

used to generate reward is a three-layer LSTM, each layer

containing 256 hidden cells. We train the classifier on the

9 categories using cross-entropy loss and Adam optimizer,

obtaining an accuracy of 97.00% on the testing set. The pa-

rameters of the ranked reward scheme (see Sec. 3.1.4) are

set to: wrf = 0.5, wc = 0.8 and wv = 0.2.

Baseline We compare our abstraction model with random

skipping of stroke-segments from each sketch so that the

number of retained data-segments is equal in both models.

Results In this experiment, we take the human free-hand

sketches in the test set of the 9 selected QuickDraw cate-

gories and generate three versions of the original sketches

with different abstraction levels. These are obtained by set-

ting the model parameter δ to −0.1, 0.0 and +0.1 respec-

tively (Eq. 8). Some qualitative results are shown in Fig. 5.

It can be seen that the abstracted sketches preserve the most

distinctive parts of the sketches. For quantitative evaluation,

we feed the three levels of abstracted sketches to the sketch

classifier trained using the original sketches in the training

set and obtain the recognition accuracy. The results in Ta-

ble 1 show that the original sketches in the test set has 64.79

data segments on average. This is reduced to 51.31, 43.33,

and 39.48 using our model with different values of δ. Even

at the abstraction level 3 when around 40% of the original

data segments have been removed, the remaining sketches

can still be recognized at a high accuracy of 70.40%. In con-

trast, when similar amount of data segments are randomly

removed (Baseline), the accuracy is 6.20% lower at 64.20%.

This shows that the model has learned which segments can

be removed with least impact on recognizability. Table 1

also compares the proposed ranked reward scheme (Eq. 4)

with the Basic Reward (Eq. 2). It is evident that the ranked

reward scheme is more effective.

Measuring sketch stroke saliency Using Eq. 9, we can

compute a saliency value S for each stroke in a sketch, indi-

cating how it contributes towards the overall recognizabil-

ity of the sketch. Some example stroke saliency maps ob-
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Figure 5: Examples of sketch abstraction and stroke saliency. For each object, the input human sketch annotated with stroke

saliency (color coded) computed by model is shown with black background. Three corresponding sketches of different

abstraction level (level 1 to 3, left to right) obtained with our model are shown with white background. Best viewed in color.

#DataSegments Accuracy

Full Sketch 64.79 97.00%

1st Level Abstraction

(δ = −0.1)

Baseline 51.00 85.00%

Basic Reward 51.12 87.60%

Ranked Reward 51.31 88.20%

2nd Level Abstraction

(δ = 0.0)

Baseline 43.00 74.60%

Basic Reward 43.09 78.80%

Ranked Reward 43.33 80.80%

3rd Level Abstraction

(δ = +0.1)

Baseline 39.00 64.20%

Basic Reward 39.37 68.00%

Ranked Reward 39.48 70.40%

Table 1: Recognizability of abstracted human sketches.

tained on the test set are shown in Fig. 5. We observe that

high saliency strokes correspond to the more distinctive vi-

sual characteristics of the object category. For instance, for

shoe, the overall contour is more salient than the shoe-laces

because many shoes in the dataset do not have shoe-laces.

Similarly, for face, the outer contour is the most distinctive

part, followed by eyes and then nose and mouth – again, dif-

ferent people sketch the nose and mouse very differently;

but they are more consistent in drawing the outer contour

and eyes. These results also shed some light into how deep

sketch recognition models make their decisions, providing

an alternative to gradient-based classifier-explanation ap-

proaches such as [38].

4.2. Sketch synthesis

We train a sketch synthesis model as in [15] for each of

the 9 categories, and combine it with our abstraction model

(Sec. 4.1) to generate abstract versions of the synthesized

sketches. Again, we compare our abstraction results with

the same random removal baseline. From the quantitative

results in Table 2, we can draw the same set of conclusions:

the synthesized sketches are highly recognizable even at the

most abstract level, and more so than the sketches generated

with random segment removal. Fig. 6 shows some examples

of synthesized sketches at different abstraction levels.

#DataSegments Accuracy

Full Sketch 69.61 99.6%

1st Level Abstraction

(δ = −0.1)

Baseline 50.00 89.96%

Basic Reward 50.43 92.60%

Ranked Reward 50.08 94.20%

2nd Level Abstraction

(δ = 0.0)

Baseline 44.00 80.20%

Basic Reward 44.13 88.40%

Ranked Reward 44.32 90.80%

3rd Level Abstraction

(δ = +0.1)

Baseline 37.00 69.20%

Basic Reward 37.15 73.20%

Ranked Reward 37.56 79.40%

Table 2: Recognizability of category-level synthesized

sketches.

Figure 6: Examples of synthesized sketches at different ab-

straction levels. Top to bottom: increasing abstraction lev-

els.

4.3. Photo to sketch synthesis

Dataset We use the QMUL Shoe-V2 dataset [1]. It is the

largest single-category FG-SBIR dataset with 1800 training

and 200 testing photo-sketch pairs.

Implementation details As described in Sec. 3.4, we

fine-tune our abstraction model, previously trained on the 9

classes of QuickDraw dataset, on the simplified edge-maps

sp of the training photos from Shoe-V2.

Baseline We compare our model with our implementa-

tion of the cross-domain deep encoder-decoder based syn-

thesis model in [36]. Note that although it is designed for

synthesis across any direction between photo and sketch,
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Figure 7: Examples of synthesized sketches using [36]

(third col) and ours (fourth) vs human sketch (second).

only sketch-to-photo synthesis results are shown in [36].

Results We show some examples of the synthesized

sketches using our model and [36] in Fig. 7. We observe that

our model produces much more visually appealing sketches

than the ones obtained using [36], which is very blurry and

seems to suffer from mode collapse. This is not surprising:

the dramatic domain gaps and the mis-alignment between

photo and sketch makes a deep encoder-decoder model such

as [36] unsuitable. Furthermore, treating a sketch as a 2D

matrix of pixels is also inferior to treating it as a vectorized

coordinate list as in our model.

4.4. Fine-grained SBIR

Dataset Apart from Shoe-V2, we also use QMUL Chair-

V2, with 200 training and 158 testing photo-sketch pairs.

Implementation details As described in Sec. 4.3,

we generate 5 distortion representations dmp , m 2
{1, 2, 3, 4, 5}, for each input vectorized edge-map vp. We

then use all am,n
p representations and simplified edge-maps

smp to train the state of the art FG-SBIR model [45].

Baseline Apart from comparing with the same model

[45] trained with the annotated photo-to-sketch pairs (‘Up-

per Bound’), we compare with two baselines using the

same FG-SBIR model but trained with different synthesized

sketches. Baseline1 is trained with synthesized sketches us-

ing the model in [36]. Baseline2 uses the simplified edge-

maps smp directly as replacement for human sketches.

Results Table 3 shows that the model trained with syn-

thesized sketches from our photo-to-sketch synthesizer is

quite competitive, e.g., on chair, it is only 7.12% lower on

Top 1 accuracy. It decisively beats the model trained with

sketches synthesized using [36]. The gap over Baseline2

indicates that the abstraction process indeed makes the gen-

erated sketches more like the human sketches. Some quali-

tative results are shown in Fig. 8. Note the visual similarity

between synthesized sketches at different abstraction levels

and the corresponding abstracted human sketches. They are

clearly more similar at the more abstract levels, explaining

why it is important to include sketches at different abstrac-

tion levels during both training and testing.

Shoe-V2 Chair-V2

Method Top1 Top10 Top1 Top10

Baseline1 [36] 8.86% 32.28% 31.27% 78.02%

Baseline2 16.67% 50.90% 34.67% 73.99%

Ours 21.17% 55.86% 41.80% 84.21%

Upper Bound 34.38% 79.43% 48.92% 90.71%

Table 3: FG-SBIR results. Top 1 and 10 matching accuracy.

Figure 8: Human and synthesized sketches at different ab-

straction level used in the FG-SBIR experiments. For each

object: First row: photo, sketch and the abstracted sketches.

Second row: edge-map and synthesized sketches.

4.5. Human Study

In this study, 10 users were shown 100 pairs of ab-

stracted sketches from the same 9 classes used in Sec. 4.1.

Each pair consists of a sketch obtained using our frame-

work and another sketch obtained by randomly removing

stroke-segments. Each pair is shown side by side and the

relative position of the two sketches is random to prevent

any bias. The users were asked to choose the more aestheti-

cally appealing sketch among each pair. Results in percent-

age (Mean: 64.3 ± 4.59, Min: 58, Max: 70) suggest that

the abstracted sketches produced by our model are more vi-

sually appealing to humans when compared with sketches

with randomly removed stroke-segments.

5. Conclusion

We have for the first time proposed a stroke-level sketch

abstraction model. Given a sketch, our model learns to pre-

dict which strokes can be safely removed without affecting

overall recognizability. We proposed a reinforcement learn-

ing framework with a novel rank-based reward to enforce

stroke saliency. We showed the model can be used to ad-

dress a number of existing sketch analysis tasks. In par-

ticular, we demonstrated that a FG-SBIR model can now

be trained with photos only. In future work we plan to

make this model more practical by extending it to work with

edge-maps in the wild. We also intend to develop an end-to-

end trained abstraction model which could directly sample

a variable abstraction-level sketch.
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