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Abstract

Product quantization (PQ) (and its variants) has been effec-

tively used to encode high-dimensional data into compact

codes for many problems in vision. In principle, PQ decom-

poses the given data into a number of lower-dimensional

subspaces where the quantization proceeds independently

for each subspace. While the original PQ approach does

not explicitly optimize for these subspaces, later proposals

have argued that the performance tends to benefit signif-

icantly if such subspaces are chosen in an optimal man-

ner. Despite such consensus, existing approaches in the

literature diverge in terms of which specific properties of

these subspaces are desirable and how one should proceed

to solve/optimize them. Nonetheless, despite the empirical

support, there is less clarity regarding the theoretical prop-

erties that underlie these experimental benefits for quantiza-

tion problems in general. In this paper, we study the quan-

tization problem in the setting where subspaces are orthog-

onal and show that this problem is intricately related to a

specific type of spectral decomposition of the data. This in-

sight not only opens the door to a rich body of work in spec-

tral analysis, but also leads to distinct computational ben-

efits. Our resultant biresolution spectral formulation cap-

tures both the subspace projection error as well as the quan-

tization error within the same framework. After a refor-

mulation, the core steps of our algorithm involve a simple

eigen decomposition step, which can be solved efficiently.

We show that our method performs very favorably against

a number of state of the art methods on standard data sets.

1. Introduction

Nearest neighbor search is a fundamental problem in com-

puter vision [32, 25]. With a rapid increase in sizes of the

datasets/repositories that numerous end applications in vi-

sion leverage towards various tasks, mechanisms that of-

fer accurate retrieval of nearest neighbors (approximately)

from massive datasets are seeing renewed interest [41, 21]

— both in terms of their theoretical/empirical properties as

well as how such schemes can be translated to novel archi-

tectures (such as small form factor devices). At the high

level, the goal is to retrieve (one or more) nearest neigh-

bors N(x) = argminyD(x, y) for a query image x, where

D(·, ·) is a placeholder function for measuring distances (or

similarities) between a pair of images. The classical strat-

egy is to use hashing-based ideas from theoretical computer

science, specifically, Euclidean Locality sensitive hashing

(LSH) [9], which offers nice performance guarantees. How-

ever, there is a general consensus within the vision com-

munity that empirically, certain simple schemes that are in-

formed by the distribution of the data, such as hierarchi-

cal k-means often work better [34, 40]. These considera-

tions have led to the development of a parallel body of work

on high dimensional indexing schemes in computer vision

that are better tailored to the requirements posed by prob-

lems/applications we encounter in practice.

A widely used technique that emerged in computer vision,

partly out of the issues described above, is vector quan-

tization [33, 18]. The basic premise here is that high-

dimensional vectorial representations of the image (derived

from certain upstream feature extraction methods) can be

encoded into a compact code and indexed. Then, when pro-

vided a query vector, we similarly quantize it into a code-

word – the distances between codewords thereby serve as a

surrogate for exhaustively calculating the original distances.

The idea hits a sweet spot balancing retrieval performance

and efficiency. For instance, mapping the distributions into

a short code keeps the memory footprint small, enabling one

to index/query from billion-sized dataset stored within the

main memory. Second, if the codeword embedding is sensi-

ble, we obtain sizable gains in calculating distances, with a

minor dependence on the ambient dimensionality d. When

used together with inverted indexing [4], we can perform
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high-quality search on massive datasets in near real time.

The success of vector quantization algorithms initiated a

rich and still evolving set of developments on how to de-

rive codes that are best informed by the properties of the

data/vector distribution in the native space. Due to these

developments, there are a broad suite of algorithms on

distance-preserving codes [9] that have been shown to work

well in practice. At the high level, extensions of the quan-

tization idea in recent years can be categorized under two

broad classes. Several algorithms view quantization via the

lens of binary hashing [9, 17, 42]; that is, given the set of

high dimensional vectors, we seek to identify an embedding

on the {0, 1} hypercube such that the original distance (or

similarity) between each pair of vectors is captured to high

fidelity by the Hamming distance between the correspond-

ing binary codes. Separately, in Product Quantization (PQ)

methods [22], a data vector is vector-quantized to its nearest

‘codeword’ in a codebook (and one typically operates with

a large number of codewords). Unlike hashing, PQ meth-

ods do not always quantize the query vector – instead, the

distance between a pair of vectors is approximated by the

distance between their codewords. One advantage of PQ

methods is that they reduce quantization noise leading to

improvements in search quality. Part of the reason is the ad-

ditional degrees of freedom — the number of possible dis-

tances in quantization based coding is significantly higher

compared to the Hamming distance setup used in binary

hashing (which only permits discrete distances). Further,

PQ is attractive for large-scale applications since it has a

small computational footprint: pre-computed distances be-

tween codewords can be stored in tables, and a query merely

involves table lookups using codeword indices.

Scope/rationale of this paper. Product Quantization can be

conveniently thought of as a decomposition of the original

vector space into the Cartesian product of a given number

of low-dimensional subspaces [22]. PQ achieves this by

partitioning the feature space into disjoint subsets of fea-

tures and projecting the dataset into the subspaces spanned

by these feature subsets. But the formulation and solu-

tion scheme offers little clarity on the optimality of such

subspaces in terms of quantization error — the central ob-

jective of interest. Motivated by this observation, recently

some papers have studied the problem of finding subspaces

that explicitly seek to minimize the quantization error. Per-

haps the most prominent result within these papers is the

one called Cartesian Kmeans [35] and a similar idea devel-

oped independently [14]. Cartesian Kmeans expresses each

region center as an additive combination of multiple sub-

centers. Each subcenter is chosen from a set of subcenters

lying in a given subspace. These collection of subspaces

are considered orthogonal. But more recently, [5] argued

against the need for such strong orthogonality constraints

and provided compelling evidence that their new proposal

model (called Additive Quantization) offers improved per-

formance relative to PQ without including orthogonal con-

straints, even when it uses the same additive model as in

Cartesian Kmeans. Despite these benefits, Additive Quan-

tization (AQ) remains computationally expensive to deploy

on large scale datasets. The key reason is that the solving

the underlying encoding optimization problem in AQ turns

out to be equivalent to well-known combinatorially hard

problems. Separately, the distance calculation workload in

AQ increases significantly relative to PQ. The premise of

our paper is to investigate whether the optimization prob-

lem in PQ can be endowed with additional structure to im-

prove its performance without incurring the corresponding

computational/efficiency bottleneck.

Our contributions. In this paper, we reformulate Product

Quantization as the problem of finding multiple biresolution

matrix factorizations of a correlation matrix of the given

dataset, subject to orthogonality of the subspaces. Surpris-

ingly, we find that the orthogonality property endows the

problem with nice structure and leads to problems that are

efficiently solvable. We show that under our reformulation,

the core modules in the quantization problem reduce to (i)

a spectral decomposition of a (set of) matrices followed by

(ii) a set of orthogonal matrix factorizations, which can be

done independently of each other. The main contribution

of this paper is: a) to show that both subproblems are related

(in distinct ways) to spectral analysis of the underlying data

vectors leading to a bilevel formulation. To our knowledge,

the connection of spectral analysis to product quantization

has not been established before, though the model in [14]

does make use of eigen allocation to find a lower bound of

the objective. b) To solve our model, we propose a block-

coordinate descent scheme, the core component of which

is finding the eigen vectors (and values) of a matrix (depen-

dent on the dimensionality of the original data, not the num-

ber of samples). This process can be solved efficiently even

for large datasets using fast (exact) eigen solvers or very

fast approximate schemes. c) We show that our method per-

forms favorably against a number of state of the art methods

on large datasets, proving the efficacy of our model. We de-

scribe our framework in Section 2.

Background and Related Work. Here we summarize

some of the most popular works on product quantization.

But first, we describe the model for the Vector Quantiza-

tion(VQ) problem. Let X ∈ R
d×n be a high dimensional

matrix representing n examples in d dimensions, and xi (ith
sample of X) is in R

d. Then the objective becomes

min
j

∑

xi∈X

‖xi − cj‖
2 ≡ min

y

∑

xi∈X

‖xi − Cyi‖
2 (1)

Here each cj ∈ R
d is considered a codeword in a codebook

C ∈ R
d×m (m denotes the number of subspaces through-

out the paper) and the vector yi ∈ R
m is a binary vector that
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has only one entry 1 pertaining to the codeword assigned to

xi. Product Quantization[22] can be formulated under this

framework (1) with the additional desiderata that each code-

word comes from the Cartesian product of a finite number

of sub-codebooks, such that distortion is minimized:

min
j

∑

xi∈X

‖xi − cj‖
2

s.t. cj ∈ C = C1 × . . .× Cm (2)

Several other approaches also optimize the same basic ob-

jective (1) with additional constraints [35, 14]. We describe

the Cartesian Kmeans (CKmeans) [35] model next, since it

is closely related with our work. The CKmeans objective is

min
y

∑

xi∈X

‖xi −
∑

j

Cjyj‖
2

s.t. CT
j Ck( 6=j) = I (3)

Here each Cj ∈ Rd×h is an unique subspace matrix, with

h columns, each of which is a subcenter. There are m sub-

spaces in all (Cj=1:m). The vector yj is still the binary indi-

cator vector with a single non-zero entry. Essentially, CK-

means expresses each data item as a sum of m center vec-

tors, where each is chosen from a different subspace having

h centers each. The subspaces are mutually orthogonal.

Other important approaches for PQ include Optimized

Product Quantization (OPQ) [14], which alternatively finds

a rotation matrix which when applied on the data mini-

mizes distortion followed by searching for optimal code-

books. [48] proposed an alternative method to solve CK-

means. Additive Quantization [5], decomposes a vector

as a sum of parts, each from a separate codebook, with-

out the orthogonality constraints. Recently [29] used iter-

ative local search to improve the performance of AQ. An-

other approach is Composite Quantization (CQ) [46], where

a vector is approximated using the composition of several

parts selected from several dictionaries. A sparse version of

CQ has been proposed as well [47]. Other relevant works

on this topic include iterative quantization [15], distance-

encoded PQ[20], tree quantization[7], inner product search

quantization[48, 38], inverted multi-index quantization[4,

44], bilayer product quantization [6], hashing-quantization

hybrid method called polysemous codes [12] and others

[28, 30, 8, 19, 45, 2, 23].

2. An initial model based on factorization

2.1. Preliminaries

The main idea behind our model is to reformulate the quan-

tization objective as a problem of biresolution factorization

of a matrix subject to orthogonality constraints. Next, we

show how to solve this multilevel factorization efficiently.

First we rewrite the model in (3) for a given x as ‖x −
∑

j Cjyj‖
2. We construct a matrix Q, by concatenating

for all j, the column of Cj pertaining to yj = 1 . That is

Q(:, j) = Cjyj . Therefore,

orthCj
(x)

x̂

projCj
(x)

Q
(:, j)

x
e x

Figure 1. Relationship of x to subspace Cj

min
yj

‖x−
∑

j

Cjyj‖
2 =‖x−Q1m‖2 (4)

=xTx− 2xTQ1m + tr(QTQ)

The last term comes from the fact that QTQ is a diagonal
matrix (since its columns are from orthogonal subspaces).

Here 1m is the vector of all ones of length m. Note that

xTx is a constant, so minimizing ‖x −
∑

j Cjyj‖
2 is the

same as minimizing

min
Q

mxTx− 2

m∑

j=1

xTQ(:, j) +

m∑

j=1

Q(: j)TQ(:, j)

=

m∑

j=1

‖x−Q(:, j)‖2 =

m∑

j=1

‖x− Cjyj‖
2 (5)

This above manipulation shows that instead of computing
the sum of the centers (one from each subspace), and then

taking the squared norm distance to x as in (4), one can

express the same objective as a sum of squares difference

of x to each center vector in a given subspace (5). This

decomposes the overall problem into an optimization over

each of the subspaces independently.

Now, we analyze the objective (5) w.r.t. the terms that are

relevant when finding the difference of a vector x to a partic-

ular subspace Cj . Note that Q(:, j) is the closest vector in

Cj to x, among all possible centers. Let ex denote the vec-

tor x − Q(:, j). Let proj
Cj

(x) be the projection of x onto

Cj and orthCj
(x) be the vector orthogonal to proj

Cj
(x) as

shown in Figure 1. Also let x̂ = proj
Cj

(x)−Q(:, j). There-

fore, if ex is the error vector (denoting the difference of the

original vector x to its closest center), we obtain the follow-

ing objective:
‖ex‖

2 = ‖x−Q(:, j)‖2 = orthCj
(x)2 + x̂2 (6)

= orthCj
(x)2 + (proj

Cj
(x)−Q(:, j))2

Taken over all xi for a given subspace Cj (we extend the

definition of Q to Qi for each xi), this reduces to
∑

i

‖exi
‖2 =

∑

i

(orthCj
(xi)

2 + (proj
Cj

(xi)−Qi(:, j))
2) (7)
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If the vector xi and a subspace Cj is fixed, orthCj
(xi)

2

(and proj
Cj

(xi)) is also fixed. Therefore, the objective

(7), in fact, seeking a vector Qi(:, j)), such that the sec-

ond part of the objective is minimized. This is analogous to

obtaining the K-means clustering over all proj
Cj

(xi) on a

given subspace Cj . Assume that ck is a cluster in Cj where

k ∈ {1 · · ·h} (h is the number of clusters) to which the vec-

tor proj
Cj

(xi) is assigned. The centroid can be found as a

mean of all the vectors assigned to the cluster. Therefore,

Qi(:, j) =
∑

projCj
(xi)∈ck

proj
Cj

(xi)

nk

(8)

which is equivalent to using K-means for the VQ problem,

where nk is the number of points in the cluster. From this

reasoning, we get
∑

i

(proj
Cj

(xi)−Qi(:, j))
2

=
∑

i

‖proj
Cj

(xi)‖
2 −

h∑

k=1

1

nk

∑

i,l∈ck

proj
Cj

(xi)
T proj

Cj
(xl)

(9)

Simply substituting this in (7),

∑

i

‖exi
‖2 =

∑

i

orthCj
(xi)

2 +
∑

i

‖proj
Cj

(xi)‖
2

−

h∑

k=1

1

nk

∑

i,l∈ck

proj
Cj

(xi)
T proj

Cj
(xl)

=
∑

i

‖xi‖
2 −

h∑

k=1

1

nk

∑

i,l∈ck

proj
Cj

(xi)
T proj

Cj
(xl)

= constant −
h∑

k=1

1

nk

∑

i,l∈ck

proj
Cj

(xi)
T proj

Cj
(xl)

By inspection, we see that minimizing the sum of norms of

all exi
is equivalent to maximizing the pairwise dot-product

of the projection of the vectors assigned to the same cluster.

Identifying Subspaces. So far, we have not optimized

for the subspace itself. To do this, first let Vj be the

orthonormal basis of Cj . Then, the projection operation

can be expressed as a matrix multiplication with a matrix

Pj , where Pj = Vj(V
T
j Vj)

−1VT
j = VjV

T
j . That is,

proj
Cj

(x) = Pjx. Therefore proj
Cj

(xi)
T proj

Cj
(xl) =

xT
i P

T
j Pjxl = xT

i Pjxl. The last identity is true because we

know PTP = P holds for a projection matrix P. There-

fore, the objective can be written as

max
Pj

h∑

k=1

1

nk

∑

i,l∈ck

xT
i Pjxl

≡ max
Vj

h∑

k=1

1

nk

∑

i,l∈ck

xT
i VjV

T
j xl s.t. VT

j Vj = I

We now introduce an indicator matrix Hj of size n × h
to indicate the cluster membership. For each xi in clus-

ter ck, Hj(i, k) = 1√
nk

and 0 otherwise. Therefore, such

a cluster indicator matrix is non-negative and orthogonal

HT
j Hj = I,Hj ≥ 0, an idea also independently used in

[11]. Therefore, the previous model can be written as

max
Vj

h∑

k=1

1

nk

∑

i,l∈ck

xT
i VjV

T
j xl

≡ max
{Vj ,Hj}

tr(HT
j X

TVjV
T
j XHj)

s.t. VT
j Vj = I, HT

j Hj = I, Hj ≥ 0

(10)

Let X be a d × n matrix (n points in d dimensions)

with its ith column being equal to xi. Essentially, Aj =
XTVjV

T
j X, is the matrix of pairwise dot-product affinities

of all data points after projection onto subspace Cj . The ob-

jective can also be rewritten as tr(HT
j X

TVjV
T
j XHj) =

tr(VT
j X(HHT )XTVj). Therefore the final model is

max
{Vj ,Hj}

m∑

j=1

tr(HT
j X

TVjV
T
j XHj)

s.t. VT
j Vj = I, HT

j Hj = I, Hj ≥ 0

(11)

3. Asking for orthogonal subspaces

We now incorporate the relationship among the subspaces

as a constraint in the above model. Similar to CKmeans, we

ask that the subspaces be mutually orthogonal, written as

max
{Vj ,Hj}

m∑

j=1

tr(HT
j X

TVjV
T
j XHj)

s.t. V = [V1 . . .Vm], VTV = HT
j Hj = I, Hj ≥ 0

where V is created by concatenating V1 to Vm. This

makes the model for quantization analogous to biresolution

matrix factorization with orthogonality constraints. Such

ideas related to multi-resolution matrix factorizations have

been studied recently [24] and shown to have nice theoreti-

cal properties. To solve this model in (12), we fix one set of

variables at each time and solve for the other.

3.1. Optimizing Subspace Projection Error: Hj fixed

Here, we assume that the Hj is fixed (given to us from the

previous iterations or initializations). When Hj’s are fixed,

we can express Cj = X(HjH
T
j )X

T (note that boldface Cj

is different from Cj notation used earlier, which pertains to

the subspace matrix) which is constant and of size d × d.

Therefore, the model can be written as

max
V

m∑

j=1

tr(VT
j CjVj) s.t. VTV = I (12)

Note that for m = 1, this is equivalent to finding the princi-

ple components of a given matrix. For m > 1, this is equiv-

alent to a simultaneous PCA of m covariance matrices, with

3332



the additional requirement that each such principal compo-

nent is mutually orthogonal. We first show that this model

can be solved efficiently and optimally using a SDP formu-

lation. To simplify presentation, we discuss the case where

m = 2 followed by the more general case.

Two subspace (m = 2) case. WLOG, we consider j =
[1, 2]. Our goal is to find an orthogonal matrix V = [v1..vd],
assuming d is even such that the following is maximized:

max
V1,V2

tr(VT
1 C1V1) + tr(VT

2 C2V2) (13)

s.t. VTV = I, V = [V1 V2]

We can divide the vectors of V into the set V1 = [v1 . . . v d
2

]

and V2 = [v d
2
+1 . . . vd]. The model above can be equiva-

lently written as follows:

max
W1,W2

tr(C1W1) + tr(C2W2) (14)

s.t. W1 +W2 = I, W1W2 = 0

rank(Wi) =
d

2
, Wi � 0 ∀i

The above transformation is possible if we set W1 =
∑ d

2

i=1 viv
T
i (equivalently W2 =

∑d

i= d
2
+1 viv

T
i ). Since the

sum of outer products of a set of orthogonal vectors is iden-

tity (
∑

i=1,...,d

viv
T
i = I), it follows that W1 +W2 = I . The

rank constraint in the above model, is computationally chal-

lenging to solve, therefore we relax it with the trace equal-

ity. In addition, what makes the model difficult is the con-

straint W1W2 = 0. In the following, we show that this

constraint can be dropped and the model can still be solved

to optimality. To see this, we consider the following:

max
W1,W2

tr(C1W1) + tr(C2W2) (15)

s.t. W1 +W2 = I, tr(Wi) =
d

2
, Wi � 0 ∀i

The above semidefinite programming problem has an in-

teresting property, informally, the following theorem shows

that the nonconvex constraint W1W2 = 0 can be ignored.

Theorem 3.1. Let (W∗
1,W

∗
2) be the optimal solution to

problem (15). Then it holds W∗
1W

∗
2 = 0.

Proof: Since both W∗
1 and W∗

2 = I − W∗
1 are positive

semi-definite. Let λ1, λ2, · · · , λd are the eigenvalues of

W∗
1 and v1, v2, · · · , vd be the corresponding eigenvectors.

It can be shown that the eigen values of W2 are exactly

(1− λi) for all i = 1 . . . d (we define v̂i as the correspond-

ing eigen vector of W2). It holds

W∗
1 =

d∑

i=1

λiviv
T
i , W

∗
2 =

d∑

i=1

(1− λi)v̂iv̂
T
i (16)

λi ∈ [0, 1] ∀i = 1, · · · , n

Using the above notation, we can rewrite problem (11) as

max
λi

n∑

i=1

λi(v
T
i C1vi − v̂Ti C2v̂i) +

n∑

i=1

v̂Ti C2v̂i (17)

s.t.

n∑

i=1

λi =
d

2
, λi ∈ [0, 1], ∀i = 1, · · · , n

Without loss of generality, we assume that the sequence

{vTi C1vi − v̂Ti C2v̂i} is sorted based on the decreasing

order. Then, we can see that the maximal value of the

above problem can be achieved by setting λi = 1, i =
1, · · · , d

2 . This shows that the matrix W∗
1 is a idempo-

tent matrix whose eigenvalues have values 0 or 1 (and so

is W∗
2). This implies W∗

j
2 = W∗

j for j = [1, 2]. Since

(W∗
1 + W∗

2)
2 = I , we immediately have W∗

1W
∗
2 = 0.

Note that for idempotent matrices, its rank equals the trace

of the matrix. Therefore, the model in (15), satisfies all the

constraints of (14).

General case. We now extend the above result to the case

with multiple (m > 2) subspaces. For simplicity of discus-

sion, we assume r = d
m

= ⌊ d
m
⌋.

Lemma 3.2. At optimality, we have that rank(Wi) = r.

Proof. (Sketch) Let us consider the following problem:

max
Wi

m∑

i=1

tr(CiWi) (18)

s.t.

m∑

i=1

Wi = I, tr(Wi) = r ∀i = 1, · · · ,m− 1

Wi � 0 ∀i = 1, · · · ,m

Note that given the first two constraints, the trace constraint

on Wm is satisfied automatically. The dual problem can be

written as

min
Y,zi

tr(Y) + r

m−1∑

i=1

zi (19)

s.t. Y + ziI − Si = Ci, Si � 0, i = 1, · · · ,m− 1

Y − Sm = Cm, Sm � 0

One can verify that both problems(18) and (19)

are strictly feasible. Let (W∗
1, · · · ,W

∗
m) and

(Y∗,S∗
1, · · · ,S

∗
m, z∗1 , · · · , z

∗
m−1) be the optimal so-

lution to the primal (18) and the dual (19) problem

respectively. Using the duality theorem for semidefinite

programming, we have

W∗
i S

∗
i = S∗

iW
∗
i = 0, ∀i = 1, · · · ,m (20)

We extend z with z∗m = 0. It follows from the constraints

of the dual problem that

W∗
i (Y

∗ + z∗i I −Ci) = 0, ∀i = 1, · · · ,m (21)
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Denote W∗
i = ViΛiV

T
i , where Λi is a diagonal matrix in a

suitable space whose diagonal elements are the eigenvalues

of W∗
i , and Vi is a matrix whose columns are the eigen-

vectors corresponding to the eigenvalues of W∗
i satisfying

VT
i Vi = Idi

where di is the number of positive eigenvalues

of W∗
i . We therefore have

VT
i (Y

∗ −Ci)Vi = −z∗i Idi
, ∀i = 1, · · · ,m (22)

The rest of the proof is constructive, which shows that there

exists an algorithm which solves (22). In particular, the

algorithm produces a sequence of dual variables Y and z
from which a primal solution Wi can be extracted which

always has rank r. We show that the sequence converges in

the primal dual gap. Now, because we have strict feasibil-

ity and that the feasible set is compact, the limit of such a

sequence also has rank r, so we get the desired result. Note

that we do not require that Ci be full rank, only to be at

least r = d
m

, which can be satisfied based on the choice of

m. We discuss this issue briefly in the supplement.

Recall from the proof of lemma (3.2) that the update of Wi,

is done in a way such that the resultant matrix has rank r.

This implies that the trace and rank of Wi are same. So,

similar to the m = 2 case, we will show that Wi’s are

idempotent which implies that solving the convex problem

(18) guarantees us a solution such that WiWj = 0.

Theorem 3.3. Let Wi, i = 1 . . .m, be matrices satisfying
∑m

i=1 Wi = I . Then W2
i = Wi, also implies WiWj =

0, i 6= j.

3.2. Optimizing Quantization Error: Vj fixed

When the variable Vj are fixed, the problem reduces to m
instances of the non-negative PCA problem.

IHj
= max

Hj

tr(HT
j XTVjV

T
j X

︸ ︷︷ ︸

Dj

Hj) (23)

s.t. HT
j Hj = I, Hj ≥ 0

As before the matrix Dj = XTVjV
T
j X is given of size

n × n, but its rank is d
m

. In addition to non-negativity,

sparseness is also a desirable property for non-negative pca

solutions. The general formulation of non-negative pca is

known to be NP-complete. However, a recent paper by [3]

show that if the rank of the matrix Dj is bounded (which is

true in our case), then their algorithm, given a sparsity fac-

tor, can find the optimal non-negative principal component

precisely. Though their algorithm is designed to recover

only the top principal component, it can be extended to mul-

tiple principal components, by deflating Dj to remove the

previous eigen vectors. For faster solutions to non-negative

PCA problem, we can also use iterative multiplicative up-

date schemes proposed in [10]. We adopt this approach to

solve the above model.

4. Efficient Block Coordinate Descent Model

The SDP model in Section 3.1 is designed to solve the prob-

lem 12 optimally. However, standard SDP solvers do not

scale well computationally to the large-scale datasets we

consider here [27, 37]. Therefore, we study an alternative

approach which is computationally much cheaper, but still

has nice convergence guarantees. In particular, we design

an efficient block coordinate descent algorithm using a sim-

ple observation of our SDP problem (18).

First we rewrite the model derived for the case m = 2 (Eq

(15)). The optimization problem we solve is

max
W1,W2

tr (C1W1) + tr (C2W2) (24)

s.t. W1 +W2 = I,W1,W2 � 0, tr (Wi) =
d

2

Eliminating W2 using the equality constraints, we get the

equivalent problem as

max
W1

tr (C1W1) + tr (C2 (I −W1)) (25)

s.t. 0 � W1 � I, tr (W1) =
d

2

Denoting C := C1 −C2,W := W1, we get the following

optimization problem

max
W

tr(CW) s.t. 0 � W � I, tr(W) =
d

2
(26)

Observe that this exactly corresponds to computing the d
2

eigenvalues of C by Fan’s theorem [31, 26] which can be

efficiently computed.

Case m > 2: Now we will design a coordinate descent al-

gorithm using the above observation to solve our optimiza-

tion problem. Recall that setting r = d
m

, the problem we

seek to solve is

max
Wi�0

k∑

i=1

tr (CiWi) s.t.
∑

i

Wi = I, tr (Wi) = r (27)

Assume we have a feasible solution Wi. We use two Wi’s

(say W1,W2) as our decision variables, keeping others

fixed. Then, we solve the following:

max
Wi�0

2∑

i=1

tr (CiWi) s.t.

2∑

i=1

Wi = E, tr (Wi) = r (28)

where E = I −
∑

i 6=1,2 Wi, 0 � E � I . We call this as

subproblems S . To solve S , we formulate the equivalent

eigen problem as follows.

Note that if we construct E for a feasible solution W, E

is a positive semidefinite matrix since Wi � I ∀ i. Im-

plicitly, subproblems (28) is a generalized eigenvalue prob-

lem so we can use a standard technique called the Fix-

Heiberger deflation [36] to reduce it to a standard eigen-

value problem. First, we compute a decomposition of E as
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E = UTU. This decomposition is always possible if we

first do an eigenvalue decomposition of E = QDQT and

set U = QD
1

2 . It follows that UEUT = I2r. Since E =
W1+W2, it follow that U(W1+W2)U

T = I2r. Further-

more, UW1U
T = I2r −UW2U

T . Therefore, W1 can be

written as W1 = UT (I2r − UW2U
T )U = UT (M)U.

From the construction of M, it is evident that M � I .

Therefore, we can reformulate problem S in the following

equivalent form which can be solved using an eigen decom-

position:

max
M

tr(UTCUM) s.t. 0 � M � I2r, tr(M) = r

Now we write the block coordinate descent steps:

Algorithm 1 Block Coordinate Descent Method

Pick feasible points Wi or set Wi =
d
m
I .

for t = 0, 1, 2, · · · , T do

for (i, j) ∈ {1, 2, · · · ,m} × {1, 2, · · · ,m} do

Fix all but Wi,Wj

Solve subproblem S and update Wi,Wj .

end for

end for

Lemma 4.1. (Convergence) Algorithm 1 converges to the

global optimal solution of problem (27).

Proof. The subproblems are solved to an arbitrary accuracy

ǫ ≥ 0 using eigendecomposition, hence the algorithm gen-

erates a monotonically decreasing sequence in the objective,

see [16]. Now given that (27) is a convex problem with a

compact feasible set, we have that every limit point of the

sequence generated by Alg. 1 is a global minimizer, follow-

ing the argument in theorem 3 of [43]. Note that Theorem

3 in [43] reinterprets the subproblems for the model with

a log-det barrier function as solving a strictly convex prob-

leme which can be extended to our problem as well.

Complexity: S can be solved using an eigendecomposi-

tion. Since Alg. 1 will converge even when the sub-

problems are solved approximately, we can deploy state

of the art techniques to solve S . In particular, using the

method in [13] computing the top eigenvector of UTCU is

Õ(log 1/ǫ) for an accuracy of ǫ. We can compute the top r
eigenvalues approximately recursively, hence the complex-

ity of solving S is rÕ(log 1/ǫ) and it takes O(n3) flops to

compute the LDL decomposition[1] of E. So the complex-

ity of algorithm 1 is Tk2Õ
(
n3 + r log 1/ǫ

)
compared to

T Õ((nk)4 log 1/ǫ) using interior point methods [39].

Comparison with Cartesian Kmeans (CKmeans)[35]:

Our model offers new insights into the connections of or-

thogonal subspace based PQ to spectral decomposition of

the data in various forms. [35] solves the same objective but

via solving the orthogonal Procrustes subproblem, which is

optimally solvable. Here, we highlight the main differences

of our method with CKmeans. First, the convergence of our

method is much faster than CKmeans. Our method con-

verges in < 10 iterations in most case, whereas CKmeans

generally takes many more iterations (≥ 30 in most cases).

If CKmeans is run to convergence, the amount of time is

generally a multiplicative factor(5 to 10) of what our algo-

rithm takes on an average. The convergence comparison is

shown in Figure 2 (top row, col 2). Furthermore, our model

is more general since it can be extended to the following

scenario. With some minor modifications, we can show that

our model for optimizing Vj is robust to the presence of er-

ror in Cj’s. This means that it is enough to get approximate

solutions for problem (23) which is a desirable since solving

problem (23) optimally is not easy. To our knowledge, the

CKmeans model cannot be directly extended to such cases.

5. Experiments

We performed a number of experiments to evaluate the em-

pirical performance of our algorithm. We compare our

methods to 7 other approaches, including Product Quanti-

zation (PQ) [22], CKmeans [35], Orthogonal Kmeans (OK-

means) [35], ITQ [15], Optimized Product Quantization

[14] – both the parametric (OPQ-p) and non-parametric

(OPQ-np) versions, Composite Quantization(CQ) [46] as

well as Additive Quantization(AQ/APQ) [5]. Note that AQ

is included only in a subset of the results, due to compu-

tational issues on larger datasets. We evaluate the algo-

rithms on a number of datasets commonly used in vision,

which vary in size and dimensionality. These include ran-

domly generated datasets obeying Gaussian distributions as

well as other well-known datasets such as Sift25K, Sift1M,

Gist1M, Mnist, Cifar, VladLong[5] and Deep1M[5].

Parameters. For most settings in ANN experiments, we

use either m = {4, 8, 16} and h = 256. Specifically, Mnist

and Deep1M results are with m = 4 and m = 16, while

others (except Cifar (m = 25)) are with m = 8. The num-

ber of clusters (say, for m = 8) is k = 2568 = 264, so

a total of 64-bits are used in the encoding. This choice of

parameters is fairly standard since it leads to small lookup

tables, fast encoding and each subcenter index maps to one

byte. For initialization, we use the subspaces using Eigen

Allocation[14], which is a lower bound for quantization.

Design. Broadly, we evaluate two aspects: (i) how well do

the obtained subspaces perform w.r.t. quantization error and

(ii) how well do the set of obtained codes approximate the

nearest neighbors. We describe these results next.

What is the quantization error? All compared methods

(including ours) optimize the same general form of quanti-

zation distortion, therefore, we evaluate how they perform

w.r.t. minimizing distortion. Distortion is computed as

shown in (1). For our method, we project the data on to

the subspaces obtained and then quantize the result using

Kmeans. Distortion is calculated for other methods simi-

larly. We rank each method (1 being the best), based on the

3335



1 2 3 4 5 6 7

Ranks (better or equal to)

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
e

s

Distortion

Ours
PQ
CKmeans
OKmeans
ITQ
OPQ-P
OPQ-NP

5 10 15 20 25 30

Number of Iterations

98

98.5

99

99.5

100

O
p

ti
m

iz
a

ti
o

n
 R

a
ti
o

 %

Convergence Comparsion

Ours

CKmeans

1 2 5 10 20 50 100

Number of Neighbors

40

50

60

70

80

90

100

R
e

c
a

ll
 v

a
lu

e
s
(%

)

Sift25K Recall

Ours

PQ

CKmeans

OKmeans

ITQ

OPQ-P

OPQ-NP

AQ

1 2 5 10 20 50 100

Number of Neighbors(k)

30

40

50

60

70

80

90

R
e

c
a

ll
 v

a
lu

e
s
(%

)

Sift1M Recall

Ours

PQ

CKmeans

OKmeans

ITQ

OPQ-P

OPQ-NP

CQ

1 2 5 10 20 50 100

Number of Neighbors(k)

10

20

30

40

50

60

70

R
e

c
a

ll
 v

a
lu

e
s
(%

)

VladLong Recall

Ours

CKmeans

OKmeans

ITQ

OPQ-P

OPQ-NP

16  32  64  128

Number of Bits

0

20

40

60

80

100

R
e

c
a

ll
 v

a
lu

e
s
(%

)

Recall as a function of total bits

Ours

PQ

CKmeans

OKmeans

ITQ

OPQ-P

OPQ-NP

1 2 5 10 20 50 100

Number of Neighbors(k)

10

20

30

40

50

60

70
R

e
c
a

ll
 v

a
lu

e
s
(%

)
Gist1M Recall

Ours

PQ

CKmeans

OKmeans

ITQ

OPQ-P

OPQ-NP

CQ

1 2 5 10 20 50 100

Number of Neighbors(k)

20

40

60

80

100

R
e

c
a

ll
 v

a
lu

e
s
(%

)

Mnist Recall

Ours

PQ

CKmeans

OKmeans

ITQ

OPQ-P

OPQ-NP

CQ

1 2 5 10 20 50 100

Number of Neighbors(k)

30

40

50

60

70

80

90

R
e

c
a

ll
 v

a
lu

e
s
(%

)

Cifar Recall

Ours
PQ
CKmeans
OKmeans
ITQ
OPQ-P
OPQ-NP

1 2 5 10 20 50 100

Number of Neighbors(k)

40

50

60

70

80

90

100

R
e

c
a

ll
 v

a
lu

e
s
(%

)

Deep1M Recall

Ours

PQ

CKmeans

OKmeans

ITQ

OPQ-P

OPQ-NP

APQ

Figure 2. Top row: Left(cyan) shows the Ranking w.r.t. distortion. Col 2(blue) shows convergence wrt to ckmeans. NN Recall for Sift25K, SiftIM,

VladLong are in Row 1 Col 3-5 (red) and for Gist1M, Mnist, Cifar and Deep1M in Row 2, Cols 2-5(red). Row 2, Col 1(green) shows the Recall w.r.t. bits.

distortion measure on the 40 instances of randomly gener-

ated data. Based on the results, we calculate the number of

times each method obtains a certain rank or better. Figure 2

(row1, col1) shows the percentage of times each method ob-

tains a particular (or higher) ranking. The results illustrate

that our method obtains the rankings closer to the top more

frequently than any other method, followed by CKmeans.

How well do we approximate nearest neighbors?

As a function of ANN search quality. To find ANNs,

all algorithms perform linear scan search using asymmet-

ric distance to compare a query with a database vector.

The goodness of the approximate nearest neighbor search

is measured in terms of Recall. For each query, we re-

trieve its k nearest neighbors and compute what fraction

of ground-truth nearest neighbors are also found in the re-

trieved list of neighbors. The average recall score over

all the queries is used as the measure for comparison.

The ground-truth nearest neighbors are computed over the

original features. Here, we report the performance with

k ∈ {1, 2, 5, 10, 20, 50, 100}. Figure 2 shows the recall re-

sults on 7 datasets relative to all other methods. Note that

the dimensionality of these datasets vary from 128 for the

Sift data to 960 for Gist1M. We see that in all cases, our

method is among the best performing algorithms. On the

Sift datasets, it has the strongest recall improvement - about

3.5% and 2.5% improvement (for Sift25K and Sift1M re-

spectively), averaged over all k, compared to the next best

algorithm. For other datasets, average improvement over

the next best algorithm is in the range of 0.5 − 2%. Fur-

thermore, we tested the statistical significance of these im-

provements, and found that in 6 out of 7 cases, the improve-

ments (based on a Kolmogorov Smirnov test) were statisti-

cally significant at the 5% significance level. Additionally,

we observe the performance of our overall method is not af-

fected by this dependence and is mostly stable w.r.t. to the

dimensionality of the datasets. This is not true for (some of

the) other methods, particularly PQ, whose performance is

at least partly affected as the dimensionality grows.

As a function of the number of bits. We analyze our

method’s performance by varying the number of bits used.

Here, we generate random datasets (32 dimensions) and

quantize it with bits choosen from {16, 32, 64, 128}. Figure

2 (bottom row, column 1) shows the recall as a function of

code length. As is expected, increasing the number of bits

leads to better performance in NN search for all methods.

But we should note that the improvement of our approach

over the other algorithms is significant even when the code

length is 32, whereas other methods need longer codes to

achieve high recall. This shows that the advantages of our

approach with moderate length code is more pronounced.

Running Time and Convergence. Figure 2 (row1, col2)

shows convergence of our algorithm is quick (usually ≤ 10
iterations). The only computationally intensive step is solv-

ing for eigen values of matrices (size d× d) multiple times

(T ×
(
m

2

)
), where T is the number of iterations). Us-

ing fast eigen solvers, the eigen value decomposition, for

d = 1000, only takes a few milliseconds (large scale ap-

proximate eigenvalue solvers are also available). Overall

the training phase takes 2−4 seconds (for training size 104).

6. Summary

We formulated efficient algorithms for the Product Quanti-

zation problem subject to orthogonality of subspaces. We

showed that the PQ problem with these constraints reduces

to a biresolution spectral framework, where the core steps

involve finding the eigen bases of the underlying data, sub-

ject to certain transformations. Such a connection of PQ to

spectral analysis is interesting and to our knowledge, un-

available in the literature. Besides the theoretical contribu-

tion, we show that this formulation leads to an efficient so-

lution for the problem, which compares very well with the

state of the art methods on a variety of benchmark datasets.
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