
Improvements to context based self-supervised learning

T. Nathan Mundhenk1, Daniel Ho1,2, Barry Y. Chen1

1Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, California
2EECS Department, University of California, Berkeley, Berkeley, California

mundhenk1@llnl.gov, daniel.ho@berkeley.edu, chen52@llnl.gov

Abstract

We develop a set of methods to improve on the results

of self-supervised learning using context. We start with a

baseline of patch based arrangement context learning and

go from there. Our methods address some overt problems

such as chromatic aberration as well as other potential

problems such as spatial skew and mid-level feature ne-

glect. We prevent problems with testing generalization on

common self-supervised benchmark tests by using differ-

ent datasets during our development. The results of our

methods combined yield top scores on all standard self-

supervised benchmarks, including classification and detec-

tion on PASCAL VOC 2007, segmentation on PASCAL VOC

2012, and “linear tests” on the ImageNet and CSAIL Places

datasets. We obtain an improvement over our baseline

method of between 4.0 to 7.1 percentage points on transfer

learning classification tests. We also show results on dif-

ferent standard network architectures to demonstrate gen-

eralization as well as portability. All data, models and

programs are available at: https://gdo-datasci.

llnl.gov/selfsupervised/.

1. Introduction

Self-supervised learning has opened an intriguing new

avenue into unsupervised learning. It is intellectually satis-

fying due to the way it resembles gestalt-like mechanisms

of learning in visual cortical formation. It is also appeal-

ing for that fact that it can be implemented with standard

off-the-shelf neural networks and toolkits.

Self-supervised learning methods create a protocol

whereby the computer can learn to teach itself a supervised

task. For instance, in [9] a convolutional neural network

(CNN) was taught to learn the arrangement of patches in an

image. By learning the relative position of these patches,

the network would be forced to also learn the features and

semantics that underlie the image. Although the network is

trained to learn patch positions, the final goal was to gen-

eralize the learned representation to solve other tasks. For

instance, the self-supervised network was trained on a trans-

fer task (fine-tuned) to classify objects in the PASCAL VOC

dataset [13], and compared with a CNN trained on a super-

vised task, such as learning to classify the ImageNet dataset

[7]. If the self-supervised network learned good generaliza-

tions of image features and semantics, it should perform as

well as a supervised network on transfer learning.

Over the last few years, several methods of self-

supervised learning have been introduced. For instance,

[12] trained a CNN to recognize which transformation had

been performed on an image. Since then, methods have

been introduced that use context arrangement of image

patches [9, 31], image completion [36], image colorization

[48, 47, 24], motion segmentation [35], motion frame or-

dering [43, 44, 25], object counting [33] and a multi-task

ensemble of many models [10, 21].

Each method has relative strengths and weaknesses. For

instance, [48] uses a customized “split-brain” architecture

that makes it less off-the-shelf than other solutions which

frequently use a standard network such as AlexNet [23].

[43, 44, 25, 35] all use motion cues, but have the down-

side of being constrained to video data. Many patch based

methods use a Siamese network architecture which incurs

extra memory demands [9, 31, 33, 25]. However, every self-

supervised method suffers the drawback of still being very

short of supervised methods in terms of transfer learning

performance.

Our intent in this work is to improve the performance

of self-supervised learning. We present a variety of tech-

niques we hope are applicable to other approaches as well.

We will demonstrate generalizability of these techniques by

running them on several different neural network architec-

tures and many kinds of datasets and tasks. For instance, as

we will discuss, one dataset we wish to add to the corpus

of standard self-supervised tests, the Caltech-UCSD Birds

200 set (CUB) [45] is excellent for finding potential short

comings of techniques designed to address the well-known

chromatic aberration problem [9]. We will suggest this is

due to the importance of color patterns in bird classification

[6].

19339

https://gdo-datasci.llnl.gov/selfsupervised/
https://gdo-datasci.llnl.gov/selfsupervised/


2. Issues and Related Work

We use a patch/context approach for the issue of self-

supervised learning [9, 31]. This is a popular method, but is

by no means the only active path of inquiry. Patch/context

approaches work by creating an arrangement of image

patches in either space or time. Each distinct arrangement

is assigned a class label, and the network then predicts the

correct arrangement of these patches by solving a super-

vised classification problem. The network can be a typi-

cal supervised network such as AlexNet [23], VGG [38],

GoogLeNet [40] or ResNet [16]. In order to view multiple

patches at the same time, a Siamese network is frequently

used where each patch is fed into an independent network

path, and each path shares weights. [9] used a system of

two patches in a finite set of eight possible spatial config-

urations. [31] created an extension using as many as nine

patches in a puzzle configuration. Temporal ordering of

patches can also be used. For instance, [25] shuffled four

consecutive video frames to create 12 classes for prediction.

Another temporal method [44] queried the networks ability

to determine if a patch came from the same object later in

time or a similar but different object. This can be consid-

ered a meta self-learner since it leverages [9] as a pre-self-

supervised learner to determine object similarity.

Patch based methods have the advantage of being easy to

understand, network architecture agnostic, and frequently

straightforward to implement. They also tend to perform

well on standard measures of transfer learning. For in-

stance, [9] is a top performer on PASCAL VOC 2007 de-

tection [14], even among a large number of new arrivals.

[32] is almost tied for the top score on PASCAL VOC 2007

classification [22] and has the top score for PASCAL VOC

2007 detection and the second highest score for PASCAL

VOC 2012 segmentation [28, 36].

However, patch/context-based networks typically suffer

from an issue of being able to “cheat” and bypass learning

the desired semantic structure by finding incidental clues

that reveal the location of a patch. An example of this is

chromatic aberration, which occurs naturally as a result of

camera lensing where different frequencies of light exit the

lens at slightly different angles. This radially offsets col-

ors such as magenta and green modestly from the center

of the image. By looking at the offset relation of differ-

ent color channels, a network can determine the angular lo-

cation of a patch in an image. Aberration varies between

lenses, so it’s an imperfect cue, but one that none-the-less

exists. A common remedy is to withhold color data from

one or more channels by using channel-dropping [9, 10],

channel replication [25], or conversion to gray scale [33].

The primary difficulty with these approaches is that color

becomes decorrelated (or absent) since colors are not ob-

served together. This makes it difficult to learn color op-

ponents for patterns that emerge in supervised training sets,

such as ImageNet. Another approach is to jitter color chan-

nels [31], but this has a similar effect to blurring an image,

and it might affect the sharpness of learned wavelet features.

An often-cited worry in all patch/context works relates

to trivial low-level boundary pattern completion [9, 31, 10,

33, 25]. The neural network may learn the alignment of

patches not based on (for instance) desirable semantic in-

formation, but instead by matching the top or bottom part

of simple line segments. Two common approaches are to

provide a large enough gap between patches and to ran-

domly jitter the patches. This last technique may be du-

bious since a convolutional neural network can align simple

patterns at arbitrary offsets. This issue may also be implic-

itly addressed by having non-4-connected adjacent patches.

Half the patches in [9] are arranged diagonally which should

make them resistant to trivial low-level boundary pattern

completion. Also, we should note that while we would not

want a self-supervised learner to use this cheat all the time,

it could be used as a cue to help form low level features. So,

it is somewhat unclear how much of a problem this might

be.

In another possible problem for self-supervised networks

in general, mid-layers in the network may not train as well

as the early and later layers. For instance, [10] created

a self-supervised network using an ensemble of different

methods. They then created an automated lasso to grab

layers in the network most useful for their task. The lasso

tended to grab layers very early or very late in the network.

This suggests that for many self-supervised tasks, the infor-

mation in the middle network layers is not very essential for

training. Another piece of evidence comes from the CSAIL

Places linear test [48, 47], which shows how well each layer

in the network performs on transfer learning. Many self-

supervised networks perform as well or better than a su-

pervised ImageNet trained network at the first and second

convolutional layers in AlexNet, but struggle at deeper lay-

ers.

3. Approach

Our approach is comprised of three parts. The first is

a collection of tools and enhancements which for the most

part should be transferable to other self-supervised meth-

ods. In our second part, we utilize two new datasets to make

our experiments more diverse and general. The third part is

a demonstration on several different neural networks to ver-

ify generalization and demonstrate portability.

For our general approach, we start with the baseline of

[9] using a two-patch spatial configuration paradigm. This

approach gives good results, and is easy to both implement

and understand. We then augment this approach using var-

ious techniques. For each technique, we vigorously test ef-

fects empirically to justify their usage.

29340



Figure 1. These are examples of patches taken from ImageNet that are used during self-supervised training. Below each original is an

example with chroma blurring. It is frequently difficult to distinguish the blurred from original images, because humans are not very

spatially sensitive to variation of color. Chroma blurring can sometimes result in a loss of color saturation and color bleeding of very

saturated regions (such as the red ship bow, third from right). Notice the original gold fish image has signs of strong chromatic aberration

(top-left of head). This is blended out effectively by chroma blurring which switches the green aberration to the fish’s own red color. See

supplementary material appendix figure 7 for conv1 layer filter comparisons.

3.1. Our Toolbox of Methods

3.1.1 Chroma Blurring (CB)

We address the problem of chromatic aberration by remov-

ing cues about image aberration while allowing color pat-

terns and opponents to be at least partially preserved. We

note that the human visual system is not very sensitive to

spatial frequency of chroma, but is much better at discerning

detail about shifts in intensity [27]. However, even with this

lack of spatial acuity for color, we can still discern mean-

ingful color patterns. As such, we balance the tradeoff be-

tween decreasing color spatial information and removing

chromatic aberration cues.

To preserve intensity information, but reduce aberration,

we start by converting images into Lab color space. We then

apply a blurring operation to the chroma a and b channels.

In this case, we use a 13x13 box filter. It is two times the

size of the 7x7 convolution filter of our original GoogLeNet

target network. The luminance channel is left untouched,

and we convert the image back to RGB. Figure 1 shows

several patches which we have chroma blurred for compar-

ison.

3.1.2 Yoked Jitter of Patches (YJ)

Most patch/context methods apply a random jitter between

patches [9, 31, 10, 25]. The different patches are jittered in

different amounts and different directions. One issue with

applying a random jitter is that it might distort or skew the

spatial understanding in the network. As an example, if the

head of an animal is observed in one patch and the feet in the

other, the true spatial extent between these items would be

difficult to discern given a random jitter: the patches might

be 30 pixels apart, or they might be 60. If on the other hand,

the patches maintained a fixed spacing, reasoning about the

extent of an object between patches would be easier. Thus,

the network might make better inferences about the larger

shape of an object beyond each patch itself.

We do this by yoking the patch jitter. Each patch is ran-

domly jittered to create a random crop effect, but they are

jittered by the same amount in the same direction. This

might make us prone to trivial low-level boundary pattern

completion, but as mentioned, we suspect this can be par-

tially addressed by having non-4-connect patches. Also,

it is unclear how well a random jitter will address such a

problem since features do not need to be aligned in order to

be recognized in a CNN. Additionally, a certain amount of

low-level boundary pattern completion may not be a prob-

lem since it may enhance learning of simple features.

3.1.3 Additional Patches and Configurations

We use the same 96x96 sized patches as [9], since it fits

the receptive field of a 3x3 convolution at the end of many

CNNs. That is, most of the popular networks have a five-

layer topology of layer groups with each layer group being

half the dimension of the preceding one [40, 16, 17, 23,

30] (AlexNet technically has four group layers, but the first

layer has half-scale of most other networks). There is some

dimensional variation caused by the omission of padding in

some layers, but one pixel on the end layer maps to an extent

of about 32 pixels in the input image. Since most networks

tend to only use 3x3 convolutions at the last layers, a patch

size of 96x96 is justified to cover its full field.

We use three patches (TP) in each set. In the two-patch

configuration of [9], one of the two patches may not cover

an area with useful information. For instance, half of the

image may be covered by ocean. We can address this prob-

lem by using more patches. [31] uses a “puzzle” system

of nine 80x80 patches. However, if we want to use 96x96

sized patches and be able to train larger, more contempo-

rary networks, a 9x9 puzzle may not be feasible to train. If,

on the other hand, we just add one more patch, we create a

triple Siamese network which is smaller than a single net-

work over the traditional 224x224 image size. This makes

39341



Figure 2. The left column shows the location patches are extracted from in the image. The next column over shows some example

configurations obtained from those patches. In the middle are all 20 patches extracted from this (and every) image. The order is labeled for

each patch in a set as P1,P2 and P3. The right column shows how these patches are fed into the process to then create the final patches fed

into the neural network.

it easy to move to a larger network. We did not test four

patches.

We add extra patches configurations (EPC). That is, we

added several new configurations of patches seen in Fig-

ure 2. Adding new patterns (1) creates more orthogonal

and unique patterns (2) covers more of the image at once

(3) mixes scales to prevent simple pattern completion (4)

creates a natural way to cover the image, but use multiple

scales for training.

We draw three different patterns of patches. We start by

extracting all patches at a 110x110 resolution. 3x3 patches

are taken from a 384x384 image. This is taken from the cen-

ter of an aspect preserved image by reducing the smallest

dimension to that size. The patches are evenly spaced and

aligned with the image corners to cover the image (there is

no edge margin). 2x2 patches are taken from a 256x256 im-

age and overlap patches are taken from a 196x196 image.

We then use eight 3x3 patterns similar to [9], 2x2 patterns

are L-shaped and we use four of them. We combine patches

from 3x3 and overlap patches to create hybrid patch sets.

These are hybrid scale patches which allow more semantic

reasoning by preventing easy matching of simple features

between patches since they are at different scales. The pro-

cessed patches are fed into the network in batches. The fi-

nal patches fed into the network are sized 96x96. Note that

Figure 2 shows all 20 typical combinations from a sample

image. These are the exact same patterns extracted from

all images in the ImageNet training set. In all, we obtain

25,623,340 training patch sets from ImageNet.

3.1.4 Random Aperture of Patches (RA)

We mentioned some (minor) evidence that middle layers

in a self-supervised network are being neglected. One ap-

proach would be to try and create a bias towards these neu-

rons. In the general five-layer topology, the fourth group

layer has a receptive field of 48x48 given a 3x3 filter. In

AlexNet, this would include layers conv3, conv4 and conv5.

In GoogLeNet, this would include all 4th layers (4a, 4b etc).

If we create an aperture, we could create a patch that doesn’t

cover the extent of the 5th group layers, but does cover the

extent of the 4th group layers filters. This could bias against

the 5th layers from learning since it cannot see the whole

patch. Ideally, this would put emphasis on learning in the

4th layers. See Figure 3 for an example of this.

A random aperture on two of the three patches in a set

is created. The idea behind leaving one patch un-apertured

is so that we don’t completely bias against group layer 5,

we still want it to learn. The aperture is square and for each

sample is randomly sized between 64x64 and 96x96. The

minimum size is 64 since this is the smallest size we can

use and guarantee that at least one 3x3 convolution is un-

obstructed in the fourth layer. The position of the aperture

is also randomized but must fit inside the patch so we can

never have a viewable area less than 64x64. The area out-

side the aperture is filled with ImageNet mean RGB. The

size and position of the aperture in two patches is yoked.

Which two patches are apertured is randomized for each

sample.

49342



Figure 3. The grayed-out area has been apertured on a 96x96 size

patch. The aperture is 64x64, the smallest size we use. The left im-

age shows the pixel arrangement on group layer four. At least one

3x3 region is not directly interfered with by the aperture. However,

on the right, layer 5, only one pixel is fully uncovered. All spatial

interactions at this layer will involve at least one occluded region.

Ideally, this would create some inhibition to layer five forming

meaningful spatial associations and perhaps bias towards layer 4

which can. Note that this description is simplified and somewhat

imprecise since image information can propagate laterally through

consecutive layers.

3.1.5 Rotation with Classification (RWC)

Each patch in a patch/context model may simply contain

a part of a much larger object. In general, this is the in-

tent of the patch/context approach. Might it help if parts

can be understood at different orientations? For instance, if

one has seen an upside-down roof top, one may better un-

derstand a triangular yield sign or a funnel. Additionally,

humans have the ability to conditionally recognize upside-

down parts embedded in a whole image. This is illustrated

by the famous Thatcher illusion [41] (see Figure 4). We

reason that self-supervised learning might benefit from ex-

posure to upside-down patches, and it would help to make

the network identify if patches are right-side-up or upside-

down. We do this by flipping the whole image so that all

patches are flipped. Then, we double the number of classes

by giving each upside-down image its own class. For in-

stance, if we have 20 classes of patch arrangements, when

we add upside-down images, we have 40 classes. We also

explore 90 and 270 degree rotations. This yields a total of

80 classes.

Forcing the network to classify patches as upside-down

also reduces the strength of clues generated by chromatic

aberration. Aberration radiates from the center of the im-

age. Without rotating the image, a downward sloping arch

of green/magenta to the left indicates the patch comes from

the upper left-hand corner. However, in a flipped image, the

same pattern indicates the lower right corner instead. By

just trying to guess upper left-hand corner from the chro-

matic aberration pattern, it will be wrong 50% of the time.

With four rotations, it will be wrong 75% of the time.

3.1.6 Miscellany

We present experiments with a few other tricks which we

found helpful to varying degrees. One method is a typical

Figure 4. On the left is an example of the famous thatcher illusion

[41, 8]. It demonstrates conditional sensitivity to upside-down fea-

tures in an image against the background. We used this mostly as

inspiration. On the left house image [42], the network can tell that

the blue bordered area comes from the upper left corner based on

chromatic aberration alone. However, on the right image, rota-

tion with classification makes it tell us if the patch is inverted and

comes from the lower right corner. If it uses chromatic aberration

as the only cue, it would be wrong 50% of the time. (Figure is

enlarged in appendix: see figure 9)

mixture of label preserving transformations [37, 5, 4] we are

calling the usual bag of tricks (UBT). This involves aug-

mentation by randomly mirroring, zooming, and cropping

images. The mirroring is simple horizontal flipping and has

no special classification, like with RWC, since this would

most likely prove confusing to the network. For random

zooming, we randomly scaled each input 110x110 patch

to between 96x96 to 128x128, and then extract a random

96x96 patch from this. The zoom and crop location is ran-

dom for each sample, but is yoked between the three input

patches in a set.

Borrowed from [33], we take the idea of mixing the

method of rescaling during UBT. Each of the three patches

in a set is rescaled by one of four randomly chosen rescale

techniques (Bilinear, Area, Bicubic or Lanczos). The ran-

dom selection is not yoked between patches. The idea is

yet again to make it harder to match low level statistics be-

tween patches (trivial solutions). We call this randomization

of rescaling methods (RRM).

We also tried varying the learning rate and decay rate of

network layers to increase learning of middle layer weights.

For instance, one can adjust the first layer to have 70% the

learning rate as the center most layer. We try to linearly in-

crease the learning rate towards a middle layer and then re-

duce the rate back down. Given the nine layers of a Siamese

AlexNet, we would have learning rates {0.7, 0.8, 0.9, 1.0,

0.9, 0.8, 0.7, 0.6, 0.5}. Here, conv4 layer has learning rate

multiplier 1.0 and the last fully connected layer has 0.5. We

call this weight varying (WV).

3.2. Verification Datasets

The development and testing of new techniques gener-

ally requires fishing for results. As such, one should avoid

using the target dataset for testing each new idea. Fishing

leads to solutions specialized towards the specific dataset

59343



Figure 5. This is our custom batch normalized triple Siamese

AlexNet. It is very similar to [9]. Each layer has a batch norm

layer after it. Notice we have removed LRN [23] layers.

rather than a general solution. For self-supervised learning,

test metrics based on PASCAL VOC [13], ImageNet [7] and

CSAIL Places [49] are commonly used. Therefore, we test

techniques on a few new datasets with a certain amount of

overlap, but which possess differences so that we can be

more confident in generalization.

For validation, we use a combination of CUB birds [45]

(a fine-grained bird species dataset) and CompCars [46] (a

fine-grained car model dataset). We call this combination

CUB/CCars (Examples from these sets are in the appendix

as figures 10 and 6). We use these sets by training a network

in a self-supervised manner and then apply transfer learning

by fine-tuning them for classification. Both data sets are fine

grained for their respective class (birds and cars). However,

there are major differences between the kinds of features

cars and birds have. Additionally, the CUB birds dataset

provides an ideal test set for dealing with chromatic aber-

ration. The four keys to identifying birds are size/shape,

habitat, behavior and color pattern [6]. When trying to con-

trol chromatic aberration, one may alter the image in a way

that negatively affects color processing and thus classifica-

tion for birds.

3.3. Alternative Networks

We are interested in generalization of our solutions and

portability to other architectures. If we constrain self-

supervised learning to mostly being a training protocol, it’s

easier to train on different networks. As with using many

datasets, using many networks also helps to assure that a

technique is not network specific, but works well on other

designs. We demonstrate results on four different networks.

These are (a) standard CaffeNet type AlexNet [23, 20] (b)

AlexNet with batch normalization (BN) [18] (figure 5) (c)

a ResCeption network [30] (d) an Inception network with

BN [39, 18].

4. Experiments

We perform a variety of experiments. We show the abla-

tion gain of each tool on our CUB/CCars dataset combina-

tion, and also post hoc on VOC classification.

4.1. Self­supervised Training

We use triple Siamese networks which share weights be-

tween branches, and are then concatenated together and run

through a few fully connected layers. The input is a set of

three 96x96 RGB image patches processed from 110x110

patches, taken from the ImageNet training dataset. Recall

that we apply the chroma blur operation offline before we

train to remove the expense of repeated Lab conversion and

blurring. The output is a softmax classification for the patch

arrangement pattern class with 20, 40 or 80 classes. All net-

works load in a list of shuffled training and testing patches.

The list is reshuffled after each epoch.

We use a slightly different protocol for training the batch

normalized networks than for training the non-normalized

CaffeNet. The batch normalized networks train with

stochastic gradient descent (SGD) for 750k iterations with

a batch size of 128 and an initial learning rate of 0.01. A

step protocol is used with a size of 300k and gamma 0.1.

Momentum is 0.9 and weight decay is 0.0002. For our Caf-

feNet, we use a Google exponential style training [39]. We

train for 1.5 million iterations with a batch size of 128 and

initial learning rate of 0.00666 (the fastest rate seemingly

stable). We train SGD with a step size of 10k and a gamma

of 0.96806. Momentum is 0.9 and weight decay is 0.0002.

4.2. Validation and Ablation on CUB Birds and
CompCars

The bulk of our testing and validation was carried

out by fine-tuning a self-supervise trained network to the

CUB/CCars datasets. Both sets were split a priori into

training and testing sets by the authors. We use provided

bounding boxes from both sets to pre-crop the images.

Some further details can be seen in the appendix A.

We perform most ablation and validation experiments on

our custom batch normalized AlexNet which can be seen

in figure 5. The target network is similar to [9] in that

we use the same conv6 and conv6b layers, but we do not

try to transfer these layers from the self-supervise trained

network. We kept these layers mostly for diversity, so that

our batch normalized AlexNet is somewhat different from

the very standard CaffeNet/AlexNet we perform benchmark

tests on. Again, generalization is important to us. We self-

supervise train, then transfer the weights of the five convolu-

tion and batch norm layers to the non-Siamese network and

initialize new fully connected layers. Both CUB and CCars

are trained the same way. The methods for training both

had been established a priori to avoid over-tuning of hyper-

parameters. For fine-tuning, we use a polynomial learning

69344



Accuracy Improvement

Method CUB CCars Mean VOC All CUB CCars Mean VOC All

No Pretrain 56.20 59.13 57.67 55.12 56.82 – – – – –

ImageNet Supervised 74.44 85.40 79.92 72.67§ 77.50 – – – – –

Baseline 2 Patch Protocol 62.33 79.86 71.09 63.61 68.60 – – – – –

add Chroma Blurring (CB) 64.29 80.80 72.55 64.98 70.02 1.97 0.94 1.45 1.37 1.42

add Yoked Jitter (YJ) 65.17 80.95 73.06 65.15 70.42 0.87 0.15 0.51 0.16 0.40

add 3rd Patch (TP) 65.19 81.54 73.36 65.27 70.66 0.02 0.59 0.30 0.12 0.24

add Extra Patch Cfgs. (EPC) 67.07 80.50 73.79 65.67 71.08 1.89 -1.04 0.43 0.41 0.42

add Usual Tricks (UBT) 67.91 80.83 74.37 65.58 71.44 0.84 0.33 0.58 -0.10 0.35

add Rand. Aperture (RA) 68.01 82.07 75.04 66.79 72.29 0.10 1.24 0.67 1.21 0.85

add Rotation 180 (RWC) 68.89 84.23 76.56 68.39 73.83 0.88 2.16 1.52 1.60 1.55

add Rotation 90, 270 and WV 69.39 84.25 76.82 68.31 73.99 0.50 0.02 0.26 -0.07 0.15

Table 1. This is a basic ablation showing the effect of adding each method one at a time. The scores for CUB birds (CUB) and CompCars

(CCars) are the single class classification accuracy. PASCAL VOC uses mean average precision (mAP). The mean column is for CUB and

CCars, but we show a mean of CUB, CCars and VOC as “All”. VOC is the Post Hoc classification results run after the fact to see how

well our CUB/CCars surrogate set matches a core self-supervised benchmark test. The baseline two patch protocol uses color dropping

and matches the protocol of [9]. Gains in CUB/CCars appear to correlate with gains in VOC (but not perfectly). The largest gains for

both CUB/CCars and VOC are from rotation with classification, chroma blurring and random aperture. Also notice that the results for

CompCars is only one percentage point less than the ImageNet pretrained network. §The ImageNet pretrain for VOC uses conv1 through

conv5. All fully connected (fc) layers are initialized new.

policy with an initial learning rate of 0.01 with SGD for

100k iterations with a batch size of 64. Polynomial power

is 0.5. Momentum is 0.9 and weight decay is 0.0002. For

each condition we wished to test, we trained three times and

took the average testing accuracy to reduce minor variation

within condition results.

Ablation results for each method can be seen in Table 1.

We show post hoc results from PASCAL VOC 2007 classi-

fication on the same network and condition to see how well

our validation set results map to one of our target data sets.

VOC was trained by the standard classification method de-

scribed in [22] and results are in mean average precision

(mAP). Finer details on ablation and more experiments can

be seen in the appendix B.

4.3. Standard Transfer Learning Testing Battery

We demonstrate how the results we have obtained com-

pared with self-supervised methods using a suite of stan-

dard benchmark tests. These include classification [22]

and detection [14] on PASCAL VOC 2007, and segmen-

tation [28, 36] on PASCAL VOC 2012. They also in-

clude the “linear classifier” tests on CSAIL places and Im-

ageNet [47]. We note two possible differences from the

standard benchmark methodology here. For detection, we

use multiscale training and testing. This is common and

used by [35, 31, 32, 9, 10], but not all authors use it.

For segmentation, most authors use surgery to map trained

fully connected layers to convolution layers six and seven.

Our trained network does not have the correct number of

weights in the fully connected layers to do this. So we only

copy convolution layers one through five and initialize lay-

ers six and seven randomly.

For these tests, we self-supervise train a triple Siamese

CaffeNet type AlexNet using the non-batch normalized pro-

tocol previously described. Inputs are padded by 5 pixels,

but only during the self-supervised triple network training.

No batch normalization is used at any stage of training. Af-

ter pooling layer 5, we use the same Siamese structure as

our custom batch normalized AlexNet. We leave out batch

normalization in these layers, but insert dropout layers af-

ter joined fc1 and joined fc2 with a dropout ratio of 0.5.

Convolution weights from layers one through five are trans-

ferred to a completely off the shelf CaffeNet. Training and

testing are performed in the standard way defined by the

authors of each test (with the two noted differences). Re-

sults can be seen in tables 2, 3 and 4. Our improvements

yield results that out-perform all other methods on all of the

standard benchmark tests.

4.4. Portability to Other Networks

We trained on two more networks to demonstrate porta-

bility and generalization. The first new network, ResCep-

tion [30] is a GoogLeNet [40] like network with batch nor-

malization (BN) [18] and residual short-cutting [16]. It has

5x5 convolutions in group layer 5 which extend beyond the

self-supervised receptive layer. So we self-supervise trained

by replacing these with 1x1 surrogate filters that cannot

train. Then we put freshly initialized 5x5 convolutions back

in place for this layer when we fine-tuned.

We also used a standard inception network with BN. The

ImageNet pre-train was performed by [3] on the full set of

21k ImageNet labels. The network required no augmenta-

tion. All weights are copied from self-supervised training

except for the very top fully connected layer which would

be discarded anyway. Table 5 shows the results from these

new networks with our BN AlexNet. CompCars results tend

79345



Method Class. Det. C + D Seg. All

ImageNet Labels [7, 23] 79.9 56.8 68.4 48.0 61.6

Jayaraman [19] – 41.7 – – –

Li [26] 56.6 – – – –

Misra [29] – 42.4 – – –

Owens [34]† 61.3 – – – –

Larsson [24] 65.9 – – 38.4 –

Agrawal [1]† 54.2 43.9 49.1 – –

Gomez [15] 55.7 43.0 49.4 – –

Pathak (Inpainting) [36] 56.5 44.5 50.5 29.7 43.6

Donahue [11]† 60.1 46.9 53.5 35.2 47.4

Wang (Video) [43]† 63.1 47.4 55.3 – –

Lee [25] 63.8 46.9 55.4 – –

Zhang (Colorizing) [47]† 65.9 46.9 56.4 35.6 49.5

Pathak (Move) [35] 61.0 52.2 56.6 – –

Zhang (Split-Brain) [48] 67.1 46.7 56.9 36.0 49.9

Bojanowski [2] 65.3 49.4 57.4 – –

Doersch (Patches) [9]† 65.3 51.1 58.2 – –

Noroozi (Counting) [33] 67.7 51.4 59.6 36.6 51.9

Noroozi (Puzzle) [32, 31]‡ 67.6 53.2 60.4 37.6 52.8

Kim [21]• 69.2 52.4 60.8 39.3 53.6

Doersch (Multi-Task)* [10] – 54.9 – – –

Wang (Invariance)* [44] – 53.1 – – –

RWC 180 69.0 54.9 61.9 40.4 54.8

add rotations 90, 270 69.5 55.5 62.5 41.4 55.5

add RRM 69.6 55.8 62.7 41.2 55.6

Table 2. These are classification mAP [22], detection mAP [14]

and segmentation mIU [28] test results over PASCAL VOC [13].

Mean scores are shown for classification + detection (C + D) as

well as for all three if the segmentation score is available (All).

The bottom three results are ours and include all methods except

for WV. These are: CB, YJ, TP, EPC, UBT, RA and RWC. RWC

(four rotations) gives the best results, but adding in RRM yields

only slightly better results. †To conserve space, we have taken the

largest of two scores when network weights have been rescaled

[22]. *Denotes that this is an estimate for the score based on a very

recent result with a different network other than AlexNet. The es-

timate is computed by adding the gain reported in the work to a

mutual baseline method that has an AlexNet result and also ap-

pears in our table (namely [9]). •Results were published while

this paper was under review. ‡Using corrected results from ArXiv

paper, not ECCV.

to be within about one to two percentage point of ImageNet

supervised training. However, CUB runs from three to six.

The results from self-supervision seem enticingly close to

ImageNet supervised, but are not yet there.

Acknowledgments

The authors would like to thank several people who

contributed ideas and conversation for this work: Car-

men Carrano, Albert Chu, Alexei Efros, Gerald Friedland,

Will Grathwohl, Brenda Ng, Doug Poland, Richard Zhang,

Miles the Cat and the CVPR reviewers. This work was

performed under the auspices of the U.S. Department of

Energy by Lawrence Livermore National Laboratory under

Contract DE-AC52-07NA27344 and was supported by the

LLNL-LDRD Program under Project No. 17-SI-003. Sup-

Method C1 C2 C3 C4 C5 Best

ImageNet [7, 23, 47] 19.3 36.3 44.2 48.3 50.5 50.5

Random [33] 11.6 17.1 16.9 16.3 14.1 17.1

Pathak (Inpainting) [36] 14.1 20.7 21.0 19.8 15.5 21.0

Donahue [11] 17.7 24.5 31.0 29.9 28.0 31.0

Doersch (Patches) [9] 16.2 23.3 30.2 31.7 29.6 31.7

Zhang (Colorizing) [47] 13.1 24.8 31.0 32.6 32.6 32.6

Noroozi (Puzzle) [32, 31] 18.2 28.8 34.0 33.9 27.1 34.0

Noroozi (Counting) [33] 18.0 30.6 34.3 32.5 25.7 34.3

Kim [21] 14.5 27.2 32.8 34.3 32.9 34.3

Zhang (Split-Brain) [48] 17.7 29.3 35.4 35.2 32.8 35.4

RWC 180 19.4 31.2 36.7 37.1 32.8 37.1

add rotations 90, 270 19.5 31.6 37.1 37.7 33.7 37.7

add RRM 19.6 31.8 37.6 37.8 33.4 37.8

Table 3. This is the linear test for ImageNet data [7]. The network

is fine-tuned up to the convolution layer shown. Our results are

the bottom three rows. These are the same three self-supervised

conditions used in table 2. These use all the methods we have

presented except for WV. The maximum score is shown in bold

with the previous best result underlined. Rotation with Classifica-

tion using 90, 180 and 270 degree rotations is generally the best

performer. Here, RRM edges out the other two by a small margin.

Method C1 C2 C3 C4 C5 Best

Places [49, 47] 22.1 35.1 40.2 43.3 44.6 44.6

ImageNet [7, 23, 47] 22.7 34.8 38.4 39.4 38.7 39.4

Random [33] 15.7 20.3 19.8 19.1 17.5 20.3

Pathak (Inpainting) [36] 18.2 23.2 23.4 21.9 18.4 23.4

Wang (Video) [43] 20.1 28.5 29.9 29.7 27.9 29.9

Zhang (Colorizing) [47] 16.0 25.7 29.6 30.3 29.7 30.3

Donahue [11] 22.0 28.7 31.8 31.3 29.7 31.8

Owens [34] 19.9 29.3 32.1 28.8 29.8 32.1

Doersch (Patches) [9] 19.7 26.7 31.9 32.7 30.9 32.7

Zhang (Split-Brain) [48] 21.3 30.7 34.0 34.1 32.5 34.1

Noroozi (Puzzle) [32, 31] 23.0 31.9 35.0 34.2 29.3 35.0

Noroozi (Counting) [33] 23.3 33.9 36.3 34.7 29.6 36.3

RWC 180 23.7 33.9 37.1 37.2 34.1 37.2

add rotations 90, 270 23.5 34.0 37.2 37.2 34.9 37.2

add RRM 23.5 34.2 37.2 37.0 34.4 37.2

Table 4. This is the linear test for CSAIL Places [49] data. The

network is fine-tuned up to the convolution layer shown. Our re-

sults are the bottom three rows. These are the same three self-

supervised conditions used in table 2. These all use the methods

we have presented except for WV. The maximum score is shown

in bold with the previous best underlined. RWC (four rotations) is

slightly better, but all three variations obtain the same max score.

Method AlexNet BN ResCeption Inception 21k

ImageNet Pretrain 79.92 88.62 89.01

add Rotations 180 (RWC) 76.56 86.37 85.20

add rotations 90, 270 (RWC) 76.82 86.52 85.81

Diff from ImageNet 3.10 2.10 3.20

Table 5. These are the mean results for CUB and CompCars on the

different networks.

port was also provided by the LLNL DSSI Summer Insti-

tute.

89346



References

[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. In ICCV, 2015.

[2] P. Bojanowski and A. Joulin. Unsupervised learning by pre-

dicting noise. In ICML, 2017.

[3] P. Campr and M. Li. Imagenet-21k-inception.

https://github.com/dmlc/ mxnet-model-gallery/blob/

master/imagenet-21k-inception.md.

[4] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column

deep neural networks for image classification. In CoRR,

2012.

[5] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and

J. Schmidhuber. High-performance neural networks for vi-

sual object classification. In CoRR, 2011.

[6] Four keys to identifying birds. Cornell Lab of Ornithology:

Bird Scope, 23(2), 2009.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009.

[8] A. Dodge. Iain mteffect: Wikimedia public do-

main image. https://commons.wikimedia.org/

wiki/File:Iain MTeffect.jpg.

[9] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-

sual representation learning by context prediction. In ICCV,

2015.

[10] C. Doersch and A. Zisserman. Multi-task self-supervised

visual learning. In ICCV, 2017.

[11] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial fea-

ture learning. In ICLR, 2017.

[12] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Ried-

miller, and T. Brox. Discriminative unsupervised feature

learning with exemplar convolutional neural networks. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

38(9):1734–1747, 2015.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International Journal of Computer Vision, 88(2):303–

338, June 2010.

[14] R. Girshick. Fast r-cnn. In ICCV, 2015.

[15] L. Gomez, Y. Patel, M. Rusiñol, D. Karatzas, and C. V. Jawa-

har. Self-supervised learning of visual features through em-

bedding images into text topic spaces. In CVPR, 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In arXiv preprint arXiv:1512.03385,

2015.

[17] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. In CVPR, 2017.

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015.

[19] D. Jayaraman and K. Grauman. Learning image representa-

tion tied to ego-motion. In ICCV, 2015.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[21] D. Kim, D. Cho, D. Yoo, and I. S. Kweon. Learning image

representation by completing damaged jigsaw puzzles. In

WACV, 2018.

[22] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-

dependent initializations of convolutional neural networks.

In ICLR, 2016.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, 2013.

[24] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization

as a proxy task for visual understanding. In CVPR, 2017.

[25] H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang. Un-

supervised representation learning by sorting sequences. In

ICCV, 2017.

[26] D. Li, W.-C. Hung, J.-B. Huang, S. Wang, N. Ahuja, and

M.-H. Yang. Unsupervised visual representation learning by

graph-based consistent constraints supplementary material.

In ECCV, 2016.

[27] M. Livingstone. The First Stages of Processing Color and

Luminance: Where and What., pages 46 – 67. Harry N.

Abrams, New York, 2002.

[28] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015.

[29] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn:

unsupervised learning using temporal order verification. In

ECCV, 2016.

[30] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye.

A large contextual dataset for classification, detection and

counting of cars with deep learning. In ECCV, 2016.

[31] M. Noroozi and P. Favaro. Unsupervised learning of visual

representations by solving jigsaw puzzles. In ECCV, 2016.

[32] M. Noroozi and P. Favaro. Unsupervised learning of vi-

sual representations by solving jigsaw puzzles. CoRR,

abs/1603.09246, 2016.

[33] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation

learning by learning to count. In ICCV, 2017.

[34] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and

A. Torralba. Ambient sound provides supervision for visual-

learning. In ECCV, 2016.

[35] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariha-

ran. Learning features by watching objects move. In CVPR,

2017.

[36] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and

A. Efros. Context encoders: Feature learning by inpainting.

In CVPR, 2016.

[37] P. Simard, D. Steinkraus, and J. Platt. Best practices for con-

volutional neural networks applied to visual document anal-

ysis. In Proceedings of the Seventh International Conference

on Document Analysis and Recognition, 2003.

[38] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scaleimage recognition. In CoRR, 2014.

[39] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. In arXiv:1602.07261, 2016.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

99347



[41] P. Thompson. Margaret thatcher: a new illusion. Perception,

9(4):483–484, 1980.

[42] Umbert. Kolora aberacio: Wikimedia public do-

main image. https://commons.wikimedia.org/wiki/

File:Kolora aberacio, transversa %C5%9Dovo, 1.svg.

[43] X. Wang and A. Gupta. Unsupervised learning of visual rep-

resentations using videos. In ICCV, 2015.

[44] X. Wang, K. He, and A. Gupta. Transitive invariance for self-

supervised visual representation learning. In ICCV, 2017.

[45] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010.

[46] L. Yang, P. Luo, C. C. Loy, and X. Tang. A large-scale car

dataset for fine-grained categorization and verification. In

CVPR, 2015.

[47] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-

tion. In ECCV, 2016.

[48] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoen-

coders: Unsupervised learning by cross-channel prediction.

In CVPR, 2017.

[49] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In NIPS, 2014.

109348


