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Abstract

We introduce a seemingly impossible task: given only an

audio clip of someone speaking, decide which of two face

images is the speaker. In this paper we study this, and a

number of related cross-modal tasks, aimed at answering

the question: how much can we infer from the voice about

the face and vice versa?

We study this task “in the wild”, employing the datasets

that are now publicly available for face recognition from

static images (VGGFace) and speaker identification from

audio (VoxCeleb). These provide training and testing sce-

narios for both static and dynamic testing of cross-modal

matching. We make the following contributions: (i) we in-

troduce CNN architectures for both binary and multi-way

cross-modal face and audio matching; (ii) we compare dy-

namic testing (where video information is available, but the

audio is not from the same video) with static testing (where

only a single still image is available); and (iii) we use hu-

man testing as a baseline to calibrate the difficulty of the

task. We show that a CNN can indeed be trained to solve

this task in both the static and dynamic scenarios, and is

even well above chance on 10-way classification of the face

given the voice. The CNN matches human performance on

easy examples (e.g. different gender across faces) but ex-

ceeds human performance on more challenging examples

(e.g. faces with the same gender, age and nationality)1.

1. Introduction

Can you recognise someone’s face if you have only heard

their voice? Or recognise their voice if you have only seen

their face? As humans, we may ‘see voices’ or ‘hear faces’

by forming mental pictures of what a person looks like after

only hearing their voice, or vice versa. This phenomenon

has been investigated in a number of studies on human per-

ception and neurology [19, 44], where participants com-

pleted a sequential two-alternative forced choice matching

task. They were asked to listen to a human voice (Voice X),

1Data, models and appendices can be found at http://www.

robots.ox.ac.uk/˜vgg/research/CMBiometrics

Face A Face B 

Face X Voice A 

V-F

F-V

Voice B 

Voice X 

✔ ✖

✔✖

Figure 1: We introduce the task of cross-modal biometric

matching, and consider two specific formulations of the problem:

(Top) V-F: given an audio clip of a voice and two or more face

images/videos, select the face image/video that corresponds to the

voice. (Bottom) F-V: given an image or video of a face, determine

the corresponding voice.

and then pick the face corresponding to the same identity,

between two still/dynamic face images. It is also a famil-

iar trope in Hollywood films that someone can be recog-

nised after only hearing their voice – for example in the

film “Die Hard”, where the Bruce Willis character (John

Mclane) emerges from the building towards the end of the

film and is instantly able to recognise the cop (Sgt. Al Pow-

ell) who he has only spoken to by radio throughout the film,

but never seen. This task of cross-modal (face and voice)

recognition, or ‘cross-modal biometric matching’, is the ob-

jective of this paper. As illustrated in figure 1, there are

two related tasks: first, given an image or video of a face,

determine which of two or more voices it corresponds to;

second, and conversely, given an audio clip of a voice, de-

termine which of two or more face images or videos it cor-

responds to. Note, the voice and face video are not acquired

simultaneously, so methods of active speaker detection that

may rely on synchronisation of the audio and lip motion,

e.g. [11] cannot be employed here.

That this task might be possible at all is due to the exis-

tence of factors that are common to both modalities; in par-

ticular, specific latent properties (like age, gender, ethnic-
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ity/accent) influence both the facial appearance and voice.

Besides these, there exist other, more subtle cross-modal

biometrics. Studies in biology and evolutionary percep-

tion [52] show that hormone levels during puberty affect

both face morphology and voice pitch. In males, higher

testosterone-oestrogen ratios lead to a prominent eyebrow

ridge, broad chin, small eyes, and thin lips [48], while vo-

cal folds situated in the larynx also increase in size, thus

leading to a lower voice pitch [17]. Similarly for females,

higher oestrogen levels cause large eyes and full lips [48]

and prevent the vocal folds from enlargement, leading to

higher voice pitch [17]. Besides the above static proper-

ties, given a video stream, we expect there to exist more

(dynamic) cross-modal biometrics. For example, the ‘man-

ner of speaking’ can be an important cross-modal biometric.

Sheffert and Olson [40] suggested that visual information

about a person’s particular idiosyncratic speaking style is

related to the speaker’s auditory attributes. The origins of

this link lie in the mechanics of speech production, which,

when shaping the vocal tract, determines both facial motion

as well as the sound of the voice [19].

Apart from establishing that it is indeed possible to solve

cross-modal biometric matching, which is an interesting

scientific result on its own, there are also practical applica-

tions of the technology – not least in surveillance. Imagine

the following scenario: the only information we have about

a person is a handful of speaking (audio) samples, because

the data was recorded from telephone conversations. We

then want to identify the individual from a video stream, for

example from CCTV. A more benign application is auto-

matically labelling characters in TV and film material where

characters may be heard but not seen at the same time, and

so cross-modal matching can be used to infer the labels.

In this paper we approach the problem using the tools

of deep learning trained on large-scale datasets. We make

the following contributions: first, we introduce a CNN ar-

chitecture that ingests face images and voice spectrograms,

and is able to infer the correspondence between them. The

network is trained on a large-scale dataset of voices (Vox-

Celeb [33]) and faces (VGGFace [36]) from the same iden-

tities. Second, we investigate the performance of the net-

work using still, dynamic images, or both. We show, in

contrast to the findings in the perception literature, that the

task can be solved far better than chance using static images

alone, and that the performance improves further using dy-

namic images. We also carry out our own study of human

performance using AMT. Finally, we generalise the two-

alternative forced choice architecture to multi-way classifi-

cation and report results for this more challenging task.

2. Related Work

Human Perception Studies: The broad consensus among

studies exploring cross-modal matching of faces and voices

using human participants, is that matching is only possi-

ble when dynamic visual information about articulatory pat-

terns is available [19, 26, 37]. In particular, works have

demonstrated coupling between an individual’s idiosyn-

cratic speaking style, the sound of their voice and the man-

ner in which their face moves [13, 27, 53], suggesting the

presence of dynamic information which can be exploited to

solve the matching task. Although these studies demon-

strate that static face voice matching performance lies at

chance level [19, 26], we note that there has been research

which challenges this perspective [24, 43]. However, while

Krauss et al. [24] showed that people could match a voice to

one of two static images with above-random accuracy, the

stimuli were full-body images rather than images of faces,

which may have provided additional cues to inform accu-

rate matching (see [44] for a detailed discussion of these

contradictory results). It is worth noting that the difficulty

of the task is highly dependent on the specific stimuli sets

provided—as we show in this work, some face-voice com-

binations are more distinctive than others.

Face Recognition and Speaker Identification: The tasks

of face recognition and speaker identification are longstand-

ing problems in the vision and speech research communi-

ties, and consequently an in-depth review of these topics is

beyond the scope of this work. However, we note that the

recent advent of deep CNNs with large datasets has con-

siderably advanced the state-of-the-art in both face recog-

nition [21, 36, 46, 47] and speaker recognition [14, 33, 39,

45]. Unfortunately, while these recognition models have

proven remarkably effective at representation learning from

a single modality, the alignment of learned representations

across the modalities is less developed. In this work we ad-

dress this issue through the development of a multimodal

architecture that directly ingests data from both faces and

voices and learns a correspondence between them.

Cross-modal Matching: Cross-modal matching has re-

ceived considerable attention using visual data and text (nat-

ural language). Methods have been developed to establish

mappings from images [16, 20, 23, 25, 50] and videos [49]

to textual descriptions (e.g. captioning), generating visual

models from text [51, 57] and solving visual question an-

swering problems [1, 29, 31]. In cross-modal matching be-

tween video and audio however, work is limited, particu-

larly in the field of biometrics (person or speaker recog-

nition). Recent work has begun to explore the tasks of

audio-visual matching for scenes and objects [2, 3, 4, 35]

and audio-visual speech recognition (lip reading [12], lip

sync [11] etc). In biometrics, there has also been work that

uses both modalities to improve performance [7, 22] but not

one to recognise the other. Le and Odobez [28] use transfer

learning from face embeddings to try and improve speaker

diarisation results. The only attempt we can find to solve a

similar task to the one proposed here (but only for videos,
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Figure 2: The three main networks architectures used in this paper. From left to right: (1) The static 3-stream CNN architecture consisting

of two face sub-networks and one voice network, (2) a 5-stream dynamic-fusion architecture with two extra streams as dynamic feature sub-

networks, and finally (3) the N-way classification architecture which can deal with any number of face inputs at test time due to the concept

of query pooling (see Sec. 3.2). Voice-only weights shown in red, face-only weights in blue/green (static/dynamic), and modality-shared

weights in purple (best viewed in colour). Modality-specific weights of the same colour are shared amongst different inputs.

and not still face images) is by [38]. This work seeks to

map a statistical model of the features in one modality to

a statistical model of the features in another modality. It is

evaluated on the M2VTS audio-visual database for 25 male

subjects who count from zero to nine. In contrast, we aim to

solve this task at large-scale, ‘in the wild’, and with longer

more natural speech segments from unconstrained interview

videos.

3. Cross-Modal Models

For the task of forced matching between two faces and

voice input (V-F formulation), our objective is to identify

which of a pair of given faces possesses the same identity

as the voice. Since this problem admits a natural symme-

try with the F-V formulation (matching between two voices

and a face), each component of our method can be readily

adapted to address either task. For notational clarity, we

focus our description on the V-F formulation. The forced

matching task can be defined as follows; let x = {v, f1, f2}
denote a set consisting of an anchor voice segment v and

two face images f1 and f2. Each input set x contains one

positive and one negative face, where face fi is defined as

positive if it possesses the same identity as the anchor voice,

and negative otherwise. We pose the matching task as a

binary classification problem, in which the objective is to

predict the position y 2 {1, 2} of the positive face. Given

images and voices of known identity, we can construct a

dataset of training examples D = {xn, yn}
N
n=1 by simply

randomising the position of the positive face in each face

pair. The learning problem corresponds to maximising like-

lihood: θ = argmaxθ L(gθ;D), where gθ is the parame-

terised model to be learned. The loss to be minimised can

then be framed as a cross-entropy loss on target label posi-

tions.

We instantiate gθ as a three-stream convolutional neu-

ral network, taking inspiration from the odd-one-out net-

work architecture proposed in [15]. Our forced matching

task, however, is unique in the sense that we would like

to perform it across two different modalities. Our model

design consists of three modality specific sub-networks (or

streams); two parameter-sharing face sub-networks that in-

gest image data and a voice sub-network which ingests

spectrograms. The three streams are then combined through

a fusion layer (via feature concatenation) and fed into

modality-shared fully connected layers on top. The fusion

layer is required to enable the network to establish a corre-

spondence between faces and voices.

Our model hence has two kinds of layers, modality spe-

cific (face and voice) layers and higher-level layers which
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are shared between both modalities. Similar to the motiva-

tion in [3], the rationale behind this architecture is to force

early layers to specialise to modality specific features (such

as edges in face images and spectral patterns in audio seg-

ments), while allowing later layers to capture higher-level

latent cross-modal variables (such as gender, age, ethnic-

ity and identity). For the sake of clarity, we state here

the three main tasks that we solve in this paper: 1) Static

matching, which uses only still face images, 2) Dynamic

matching, which involves videos of faces during speech,

and 3) N-way classification, which is an extension of the

matching task to any number of faces (greater than two).

These tasks are described in more detail in section 5. In

order to capture dynamic facial appearance, we introduce

an additional sub-network which ingests dynamic features

extracted from videos. To motivate the design of each of

these sub-networks, we next discuss the input representa-

tions upon which they will operate.

3.1. Input Representations

Voices: The input to the voice stream is a short term mag-

nitude spectrogram extracted directly from raw audio. The

audio stream is extracted from the video and converted to

single-channel, 16-bit streams at a 16kHz sampling rate for

consistency. Spectrograms are then generated in a sim-

ilar manner to that in [33], giving spectrograms of size

512 ⇥ 300 for three seconds of speech. We perform mean

and variance normalisation on every frequency bin of the

spectrum, but apply no further speech-specific preprocess-

ing (e.g. silence removal, voice activity detection, or back-

ground noise suppression).

Static Faces: Each input to the face stream consists of an

RGB image, which has been cropped from a source image

to contain only the region of the image surrounding a face.

The locations of these crops are provided by the datasets

used in our experiments (discussed further in Sec. 4)2. The

resulting region is then resized to a fixed 224⇥ 224 input.

Dynamic Faces: The annotated face regions contained in

video data are processed as face-tracks, defined to be con-

tiguous sequences of frames possessing the same identity.

To exploit dynamic cross-modal information from idiosyn-

cratic speaking styles, an estimate of motion is required.

Previous work that seeks to perform speaker recognition

solely with visual information [8, 9, 34, 56] tends to focus

primarily on the lip region. While useful biometric infor-

mation is concentrated around the lips, (e.g. when uttering

the same phoneme or word, different speakers have differ-

ent mouth shapes [34]), we hypothesise that the motion of

other facial features, e.g. eyes or eyebrows, or even the en-

tire motion of the head during speech, could be useful bio-

2Since in both datasets, the specified face regions yield a tight face crop,

we expand all crops by a factor of ×1.6 to incorporate additional context

into the face region.

metric cues for identification. We would therefore like to

work with a representation of this data that is capable of

extracting temporal information from each full face-track.

A wide range of approaches have been proposed to en-

able CNNs to exploit temporal information from video, in-

cluding 3D convolutions [18], optical flow [41] and dy-

namic images [6] which have proven to be particularly ef-

fective in the context of human action recognition. In this

work, we employ the dynamic image representation, which

computes a fixed size representation of a video sequence by

learning a ranking machine on the raw pixel input across a

given sequence of frames. See section 7 for variant imple-

mentation details.

3.2. Architectures

(1) Static Architecture: Our base architecture comprises

two face sub-networks and one voice sub-network. Both the

face and voice streams use the VGG-M architecture [10],

which achieves a good trade-off between efficiency and

performance. The features from each stream are fused

through concatenation to form a 3072-dimensional fea-

ture3, which is then processed by three fully connected

layers with hidden units of dimensionality 1024, 512 and

2 respectively. Further details of each sub-network can be

found in the appendix.

(2) Dynamic-Fusion Architecture: Motivated by the ef-

fectiveness of dual stream architectures that combine RGB

images with temporal features in action recognition [6, 41],

we also explore a variant of the base architecture which in-

cludes an additional dynamic image stream for each input

face. The features computed for each face (RGB + dy-

namic) are combined after the final fully connected layer

in each stream through summation. In more detail, given an

augmented input set x = {v, f1, f2, d1, d2}, where d1 and

d2 are dynamic face inputs, we compute the representation

φ(x) = φ2◦
h

(φf (f1)+φd(d1))⊕(φf (f2)+φd(d2))⊕φa(v)
i

where ⊕ denotes concatenation, φf represents the RGB

face sub-network, φd the dynamic image face sub-network,

φa the operations of the audio sub-network, and φ2 the

modality-shared fully connected layers on top. The two

static face streams and two dynamic face streams share

separate weights, allowing the different types of face input

to be treated accordingly.

(3) N-way Classification Architecture: We further extend

the architecture to deal with the more challenging task of

developing a general cross-modal biometric system that is

capable of solving an N : 1 identification problem. The

3Each of the three sub-networks produces a 1024-dimensional vector.
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Train Val Test Total

# of identities 942 116 189 1,247

VGGFace Dataset

# of face images 873,382 47,759 74,564 995,705

VoxCeleb Dataset

# of speech segments 116,480 14,630 22,376 153,486

# of videos 16,820 2,044 3,425 22,295

Table 1: Statistics for the VGGFace and VoxCeleb datasets. The

numbers shown here are only for the overlapping identities in the

two datasets.

input to this network consists of an anchor voice segment

v, 1 positive face and N − 1 negative faces. As before, the

target label y 2 {1, 2, . . . , N} denotes the position of the

positive face, resulting in an N -way classification problem.

As a consequence of using concatenation as a fusion

layer in our base architecture, the number of face streams

cannot be adjusted during inference. This shortcoming is

common to many CNN architectures, where it is difficult

to change the number of inputs at test time. One approach

to resolving this issue would be to concatenate the voice

to each face stream separately, however in this scenario

each face stream would be unaware of the presence of the

other streams. In order to avoid this problem, we add a

mean pooling layer to each face stream which calculates

the ‘mean face’ of all the faces in a particular query, thereby

making each stream context aware. We refer to this simple

concept as ‘query pooling’.

4. Datasets and Training

Due to the novel nature of the task explored in this work,

no large-scale public benchmarks exist for evaluating our

approach. We therefore construct a new dataset to train and

evaluate our method by combining two available datasets

with overlapping identities:

VGGFace [36]: VGGFace is a large-scale dataset of still

face images collected from search engines. We use the ‘cu-

rated’ version of this dataset.

VoxCeleb [33]: VoxCeleb is a large-scale audio-visual

dataset of human speech collected from YouTube videos.

Since this dataset is collected ‘in the wild’, it covers a wide

range of different recording environments and background

noise levels. This dataset contains both video and audio.

For the purposes of this task, we use only the data for the

1, 247 identities that overlap between the two datasets.

Train/Test Split: Identities in the train and test datasets do

not overlap. All speakers whose names start with ‘A’ or ‘B’

are reserved for validation, while speakers with names start-

ing with ‘C’, ‘D’, ‘E’ are reserved for testing. This yields a

good balance of male and female speakers (dataset statistics

are given in table 1).

Gender, Nationality and Age (GNA) Variation: To enable

a more thorough analysis of our method, gender and na-

tionality labels for speakers in the dataset were obtained by

crawling Wikipedia. Note that we crawl for nationality, and

not ethnicity, since this is a variable typically more informa-

tive of accent. The distribution of nationalities across the

dataset is given in Appendix B. We use these labels to con-

struct a more challenging test set, wherein each triplet con-

tains speakers of the same gender, broad age bracket (speak-

ers between the ages of 30-50 years old were selected man-

ually), and nationality (we restrict to U.S nationals). We

note that these conditions are similar to those established

during the human perception studies discussed previously

[19, 26, 37].

In the sections that follow, we refer to each input x con-

taining two face (either from stills or video) and one voice

representation as a triplet.

4.1. Training Protocol

All networks are trained end-to-end using stochastic gra-

dient descent with batch normalisation. We use a minibatch

size of 64, momentum (0.9), weight decay (5E − 4) and

a logarithmically decaying learning rate (initialised to 10−2

and decaying to 10−8). The face and voice sub-networks are

initialised using the pre-trained weights from the VGGFace

and VoxCeleb models trained for face and speaker identifi-

cation respectively, while the modality shared weights are

initialised from a Gaussian distribution. When processing

face images, we apply the data augmentation techniques

used on the ImageNet classification task by [42] (i.e. ran-

dom cropping, flipping, colour shift). For the audio seg-

ments, we change the speed of each segment by choosing a

random speed ratio between 0.95 to 1.05. We then extract a

random 3s segment from the audio clip at train time. Train-

ing uses 1.2M triplets that are selected at random (and the

choice is then fixed). Networks are trained for 10 epochs, or

until validation error stops decreasing, whichever is sooner.

5. Experiments

5.1. Tasks

Static Matching: Under the static evaluation, each test

sample consists of two static face images and single speech

segment. To construct the test set for this benchmark, we

use audio segments from VoxCeleb [33] and face images

from VGGFace [36]. We make use of both still images from

VGGFace and frames extracted from the videos in the Vox-

Celeb dataset during training. When processing frames ex-

tracted from the VoxCeleb videos, we ensure that the audio

segments and frames in a single triplet are not sourced from

the same video.

Dynamic Matching: The dynamic evaluation assesses per-

formance on videos of human speech. In addition to static

cross-modal biometrics, in this setting a person’s ‘manner

of speaking’ may also provide important source of iden-

tity information. The dataset for this benchmark consists

of videos and audio both extracted from VoxCeleb [33]. A
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triplet in this case consists of two face-tracks and one audio

segment.

For the purposes of this task, it is important to minimise

any correlation or mutual information based on audio-visual

synchrony which could arise if the audio and visual data

were extracted at the same time (for example: mouth mo-

tion based on the exact lexical content of the sentence, the

emotional state of the speaker etc.). While interesting in

their own right, these factors do not constitute cross modal

biometrics for person verification, and therefore exploiting

their presence to solve the matching task is not the objective

of this work; we wish to be sensitive only to identity. Hence

we ensure that the audio segments and face-tracks in a sin-

gle triplet are not sourced from the same video. While we

experiment with different methods for extracting dynamic

information from a face-track (described in detail in sec-

tion 7), the best results were obtained using dense sampling

in order to obtain multiple aligned RGB and dynamic im-

ages from each face-track. These inputs are then fed into

the fusion architecture.

N-way Classification: We also extend the V-F task to one

of 1 : N classification. It is important to note that such

a task is extremely challenging, particularly since as N in-

creases, the likelihood of solving the problem using isolated

variables such as age, gender or ethnicity in isolation (or in

combination) diminishes. We use the N-way classification

architecture (figure 2, right) to tackle this task. This archi-

tecture allows us to train with any number of face images

NTr, and then test with any number of test images NTe,

where NTr does not have to be equal to NTe. We experi-

mented with different values of NTr = 2, 3, 5, however we

found that changing the number of faces at train time did not

significantly improve results. We therefore report results of

accuracy AI vs NTe trained using NTr = 2 (figure 3).

Evaluation Protocol: The static and dynamic cases are

evaluated on 10, 000 triplets randomly chosen from the test

set. This gives a good balance of easy and difficult triplets.

The N-way case is evaluated on 10, 000 inputs, again cho-

sen randomly. Since RGB frames and dynamic images are

extracted densely for the dynamic case, at test time we adopt

a simple ensembling strategy. Frame predictions are aver-

aged to give a single prediction per triplet. Since we may

have two face-tracks of differing lengths in each triplet, the

frames from the longer face-track are selected using a stride

s, where s =
j

length(F1)
length(F2)−1

k

and F1 and F2 are the two

face-tracks. For all three of the above cases, we use the en-

tire audio segment at test time with standard average pool-

ing, following the exact procedure used in [33].

5.2. AMT Human Baselines:

Since there are no prior baselines to compare to, it is

useful to have a measure of how well humans are able to

perform forced matching between faces and voices. Direct

comparison with studies on human perception [19, 26, 37]

is infeasible given the likely difference in distributions of

datasets. We therefore calibrate the difficulty of our dataset

by performing our own human study on Amazon Mechan-

ical Turk (AMT). For this study, a set of 500 triplets were

randomly sampled from the static test set. Each sample was

shown to 20 different workers on AMT in batches of five

triplets. An in-depth description of the study can be found

in appendix C, and the results are shown in table 2.

5.3. Evaluation Measures

We define two metrics to evaluate performance; Identi-

fication Accuracy and Marginal Accuracy. Following the

notation introduced in Sec. 3, let D = {xn, yn}
N
n=1 denote

a set of labelled examples where each input triplet takes the

form x
(i,j)
n = {v(i), f (i), f (j)}, i, j 2 I (here I denotes the

set of identities). We define the identification accuracy of a

predictive model g as follows:

AI =
1

N

X

n

|g(x(i,j)
n ) = yn|

We further define the marginal accuracy of a predictive

model g as:

mA(s) =
1

Ns

X

(i=s∨j=s)

|g(x(i,j)
n ) = yn|

where Ns := |{x
(i,j)
n : i = s _ j = s}| represents the

number of triplets containing the speaker s. Identification

accuracy provides a measure of performance on the entire

test set, while marginal accuracy enables us to determine

speaker-specific performance.

6. Results and Discussion

Static and Dynamic Matching: We report the results of

both the F-V and the V-F formulations for the static and

dynamic cases in table 2. The results for the dynamic task

are better than those for the static task (by more than 3%

for the V-F case). Since the identities in the two datasets

are exactly the same, we infer that this increase in accuracy

may be due to the presence of visually dynamic information

from articulatory patterns.

N-way classification: The accuracy AI vs NTe for a model

trained using NTr = 2 is shown in figure 3. As observed

from figure 3, although AI reduces as the number of faces

at test time NTe increases, the ratio AI/AR indicating the

relative improvement of the proposed system compared to

chance AR remains relatively stable, validating the efficacy

of our approach.

V-F vs F-V cases: The similar accuracies suggest that the

task is highly symmetric in nature, aligning closely with
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Static Test Dynamic Test

AI (Total) AI (GNA-var removed) AI (Total) AI (GNA-var removed)

V-F 81.0 63.9 84.3 67.4

F-V 79.5 63.4 82.9 65.6

Human Baseline (V-F) 81.3 57.1 - -

Table 2: Results are reported using % Identification Accuracy AI which is calculated using 10,000 test triplets. Since this is a 2-way

forced matching task, chance is 50%.

Figure 3: Top-1, top-2 and top-5 identif. acc. (AI ) vs the number

of face images NTe at test time. As can be seen from the graph,

the model performs well above chance for all values of NTe.

the outcome of a prior study in human perception [19].

Comparison to the Human Benchmark: The AMT stud-

ies show good human performance on the static test set

without GNA-variation removal. As can be seen in ta-

ble 2, the model is comparable to human performance on

this task. On the more challenging test set with GNA-

variation removed, however, human performance is signif-

icantly lower. Interestingly, on this setting the model man-

ages to exceed human performance, which may suggest the

presence of subtle cross-modal biometrics that are difficult

for un-trained humans to identify. We note however, that

it is difficult to eliminate all biases that may be exploitable

by humans/algorithms performing this task. For instance,

since the images in our dataset are sourced from the identi-

ties of celebrities (which may occasionally be recognised by

the workers), there is likely to be a degree of positive bias

in the results from the human study. Moreover, as a conse-

quence of the large-scale nature of the data, it may be pos-

sible for the model to learn to use other correlated factors

which would be difficult to detect without extensive anno-

tation, e.g. speakers of certain professions, such as sports-

people, may be more likely to be interviewed outside.

Marginal Accuracies: An examination of the marginal ac-

curacies of our model shows that some face-voice com-

binations are significantly more discriminative than others

(figure 4). Three speakers who appear to be particularly

distinctive, (all with marginal accuracies above 90%), are

‘Cameron Boyce’, who is a child actor, ‘Estelle Harris’,

AB D

A B C

C

D

Figure 4: Marginal Accuracies: Marginal accuracies are com-

puted for all speakers in the test set for the static V-F task. The

highest marginal accuracies are for A. Celia Imrie, B. Cassandra

Peterson, C. Cameron Boyce and D. Estelle Harris.

who (quoting directly from her Wikipedia page) is ‘eas-

ily recognised by her distinctive, high-pitched voice’ and

‘Cassandra Peterson’ who portrays the horror hostess char-

acter Elvira, Mistress of the Dark. Both Estelle and Cas-

sandra have unconventional hairstyles and make up, as well

as highly distinctive manners of speaking. While the task

is made easier with particularly distinctive identities such

as those mentioned above, we observe that accuracies are

above random regardless of the identity of the speaker in

the test set, suggesting that the trained model should gener-

alise reasonably well to other speakers.

7. Ablation Analysis

What is the best way to capture articulatory patterns?

We experiment with three different methods of incorporat-

ing dynamic features in our architecture: The first com-

putes a single dynamic image per face-track via approxi-

mate rank pooling. Since a single face track can contain a

long sequence of facial dynamics which can be challeng-

ing to capture compactly, we also experiment with the Mul-

tiple Dynamic Image (MDI) formulation proposed in [5]

in which a sequence of k dynamic images are computed

from sets of m contiguous frames at uniformly sampled lo-

cations. Each dynamic image is processed independently

by the early part of the network and then fused later in the

architecture through temporal pooling. In our experiments

we take both k and m to be 10, which was found to be most
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Figure 5: Examples of dynamic images for two identities repre-

sented using a single image per face-track (leftmost image in each

row) and multiple images per track (5 images on the right). Note

how lip motion has clearly been encoded in some of the frames.

effective in [5]. Differently from the task of action recogni-

tion, where the entire video may be needed to inform some

actions (e.g. “backhand flick”), we require only local de-

scriptors of motion in order to effectively capture the ‘man-

ner of speaking’ of a speaker. We therefore also experiment

with a third “dense” dynamic image formulation sampled at

a fixed stride (thus m remains fixed at 10 but k depends on

the length of the face-track).

Temporal Pooling: To enable the network to ingest mul-

tiple dynamic images (MDI), we adopt a simple tempo-

ral pooling scheme: for a sequence of input frames X =
x1, . . . , xT , we compute a representation φ(X ) = φ2 ◦
pool(φ1(x1), . . . , φ1(xT )), where φ1 comprises the set of

operations up to pool5 in the face sub-network, followed

by a max-pooling over the time dimension before the fully

connected layers φ2 of the network are applied.

Experiment 1: Video as a collection of static frames:

Our first dynamic experiment simply treats each video as

a bag of independent static frames. Since each face-track is

a representation of the person speaking, some limited infor-

mation, including mouth shape and facial contortion during

speech, can be learnt from individual frames. The static ar-

chitecture (Figure 2, left) can be used in this case, on RGB

frames extracted from the video, with frames extracted in a

dense manner with a stride of 6.

Experiment 2: SDI (Single Dynamic Image) per face-

track: In this experiment a single dynamic image is com-

puted to represent the entire face-track. Since there is a sin-

gle image per face input, we can once again make direct use

of the static architecture (Figure 2, left).

Experiment 3: MDI (Multiple Dynamic Images) with

temporal pooling: We also experiment with multiple dy-

namic images in order to capture local variations in motion.

In this experiment 10 uniformly sampled dynamic images

are extracted per face-track and the static architecture (fig-

ure 2, left) with temporal pooling is used.

Experiment 4: RGB + SDI fusion: In this experiment we

use the dynamic fusion architecture (figure 2, middle). A

single RGB frame and dynamic image per track are fed into

the network along with the audio segment.

Experiment 5: RGB + MDI fusion: We also use dense

sampling in order to obtain multiple aligned RGB and dy-

Dynamic Formulation AI (Total)

1. RGB 79.2 ± 0.1

2. Dynamic (SDI) 76.9 ± 0.6

3. Dynamic (MDI) 79.9 ± 0.2

4. RGB + SDI Fusion 82.4 ± 0.3

5. RGB + MDI Fusion 84.3 ± 0.2

Table 3: Results using different dynamic formulations for the

dynamic matching F-V task; SDI: Single dynamic Image; MDI:

Multiple Dynamic Images; The best performance is achieved us-

ing both RGB and MDI fusion.

namic images from each face-track. These inputs are then

fed into the fusion architecture, and results are ensembled at

test time (this is done in a similar manner to experiment 1,

but over the dynamic images as well).

The results on the dynamic test set are given in table 3.

To provide a measure of variance, we sampled 10, 000
triplets from the set of all possible triplets on the test iden-

tities ten times (with replacement). We report means and

std devs for the % accuracy. As expected, using multi-

ple dynamic images instead of a single dynamic image per

track leads to a substantial increase in classification accu-

racy, possibly due to the ability to capture local variations

in motion. In order to determine whether the network is

learning the face motion of the speaker (and not simply re-

lying on the RGB frame input) we also trained the network

with dynamic images only (experiments 2 & 3). As seen

from figure 5, it is harder to discern latent variables like

age, gender, ethnicity in these images, while mouth motion

is clearly encoded. Using these dynamic images alone, we

still achieve an accuracy of 77%, suggesting that the net-

work may be able to exploit dynamic cross-modal biomet-

rics.

8. Conclusion

In this paper, we have introduced the novel task of cross-

modal matching between faces and voices, and proposed a

corresponding CNN architecture to address it. Under a bi-

nary forced matching constraint, the model is able to match

human performance on easy faces and exceed human per-

formance under the more challenging setting in which the

speaker pair possesses the same gender, age and nationality.

The results of the experiments strongly suggest the exis-

tence of cross-modal biometric information, leading to the

conclusion that perhaps our faces are more similar to our

voices than we think.
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[8] H. E. Çetingúl, E. Erzin, Y. Yemez, and A. M. Tekalp. Mul-

timodal speaker/speech recognition using lip motion, lip tex-

ture and audio. Signal processing, 86(12):3549–3558, 2006.
[9] H. E. Cetingul, Y. Yemez, E. Erzin, and A. M. Tekalp. Ro-

bust lip-motion features for speaker identification. In Proc.

ICASSP, volume 1, pages I–509. IEEE, 2005.
[10] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.

The devil is in the details: an evaluation of recent feature

encoding methods. In Proc. BMVC., 2011.
[11] J. S. Chung. Out of time: automated lip sync in the wild. In

Workshop on Multi-view Lip-reading, ACCV, 2016.
[12] J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman. Lip

reading sentences in the wild. In Proc. CVPR, 2017.
[13] E. Cvejic, J. Kim, and C. Davis. Recognizing prosody across

modalities, face areas and speakers: Examining perceivers

sensitivity to variable realizations of visual prosody. Cogni-

tion, 122(3):442–453, 2012.
[14] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouel-

let. Front-end factor analysis for speaker verification. IEEE

Transactions on Audio, Speech, and Language Processing,

19(4):788–798, 2011.
[15] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-

supervised video representation learning with odd-one-out

networks. arXiv preprint arXiv:1611.06646, 2016.
[16] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,

T. Mikolov, et al. Devise: A deep visual-semantic embed-

ding model. In Advances in neural information processing

systems, pages 2121–2129, 2013.
[17] H. Hollien and G. P. Moore. Measurements of the vocal folds

during changes in pitch. Journal of Speech, Language, and

Hearing Research, 3(2):157–165, 1960.
[18] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. PAMI, 35(1):221–

231, 2013.
[19] M. Kamachi, H. Hill, K. Lander, and E. Vatikiotis-Bateson.

Putting the face to the voice’: Matching identity across

modality. Current Biology, 13(19):1709–1714, 2003.
[20] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In Proc. CVPR,

pages 3128–3137, 2015.
[21] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and

E. Brossard. The megaface benchmark: 1 million faces

for recognition at scale. In Proc. CVPR, pages 4873–4882,

2016.
[22] E. Khoury, L. El Shafey, C. McCool, M. Günther, and

S. Marcel. Bi-modal biometric authentication on mobile

phones in challenging conditions. Image and Vision Com-

puting, 32(12):1147–1160, 2014.
[23] R. Kiros, R. Salakhutdinov, and R. Zemel. Unifying

visual-semantic embeddings with multimodal neural lan-

guage models. arXiv preprint arXiv:1411.2539, 2014.
[24] R. M. Krauss, R. Freyberg, and E. Morsella. Inferring speak-

ers physical attributes from their voices. Journal of Experi-

mental Social Psychology, 38(6):618–625, 2002.
[25] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi,

A. C. Berg, and T. Berg. Babytalk: Understanding and gener-

ating simple image descriptions. IEEE PAMI, 35(12):2891–

2903, 2013.
[26] L. Lachs and D. B. Pisoni. Specification of cross-

modal source information in isolated kinematic displays of

speech. The Journal of the Acoustical Society of America,

116(1):507–518, 2004.
[27] K. Lander, H. Hill, M. Kamachi, and E. Vatikiotis-Bateson.

It’s not what you say but the way you say it: matching faces

and voices. Journal of Experimental Psychology: Human

Perception and Performance, 33(4):905, 2007.
[28] N. Le and J.-M. Odobez. Improving speaker turn embedding

by crossmodal transfer learning from face embedding. arXiv

preprint arXiv:1707.02749, 2017.
[29] X. Lin and D. Parikh. Don’t just listen, use your imagination:

Leveraging visual common sense for non-visual tasks. In

Proc. CVPR, pages 2984–2993, 2015.
[30] A. Mahendran and A. Vedaldi. Understanding deep image

representations by inverting them. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 5188–5196, 2015.
[31] M. Malinowski and M. Fritz. A multi-world approach to

question answering about real-world scenes based on uncer-

tain input. In NIPS, pages 1682–1690, 2014.
[32] S. Mallat. Understanding deep convolutional networks. Phil.

Trans. R. Soc. A, 374(2065):20150203, 2016.
[33] A. Nagrani, J. S. Chung, and A. Zisserman. Voxceleb:

a large-scale speaker identification dataset. In INTER-

SPEECH, 2017.
[34] H. Ouyang and T. Lee. A new lip feature representation

method for video-based bimodal authentication. In Proceed-

ings of the 2005 NICTA-HCSNet Multimodal User Interac-

tion Workshop-Volume 57, pages 33–37. Australian Com-

puter Society, Inc., 2006.
[35] A. Owens, W. Jiajun, J. McDermott, W. Freeman, and

A. Torralba. Ambient sound provides supervision for visual

learning. In Proc. ECCV, 2016.
[36] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In Proc. BMVC., 2015.
[37] L. D. Rosenblum, N. M. Smith, S. M. Nichols, S. Hale, and

J. Lee. Hearing a face: Cross-modal speaker matching us-

ing isolated visible speech. Perception & psychophysics,

8435



68(1):84–93, 2006.
[38] A. Roy and S. Marcel. Introducing crossmodal biometrics:

Person identification from distinct audio & visual streams. In

Biometrics: Theory Applications and Systems (BTAS), 2010

Fourth IEEE International Conference on, pages 1–6. IEEE,

2010.
[39] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny. Speaker

adaptation of neural network acoustic models using i-

vectors. In ASRU, pages 55–59, 2013.
[40] S. M. Sheffert and E. Olson. Audiovisual speech facili-

tates voice learning. Attention, Perception, & Psychophysics,

66(2):352–362, 2004.
[41] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, pages

568–576, 2014.
[42] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.
[43] H. M. Smith, A. K. Dunn, T. Baguley, and P. C.

Stacey. Concordant cues in faces and voices: Testing

the backup signal hypothesis. Evolutionary Psychology,

14(1):1474704916630317, 2016.
[44] H. M. Smith, A. K. Dunn, T. Baguley, and P. C. Stacey.

Matching novel face and voice identity using static and

dynamic facial images. Attention, Perception, & Psy-

chophysics, 78(3):868–879, 2016.
[45] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudan-

pur. Deep neural network embeddings for text-independent

speaker verification. Proc. Interspeech 2017, pages 999–

1003, 2017.
[46] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face

representation by joint identification-verification. In NIPS,

pages 1988–1996, 2014.
[47] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deep-Face:

Closing the gap to human-level performance in face verifica-

tion. In IEEE CVPR, 2014.
[48] R. Thornhill and A. P. Møller. Developmental stability,

disease and medicine. Biological Reviews, 72(4):497–548,

1997.
[49] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,

R. Mooney, and K. Saenko. Translating videos to natural lan-

guage using deep recurrent neural networks. arXiv preprint

arXiv:1412.4729, 2014.
[50] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In CVPR, pages

3156–3164, 2015.
[51] J. Wang, K. Markert, and M. Everingham. Learning models

for object recognition from natural language descriptions. In

Proc. BMVC., 2009.
[52] T. Wells, T. Baguley, M. Sergeant, and A. Dunn. Per-

ceptions of human attractiveness comprising face and voice

cues. Archives of sexual behavior, 42(5):805–811, 2013.
[53] H. Yehia, P. Rubin, and E. Vatikiotis-Bateson. Quantitative

association of vocal-tract and facial behavior. Speech Com-

munication, 26(1):23–43, 1998.
[54] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European conference on com-

puter vision, pages 818–833. Springer, 2014.
[55] J. Zhang, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff. Top-

down neural attention by excitation backprop. In European

Conference on Computer Vision, pages 543–559. Springer,

2016.
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