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Abstract

Gestures are a common form of human communication

and important for human computer interfaces (HCI). Re-

cent approaches to gesture recognition use deep learning

methods, including multi-channel methods. We show that

when spatial channels are focused on the hands, gesture

recognition improves significantly, particularly when the

channels are fused using a sparse network. Using this tech-

nique, we improve performance on the ChaLearn IsoGD

dataset from a previous best of 67.71% to 82.07%, and on

the NVIDIA dataset from 83.8% to 91.28%.

1. Introduction

Gestures are a natural form of human communication.

When accompanying speech, gestures convey information

about the intentions, interests, feelings and ideas of the

speaker [17]. Gestures are even more important in noisy

environments, at a distance, and for people with hearing

impairments. In these scenarios, gestures replace speech as

the primary means of communication, becoming both more

common and more structured [21].

Automatic gesture recognition is therefore an impor-

tant domain of computer vision research, with applications

in Human/Computer interfaces (HCI). Not surprisingly, a

large literature has developed on gesture recognition; see

[4, 25, 12, 1] for surveys. A good way to measure progress

in this crowded field is to look at the ChaLearn chal-

lenges, which started in 2011 and have continued through

2017 [11, 8, 10, 9, 7, 6]. The current ChaLearn IsoGD [30]

dataset is one of the largest and most varied gesture datasets

available, with 249 gestures from a variety of domains in-

cluding mudras (Hindu/Buddhist hand gestures), Chinese

numbers, and diving signals. The ChaLearn 2017 challenge

attracted competitors from across the world [29], and the

results of that challenge can be reasonably interpreted as

reflecting the current state of the art.

If there is a downside to the ChaLearn challenge and the

IsoGD dataset, it is that they are not closely tied to any

specific HCI application. For this reason, we also track

progress on the NVIDIA driving gesture dataset [23], which

mimics touch-less interfaces in cars. As shown in Figure 1,

the NVIDIA setting is always the same, and the gestures

are made by drivers exclusively with their right hands. The

NVIDIA dataset is therefore a more focused counterpoint

to the wide-open IsoGD dataset.

Figure 1. Example images from the ChaLearn IsoGD dataset (left)

and NVIDIA dataset (right). NVIDIA gestures are constrained

driving gestures, while IsoGD contains many types of gestures

(mudras, diving gestures, etc.) in unconstrained settings.

This paper presents the best results reported so far on

the IsoGD and NVIDIA datasets. These results are gener-

ated by reintroducing an old idea: focus of attention. Ges-

tures have both global and local components. Some in-

volve sweeping motions of the arms and torso, while others

are defined by detailed hand poses. Nonetheless, previous

techniques for the ChaLearn and NVIDIA datasets process

whole images. In contrast, we train multiple nets with spe-

cific purposes: global channels to process the whole video

and look for gross motions, and focused channels to detect

and process each hand. By fusing information from these

channels, we raise the state-of-the-art (SOA) for recogni-

tion accuracy from 67.71% to 82.07% for IsoGD, and from

83.8% to 91.28% for NVIDIA.

Our architecture, which we call FOANet, builds on pre-

vious systems that use multiple channels to process differ-

ent data modalities, e.g. [22, 31, 34, 23]. Unlike previous

systems, however, FOANet uses spatial focus of attention

(FOA) to restrict some channels to focus on specific body

parts, namely hands. FOANet introduces a separate chan-

nel for every focus region (global, right hand, left hand) and

modality (RGB, depth, and two types of flow fields). The
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result is 12 channels processing different types of localized

data, as shown in Figure 2.
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Figure 2. The FOANet Network Architecture. The architecture

consists of a separate channel for every focus region (global, left

hand, right hand) and modality (RGB, depth, RGB flow and depth

flow). FOA module is used to detect hands. The video level soft-

max scores from 12 channels are stacked together. Sparse fusion

combines softmax scores according to the gesture type.

The 12 channels are only useful if the data can be fused

back together. It is tempting to train a neural net to fuse

the 2,048-dimensional features vectors from all 12 chan-

nels, but with only 35K training videos in IsoGD (and far

fewer in NVIDIA) there is not enough data to avoid overfit-

ting. This is why many multi-channel systems simply aver-

age the channel outputs, e.g. [31, 34, 23]. Instead, FOANet

uses a sparsely connected neural layer with one weight per

label × channel. For every gesture type, the sparse fusion

layer learns the relative importance of the different spatial

regions and data modalities.

In summary, the main contributions of the paper are:

1. State of the art recognition accuracies on the ChaLearn

IsoGD [30] and NVIDIA [23] data sets.

2. A novel architecture with focus of attention channels.

3. A novel sparse network architecture for fusing chan-

nels.

The rest of the paper is organized as follows: Section 2

reviews the related work on gesture recognition, multi-

channel networks, and the datasets used in this paper. Sec-

tion 3 introduces FOANet and provides the implementation

details needed to replicate the results. Experimental results

on the ChaLearn IsoGD dataset are provided in section 4,

and results on the NVIDIA dataset are presented in sec-

tion 5. Section 6 concludes the paper.

2. Related Work

ChaLearn LAP RGB-D Isolated Gesture Dataset

(IsoGD) [30] is a large multi-modal dataset for gesture

recognition. The dataset has 249 gesture labels performed

by 21 different individuals. It is split into three mutually ex-

clusive subsets: training, validation, and test. The training

set consists of 35,878 videos from 17 subjects, the valida-

tion set consists of 5,784 videos from 2 subjects, and the

test set consists of 6,271 videos from the other 2 subjects.

There have been ChaLearn gesture recognition chal-

lenges every year since 2011; the 2017 challenge reports

results on IsoGD [29]. Miao et al. [22] won the 2017 chal-

lenge using a C3D model [28] and Temporal Segment Net-

work [32] to extract features from RGB, depth and flow

fields. Features within each modality are fused using canon-

ical correlation analysis, and an SVM labels videos based

on the fused features from the different modalities. The

SYSU ISEE team processed skeleton data in addition to

RGB, depth and flow fields. They used a combination of

rank pooling, LSTMs and temporal streams, and fused the

streams using average fusion. Other participants of the chal-

lenge [31, 34] also used C3Ds and some form of LSTM for

temporal fusion. The resulting channels are fused together

by averaging softmax scores.

The closest method to ours is the heterogeneous net-

works of Wang et al. [31]. They use two types of networks:

3D ConvLSTMs to recognize gestures in videos and CNNs

to recognize gestures from dynamic images constructed by

rank pooling. They apply these networks at two spatial lev-

els, namely body and hands. The networks are run on RGB

and depth data and scores from the 12 modalities are aver-

aged together. Wang et al. detect bounding boxes around

the hands in every frame using F-RCNN [26] and elimi-

nate parts of the scene not within the bounding box circum-

scribed by the hands to avoid overfitting to the background.

For gestures involving big motions and/or two hands, the

bounding boxes approach the full size of the image, defeat-

ing the purpose of the hand channel. The hand level net-

works of Wang et al. are designed to eliminate background

but not to focus attention directly on the hands. In contrast,

we detect the right and left hands and select attention win-

dows around them, so that our focus nets are always focused

on hands alone. Karpathy et al. also had a similar idea of

training a global and focus net [16]. However, they fix atten-

tion to the center of the frame, relying on camera bias. This

will not work on ChaLearn and NVIDIA data sets, where

subjects are not centered on the frame.

Although ChaLearn is the largest gesture dataset avail-

able, the gestures are drawn from multiple domains. Re-

cently, Molchanov et al. released the NVIDIA Dynamic

Hand Gesture Dataset [23]. This dataset consists of 25 hu-

man computer interface gestures, performed by 20 subjects

indoors in a car simulator with both bright and dim artificial

lighting. The SoftKinetic DS325 sensor is used to acquire

front view color and depth videos and a top-mounted DUO

3D sensor is used to record a pair of stereo-IR streams. Sub-
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jects perform gestures with their right hand while observing

the simulators display and controlling the steering wheel

with their left hand. The dataset is split into a training set

of 1,050 videos and a test set of 482 videos. Molchanov et

al.’s recurrent three-dimensional convolutional neural net-

work is the best reported method on this dataset. Similar to

some of the entries of ChaLearn challenge, Molchanov et

al. use a 3D-CNN to extract local spatial-temporal features

and a recurrent network to aggregate transitions. Unlike the

ChaLearn competitors, Molchanov et al. use connectionist

temporal classification as the cost function to train the net-

work. RGB, depth, optical flow, IR image and IR disparity

streams are fused by averaging the softmax scores.

3. Approach

We propose a new approach to gesture recognition that

reintroduces the old idea of spatial focus of attention. Our

approach builds on the multi-channel approaches described

above, in which different channels process different data

modalities. We expand on this idea by dedicating channels

to 3 spatial attention regions: one for the whole scene, and

one each of the hands. The idea is to create an architecture

that reflects the structure of gestures, which are combina-

tions of large body movements and fine hand motions.

Figure 2 shows our proposed architecture. It has three

main components: 1) a focus of attention mechanism, 2) 12

separate global and focused channels, and 3) a fusion mech-

anism. The task of the FOA component is to detect hands.

We use Liu et al.’s hand detection network [19, 20] on the

ChaLearn data set. For the NVIDIA depth data, we use the

heuristic that the right hand is the closest object to the sen-

sor, while for NVIDIA RGB images we use the HandSeg-

Net of Zimmerman and Brox [35]. The global and focused

channels are CNNs modeled after ResNet [13], except that

focused channels have additional structure to process the

positions of the attention windows. Finally, fusion occurs

through a sparse network that learns which channels are im-

portant for each gesture.

The rest of this Section describes our approach in more

detail. Section 3.1 describes the global and focus channels.

Section 3.2 explains the sparse fusion network that com-

bines information across channels. The FOA mechanisms

and other details required to reconstruct the system are ex-

plained in Section 3.3.

3.1. Global & Focused Channels

As shown in Figure 2, global channels process the whole

video (one channel per data modality), while focused chan-

nels process each hand (one channel per hand/modality).

Global and focus nets are architecturally similar, with some

differences to account for the spatial location of the atten-

tion windows within the larger frame.

Global Channels: Global channels are based on 50

layer deep residual networks [13, 14]. ResNet-50 is a high-

performing network on the ImageNet challenge [5]. Al-

though there are deeper versions of ResNet (ResNet-101,

ResNet-152, ResNet-1001) and better performing architec-

tures on ImageNet like Inception-V4 [27] and Squeeze and

Excitation Network [15], ResNet-50 is selected for prac-

tical reasons: we need to train many channels, and each

ResNet-50 fits on a single GPU in our lab. Unlike the orig-

inal ResNet that takes a single image as input, the input to

a global channel is a stack of images. More precisely, the

input is a temporal window of 10 image frames that cap-

tures local motion information. Let w and h be the width

and height of the video. For an arbitrary frame t, we stack

10 consecutive frames around t (frames between [t-4,t+5])

to form a 30 channel input volume Iw×h×30

g . The first 4

and last 5 frames of the video are discarded. Other than the

first layer, the convolution and pooling layers of the global

channel are the same as in ResNet-50, and produce a 2048

dimensional feature vector as shown in figure 3. Also as

in ResNet-50, a fully connected layer followed by softmax

produces one output per label from the 2,048 feature vector.

Global channels are trained for four modalities: RGB,

depth, optical flow fields from RGB and optical flow fields

from depth images. Section 3.3 provides more details about

optical flow fields.

ResNet -50	

Convolutions	and	

Pooling

Input

240	x	320	x	30	(10	frames)

SM

2048	Features

FC1

Figure 3. Network Architecture of Global Channels. The input to

the network is a stack of 10 images resulting in a 240× 320× 30

volume. The input volume is passed through ResNet-50 convo-

lution and pooling layers resulting in 2048 features. A fully con-

nected layer on top produces a vector of softmax scores.

Focus Channels: Similar to the global channels, focus

channels take a stack of images as input and use 50 layer

deep residual networks [13, 14] as the network architecture.

Unlike the global channels, the input image stack is not a

stack of whole image, but instead is a stack of spatial image

windows focused around one of the hands. For an arbitrary

frame t, let (x1, y1) and (x2, y2) be the top left and bottom

right corners of the bounding box centered on a hand. Let

s = max(x2 − x1, y2 − y1) be the maximum side of the

bounding box. An input volumeIs×s×30

f that is centered on

the bounding box is cropped from Iw×h×30

g . The cropped

image stack If is then resized to I128×128×30

f and is given
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as input to the focus channels. Section 3.3 provides details

about hand detection.

To tell the focus channel where the hands are, we pro-

vide 14 additions location features (7 for each hand). The

location features are: (x, y) locations of top left and bottom

right corners of the bounding box, width and height of the

bounding box, and the ratio between the width and height.

If only one hand is visible, we set the features of the other

hand to zeros. These 14 features are passed through one

hidden layer of 14 nodes with a tanh activation function,

and the resulting 14 features are appended to ResNet-50’s

features as shown in figure 4. The resulting feature vector

is passed to a fully connected layer for classification.

A separate focus net is trained for each hand. For appli-

cations that involve only one hand, as in the NVIDIA data

set, a single focus net is trained for each modality. Similar to

global nets, focus nets are trained on four modalities: RGB,

depth, optical flow from RGB images and optical flow from

depth images, resulting in 4 (NVIDIA) or 8 (IsoGD) focus

nets depending on the number of hands.

ResNet -50	

Convolutions	

and	Pooling

Input

240	x	320	x	30

SM

2048	

Features

FC1

14	Location	Features

FC	Layer

Tanh

14	

Features

2062	

Features

Focus	of	

Attention

128	x	128	x	30

Figure 4. Network Architecture of Focus Channels. The input to

the network is a cropped volume centered on hands. The input

volume is passed through ResNet-50 convolution and pooling lay-

ers. In addition, 14 location features are passed through a fully

connected layer of 14 neurons with a tanh non-linearity. These

14 features are concatenated on to the ResNet features, and a fully

connected layer on top produces a vector of softmax scores.

Global and focus channels take a 10 frame sliding win-

dow as input and produce a vector of softmax scores at each

time step. To create a single softmax vector for the whole

video, we average the predictions. More formally, for every

frame t in video v (excluding the first 4 and last 5 frames),

a channel produces a vector of softmax scores of length C,

where C is the number of classes. These vectors can be

stacked together to form a C x T matrix. The softmax

scores for the video v are calculated by taking the mean

across the time axis; the argmax of the resulting mean soft-

max vector gives the gesture class prediction.

3.2. Sparse Network Fusion

The 12 global and focused channels shown in Figure 2

produce 12 response vectors. These vectors need to be com-

bined to produce a single gesture label per video. Many

multi-channel systems average response vectors together,

as we did for the temporal dimension. This is not the best

use of the available information, however; see Section 4.2

below. Unfortunately there is not enough training data to

train a fully connected neural layer to fuse the 2,048 or

2,062 dimensional feature vectors produced by the convo-

lutional networks inside each channel. With 12 channels,

the concatenated feature vector would be over 24,000 ele-

ments long, and the fusion layer as a whole would have to

learn over 6 million weights. With only about 35K training

videos in the IsoGD dataset, the network would overfit.

We propose a more directed learning mechanism. The

goal is to learn the properties of gestures. For example, the

diving gestures in ChaLearn were designed to be seen at

a distance through murky water, so they involve large arm

motions. Mudras, on the other hand, are small dextrous mo-

tions of one hand. Our goal is to learn how much weight to

assign to a channel, given a gesture, so that global chan-

nels are emphasized for diving gestures while right hand

channels are dominant for mudras. We therefore fuse chan-

nels using a sparsely connected network with one weight

per gesture × channel.

Let n be the number of channels and C be the set of

classes. For video v, let S = [s1, s2, s3, ..., sn] be the soft-

max scores, where si is a vector of length |C|. If a hand is

never visible or doesn’t move throughout the video (average

movement less than 4 pixels), the corresponding softmax

vector is set to all zeros. For each class c ∈ C, the weight

vectors Wc = [wc1, wc2, wc3, ..., wcn] should be calculated

to weigh the different channels according to their impor-

tance to gesture c.

We pose this problem as a perceptron learning prob-

lem where class weights are learned in tandem. Let W =
[W1,W2,W3, ...,W|C|] be the weight matrix to be learned.

The dimensions of softmax score matrix S are C x n and

the dimensions of weight matrix W are n x C. These two

matrices can be multiplied to create F: F = SW . The di-

mensions of F are |C| x |C|, and the diagonal elements of F

represent the softmax scores of classes multiplied with their

corresponding class weights (Fii = Si,∗.W∗, i), whereas

the off diagonal elements represent softmax scores of a

class multiplied with weights of different classes(Fij =
Si,∗.W∗,j). The off diagonal elements of matrix F are

therefore discarded by doing a Hadamard product of F with

a |C| × |C| identity matrix I . A softmax function is applied

to the diagonal elements of FI . The weight matrix W is

learned by back propagation using cross entropy loss and

mini-batch gradient descent. As the off-diagonal elements

are zeroed out by the Hadamard product with I , they do not

produce derivatives and the weights of a class are effected

only by their corresponding softmax scores.
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3.3. Implementation Details

This section describes two important components built

largely on prior work by others. While not themselves con-

tributions, understanding our system as a whole requires un-

derstanding how hands are detected (Section 3.3.1) and how

flow fields are computed (Section 3.3.2).

3.3.1 Hand Detection

For ChaLearn, we use the hand detection results provided

by Liu et al. [19, 20]. They use a two stream Faster R-

CNN for hand detection. First depth video is aligned to

RGB video and convolutions are run separately on RGB

and depth videos. Feature maps from RGB and depth maps

are stacked together. A Region proposal network [26] and

an object classifier is run on the stacked feature maps. The

hand detection results provided by Liu et al. do not differ-

entiate between right and left hands. Skeletons extracted

from RGB frames using multi-person pose estimation code

by Cao et al. [3] are used to distinguish left and right hands.

Right and left wrist skeleton estimates are interpolated

and extrapolated when necessary to fill in missing skeleton

joints in some frames. Then bounding boxes closest to the

wrist are found in RGB images using the approach of Liu et

al. The bounding boxes from RGB images are mapped onto

depth images by the following transformation: D = R−14

0.93
,

where R is a coordinate in RGB image and D is its corre-

sponding location in depth image.

For the NVIDIA dataset, hand detection results were not

available. However, the hand is the closest object to the

camera in the dataset. So, hand can be detected by consid-

ering the closest object to the camera in depth videos. To

segment hands in RGB videos, we use the HandSegNet of

Zimmermann and Brox [35]. HandSegNet is a 16 layer net-

work that is based on and initialized by the person detector

of Wei et al. [33]. For a given RGB frame, HandSegNet

returns a two channel image, one of which is a hand mask

and the other one is the background mask.

3.3.2 Optical Flow

Optical flow is computed from two adjacent frames sam-

pled using pyflow [24] - a python wrapper for dense opti-

cal flow [2]. As it is computationally not feasible to calcu-

late optical flow on the fly, we pre-compute the flow fields.

Moreover, we store the optical flow values as RGB images

to make it easy to store and work with the optical flow val-

ues. To store the flow fields as RGB images, the horizontal

and vertical components of the flow values are clipped at

-20, 20. Then magnitude of the both components is calcu-

lated. The horizontal, vertical and magnitude components

are rescaled to [0, 255] range independently and saved as

red, green, blue channels respectively of a RGB image.

4. ChaLearn IsoGD Experiments

To measure the effectiveness of spatial attention chan-

nels and gesture-based fusion relative to other techniques,

we compare the recognition accuracy of FOANet as shown

in Figure 2 to those of previous systems on the ChaLearn

IsoGD (this section) and NVIDIA (next section) data sets.

Since FOANet significantly outperforms previously pub-

lished results, we run additional experiments designed to

measure the contributions of specific parts of the system.

4.1. Methodology

4.1.1 Experimental Design

The 2017 ChaLearn IsoGD challenge asked participants to

classify videos as one of 249 gestures [29]. Participants

were given access to a set of 35,878 labeled training videos,

and a second set of 5,784 labeled validation videos. Par-

ticipants were encouraged to develop the best system they

could, training on the training videos and testing on the val-

idation videos. At the conclusion of the challenge, partic-

ipants were given access to a previously sequestered set of

6,271 labeled test videos. They were asked to evaluate their

system on the test videos without modification.

Since our system was developed after the challenge

deadline, we mimicked this experimental design as closely

as possible. We internally sequestered the test videos, and

did not test our system on them during development. We in-

crementally developed our system by training on the train-

ing videos and testing on the validation videos. At the end,

we evaluated the system only once and without modifica-

tion on the test videos.

Participants in the challenge generally report two sets of

numbers: performance on the validation data, and perfor-

mance on the test data. In Section 4.2 below, we do the

same.

4.1.2 Training Process

The convolutional nets inside the global and focused chan-

nels are trained using various forms of “warm starts”. The

convolutional nets in global channels are fine-tuned from

ResNet-50 pretrained on ImageNet [5]. The pretrained

ResNet-50 takes 3 channel images as input, whereas our

global channel nets takes 30 channels as input (a 10 image

stack with 3 bands per image). To account for this, the first

pretrained convolutional layer weights (7× 7× 3× 64) are

repeated 10 times and stacked together (7 × 7 × 30 × 64).
The last fully connected layer weights are randomly initial-

ized and the nets are trained end to end using mini-batch

stochastic gradient descent with momentum (set to 0.9) and

a random batch of size 64. The input volume is randomly

cropped to a 224× 224× 30 volume and random flipping is

performed for data augmentation. The learning rate lr is ini-
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tially set to 2e−4 and is decayed exponentially with a decay

factor df of 0.7 and decay steps ds of 40,000. The decayed

learning rate dlr at a step is calculated as dlr = lr ∗ df
step

ds .

The global channel convnets took 9 days to fine-tune on

the ChaLearn dataset using a single Titan X GPU. We used

the fine-tuned global channel as a warm start for the respec-

tive focus channels. For example, the RGB left hand and

RGB right hand focus channels are trained by fine-tuning

the RGB global channel. The convolution weights for focus

channels are initialized from the pretrained global channels

and the fully connected layer weights (location and last fully

connected layers) are randomly initialized. The input vol-

ume is randomly cropped to a 100 × 100 × 30 volume and

random flipping is performed by flipping left hand and using

it to train right hand nets and vice versa. Similar to global

channel nets, focus channel nets are also trained end to end

using mini-batch stochastic gradient descent with the same

momentum term, batch size and learning rate rules.

To learn the weights of the fusion layer, the softmax

scores of different channels of training data are precom-

puted. The weights are then trained using the Adam op-

timizer [18] with a batch size of 32. The initial learning

rate is set to 0.01 for first 10,000 steps, and is decreased to

0.001 till 20,000 steps and is further decreased to 0.0001.

The training is stopped after 50,000 iterations.

All convolutional networks are trained on training data,

and the best model is selected based on its accuracy on the

validation set. The best models are then used for testing,

and results are reported for both the validation and test set

(see Section 4.1.1). All models are trained in Tensorflow

on single NVIDIA Titan X GPU and evaluation is done on

single NVIDIA GTX 980 GPU.

4.1.3 Inference Process

During inference, data is passed through the convolutional

networks without augmentation (cropping or flipping). For

global channels, the input volume is 240 × 320 × 30; for

focus channels, the input volume is 128 × 128 × 30. For

an arbitrary video v and channel c, FC features and soft-

max scores are calculated at every timestep. These scores

are averaged across the video, resulting in a single softmax

vector. If a hand is never visible or it’s average movement is

less than 4 pixels throughout the video, the corresponding

softmax scores for that channel are set to all zeros. All the

scores are stacked together and are multiplied by the fusion

layer weights and the diagonal of the resulting matrix is ex-

tracted. The argmax of the diagonal is the predicted gesture

label.

4.2. Results

Our method achieves state-of-the-art performance on the

ChaLearn IsoGD dataset, as shown in Table 1. Table 1 also

System Valid Test

FOANet (this paper) 80.96 82.07

Miao et al. [22] (ASU) 64.40 67.71

SYSU IEEE 59.70 67.02

Lostoy 62.02 65.97

Wang et al. [31] (AMRL) 60.81 65.59

Zhang et al. [34] (XDETVP) 58.00 60.47

Table 1. ChaLearn IsoGD 2017 results. Entries are ordered by

their performance on test data. Results on systems other than ours

were previously reported in [29].

shows the top performing entries from the ChaLearn 2017

competition [29]. On the validation data we outperform the

previous SOA by 16.5%, with an accuracy of 80.96% com-

pared to the previous best of 64.4%. On the test set we

achieve an accuracy of 82.07%, outperforming the previous

state-of-the-art by 14.3%.

As already stated, focus of attention and sparse network

fusion are the keys to our method. To evaluate the contri-

bution of sparse network fusion, we replace it with average

fusion, i.e. averaging the output of the softmax layers of

the 12 channels. The average fusion version of FOANet

achieves better results than previous methods (67.38% vs

64.40% on validation set and 70.37% vs 67.71% on test set),

as shown in Table 2. Therefore, sparse network fusion im-

proves performance by 11.7%.

Another way to interpret this result, however, is that fo-

cus of attention channels are surprisingly powerful. The

other entries in Table 1 use 3D convolutions and RNNs. Our

approach with spatial attention channels outperforms these

techniques using only 2D convolutions, averaging across

time, and averaging across channels.

To probe further, we applied averaging to all possible

subsets of the 12 channels. With averaging as the fusion

mechanism, the best performance was achieved by a subset

of 7 of the 12 channels: 3 RGB flow channels, 2 depth focus

channels, the RGB right hand channel, and the depth flow

right hand channel. If we average these 7 channels together,

the accuracy is 69.06% on the validation set and 71.93% on

the test set, as shown in Table 2. This is roughly 1.5% bet-

ter than averaging all 12 channels, and suggests that 5 of the

channels produce as much noise as information. We see a

different pattern with sparse network fusion, however. By

using only 7 channels with sparse network fusion, the ac-

curacy decreases to 77.31% on the validation set and 78.9%
on the test set. With sparse network fusion the system learns

which channels to include for each gesture type, with the re-

sult that sparse network fusion benefits from the presence of

channels that hurt performance when averaging channels.

We also experimented with training a neural net to fuse

the FC feature vectors (2048 for global channels, 2062 for

focus channels) from all 12 channels and 7 channels. Un-

fortunately, this method doesn’t perform on par with sparse

network fusion or even simply averaging the softmax out-
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Fusion
Valid Test

12 Channels 7 Channels 12 Channels 7 Channels

Sparse 80.96 77.31 82.07 78.90

Average 67.38 69.06 70.37 71.93

Concatenation 56.03 55.29 59.44 58.84

Table 2. Comparison of fusion strategies. Accuracies are shown

for FOANet using sparse network fusion, channel averaging, and

concatenation for 12 channels (maximal for sparse nets) and 7

channels (optimal for averaging).

Validation Set

Global Left Right

RGB 33.22 16.17 (23.41) 41.60 (41.76)

Depth 27.98 23.76 (34.40) 54.91 (55.12)

RGB Flow 46.22 24.14 (34.95) 54.60 (54.81)

Depth Flow 31.66 21.84 (31.62) 48.32 (48.51)

Test Set

Global Left Right

RGB 41.27 16.63 (19.55) 47.41 (47.44)

Depth 38.50 24.06 (28.29) 64.44 (64.48)

RGB Flow 50.96 24.02 (28.23) 59.69 (59.73)

Depth Flow 42.02 22.71 (26.70) 58.79 (58.83)

Table 3. Individual channel accuracies on ChaLearn IsoGD val-

idation and test set. The numbers represent the accuracies on all

videos of validation and test set. However, not all videos have both

hands visible. The accuracies in brackets shows the accuracies on

the videos where the particular hand is visible.

puts, as shown in Table 2. The problem is overfitting: there

isn’t enough triaining data to constrain the weights.

4.3. Analysis of channels

Here we analyze the performance of channels indepen-

dently and in combination. Table 3 shows the accuracy of

each channel on the IsoGD validation and test sets. Un-

fortunately, the left and right hands are not visible in all

videos. Right hands are visible in 5,762 of 5,784 valida-

tion videos and 6,267 of 6,271 test videos, or in about 99%

of the videos. In contrast, left hands are only visible in

3,994 of 5,784 validation videos and 5,334 of 6,271 test

videos, or about 77% of the videos. The numbers in brack-

ets in Table 3 refer to the classification accuracies of focused

channels when limited to videos in which the corresponding

hand is visible.

A clear pattern emerges in the columns in Table 3: right

hands outperforms global channels and global channels out-

perform left hands in all eight cases. Presuming perfor-

mance is a guide to where the most useful information

resides, the most useful information is in the right hand.

This is not surprising since the dataset contains mostly right

handed participants, and participants tend to use their left

hand only for two-handed gestures. So even when the left

hand is visible, it is often idle. However, overall perfor-

mance is best when all channels are combined, suggesting

that the left hand is important for two-handed gestures and

that sparse network fusion is able to learn when to pay at-

tention to the left hand.

When we compare the rows in Table 3, the contributions

of the different data modalities are more complex. Global

channels perform best when they process flow fields ex-

tracted from RGB data. This is consistent with the idea that

global channels are looking for gross movements. Right

hand channels perform best on depth data, suggesting that

many of them may be poses rather than motions, although

they also perform well on RGB flow fields. Left hand chan-

nels perform roughly the same on depth and RGB flow field

data. We also note that flow fields extracted from depth data

don’t perform on par with flow fields extracted from RGB

data. This may be attributable to the fact that flow field ex-

traction algorithms are designed for RGB images, not depth

images, and suggests an opening for better flow field from

depth algorithms.

Next we combine channels from different modalities us-

ing sparse network fusion, as shown in Table 4. From the

first two fusion columns, we can see that the combination

of focus channels is better than the combination of global

channels. In fact, the fusion of focus channels is the best

combination, short of combining all channels. Moreover,

most of the information from focus is contributed by the

right hand alone which can be attributed to the right handed

bias in the dataset. We also notice that the fusion of RGB

and RGB flow nets is better than the fusion of depth and

depth flow nets on validation set. However on the test set,

depth + depth flow performed better. Looking back at Ta-

ble 3, we can see that “Depth Right” outperforms all other

channels on the test set and that contributed to depth modal-

ity’s overall performance. Next, we see that the fusion of

RGB and depth channels performs on par with the fusion

of RGB flow and depth flow channels. We also note that

all of the columns in Table 4 except for the global column

outperform the previous state-of-the-art.

5. NVIDIA Experiments

5.1. Methodology

5.1.1 Experimental Design

Recently, NVIDIA published a dataset of 25 gesture types

intended for touchless interfaces in cars. The dataset con-

sists of 1532 dynamic hand gestures performed by 20 sub-

jects. RGB, depth and a pair of stereo-IR streams are pro-

vided for each hand gesture, although we use only RGB and

depth streams. The data is split by subject into 1050 train-

ing and 482 test videos. As a validation set is not provided

with the dataset, we choose 1 subject from the training set

to be the validation set. We follow the same experimen-

tal design as in ChaLearn by incrementally developing our

system by training on the training videos and testing on the

validation videos. We evaluated the system only once and

without modification on the test videos.
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Validation Test Global Focus Right RGB Depth Raw Flow All

RGB Global 33.22 41.27 X X X X

RGB Left 23.41 19.55 X X X X

RGB Right 41.76 47.44 X X X X X

Depth Global 27.98 38.50 X X X X

Depth Left 34.40 28.29 X X X X

Depth Right 55.12 64.48 X X X X X

RGB Flow Global 46.22 50.96 X X X X

RGB Flow Left 34.95 28.23 X X X X

RGB Flow Right 54.81 59.73 X X X X X

Depth Flow Global 31.66 42.02 X X X X

Depth Flow Left 31.62 26.70 X X X X

Depth Flow Right 48.51 58.83 X X X X X

Validation 61.4 76.76 72.64 71.41 68.56 70.69 70.49 80.96

Test 67.5 77.61 74.46 75.41 76.39 75.29 74.39 82.07

Table 4. Results of fusing different combinations of channels. ’Raw’ refers to input from a stack of unprocessed images, whereas ’flow’

refers to input of a stack of flow field images. The last column matches the first row of Table 1. Bold-face numbers represent results that

are higher than the previous SOA. Note that all combinations involving focus channels beat the previous SOA.

Method Channels Accuracy

FOANet FOA + Sparse Fusion 91.28

FOANet FOA + Avg. Fusion 85.26

Human Color 88.4

Molchanov [23] All (including IR) 83.8

Molchanov [23] Depth + Flow 82.4

Table 5. Results on NVIDIA test set. The bold-face numbers rep-

resent results that are higher than previously reported results.

5.1.2 Training and Inference

The CNNs for the NVIDIA dataset are trained in a similar

way to the CNNs for the IsoGD dataset (See Section 4.1.2)

with three differences: 1) the CNNs are fine-tuned from the

respective channel nets trained on IsoGD; 2) flipping is not

used to augment the training set, as people always sit to

the left with their left hand on steering wheel and all ges-

tures are performed with the right hand only; 3) only right

hand focus channels are trained, since the left hand is never

visible. The inference process is similar to the process for

ChaLearn as discussed in Section 4.1.3, except that we do

not have any still hands in the dataset.

5.2. Results

FOANet performance surpasses both the previous best

result and human accuracy, as shown in Table 5. Our

method achieves an accuracy of 91.28%, a 7.5% increase

over the best previous result [23], and an increase of 8.9%

over the best previous result not using IR data. FOANet

even surpassed human level accuracy by 2.9%.

The accuracy of FOANet drops to 85.26% when sparse

network fusion is replaced by average fusion, emphasizing

the importance of sparse network fusion even in domains

with only one hand and no significant background changes.

However, the accuracy of 85.26% is still better than the pre-

vious SOA, reaffirming the importance of focus of attention

channels.

Table 6 gives per channel accuracies on NVIDIA test

RGB Depth RGB Flow Depth Flow

Global 43.98 66.80 62.66 58.71

Focus 58.09 73.65 77.18 70.12

Table 6. Individual channel accuracies on NVIDIA test set

data. Similar to ChaLearn, we can see that the focused RGB

flow field channel performs the best, followed by the fo-

cused depth channel. The general trend of focus channels

being better than global channel is also evident here.

6. Conclusion and Future Work

Gestures are an important form of communication, and

gesture recognition is an important application area for

computer vision. Using the ChaLearn IsoGD and NVIDIA

datasets as benchmarks, this paper shows recognition accu-

racy is significantly improved if convolutional channels are

used not just to process different modes of data, but to fo-

cus attention within the scene. In particular, much of the

information in gestures is in the hands, and channels that

focus on the hands raise recognition rates from 67.71% to

82.07% on the IsoGD dataset, and from 83.8% to 91.28%

on the more task-specific NVIDIA dataset.

We anticipate further improvements on FOANet. The

current architecture does not address temporal fusion in a

sophisticated way. Most gesture recognition networks fuse

information over time using RNNs (e.g. [23, 31, 34]). De-

spite being susceptible to overfitting on small training sets,

empirical data suggests RNNs nonetheless improve perfor-

mance, and we anticipate adding them into FOANet.
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