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Abstract

Hyperspectral reconstruction from RGB imaging has re-

cently achieved significant progress via sparse coding and

deep learning. However, a largely ignored fact is that ex-

isting RGB cameras are tuned to mimic human trichromatic

perception, thus their spectral responses are not necessar-

ily optimal for hyperspectral reconstruction. In this paper,

rather than use RGB spectral responses, we simultaneously

learn optimized camera spectral response functions (to be

implemented in hardware) and a mapping for spectral re-

construction by using an end-to-end network. Our core

idea is that since camera spectral filters act in effect like

the convolution layer, their response functions could be op-

timized by training standard neural networks. We propose

two types of designed filters: a three-chip setup without spa-

tial mosaicing and a single-chip setup with a Bayer-style

2x2 filter array. Numerical simulations verify the advan-

tages of deeply learned spectral responses compared to ex-

isting RGB cameras. More interestingly, by considering

physical restrictions in the design process, we are able to

realize the deeply learned spectral response functions by

using modern film filter production technologies, and thus

construct data-inspired multispectral cameras for snapshot

hyperspectral imaging.

1. Introduction

Hyperspectral imaging captures detailed light distribu-

tion along the wavelength axis. It is shown to be beneficial

for remote sensing, medical diagnosis, industrial detection,

and so on [12, 24]. For example, the tumor margin, invis-

ible to surgeon’s eyes, could be better visualized in hyper-

spectral images. Cases of leaked invisible gas may also be

obvious using spectral signals.

Most existing devices to capture hyperspectral images

are scanning based, that is, either to drive a line slit along

one spatial dimension (pushbroom scan) or to continuously

change narrow bandpass filters in front of a grayscale cam-

era (filter scan). The key drawback is that scanning is slow,

which prevents their application to dynamic scenes. Thus

scanning-free, snapshot hyperspectral devices have been

developed, by using for example, fiber bundles [25] and

random/regular aperture masks [32, 13, 7]. Unfortunately,

these devices are extremely limited in spatial resolution.

A computational hyperspectral reconstruction method

from a single RGB image is promising in overcoming the

drawbacks of the aforementioned devices, as evidenced in

recent research on RGB-to-Spectrum reconstruction [26,

28, 4, 17, 30, 3, 33]. However, existing RGB cameras, ei-

ther using the three-chip beam splitting prism technique or

single-chip Bayer filter array, are designed to mimic human

color perception [19], thus their spectral response functions

are not necessarily optimal for computer vision tasks, i.e.

hyperspectral reconstruction. Very recently, Arad and Ben-

Shahar [5] identified the dependence of hyperspectral re-

construction accuracy on the camera’s spectral response. In

[5], they find the best filter combination among a finite set

of candidate filters via brute force search and hit-and-run

evolutionary optimization.

The latest film filter production technologies have al-

lowed us to implement image sensors with any non-negative

and smooth spectral response functions. Therefore, rather

than selecting filters from existing ones, in this paper, we

aim to directly learn optimized spectral response functions

in the infinite space of non-negative and smooth functions.

We then manufacture our learned filter, based on this data-

driven approach to construct a multispectral camera for

snapshot hyperspectral imaging (Sec. 6).

Based on our observation that camera spectral filters act

in effect, like the convolution layer in neural networks (de-

tails in Sec. 4.2), we are able to optimize them by using

deep learning techniques. We simultaneously learn the opti-

mized filter response functions and the mapping for spectral

reconstruction via a high resolution end-to-end network. In-

spired by existing RGB cameras, we consider a three-chip

setup without spatial mosaicing and a single-chip setup with

a Bayer-style 2x2 filter array. Numerical simulations on

publicly available datasets verify the advantages of deeply

learned camera spectral responses over existing RGB cam-
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Figure 1. Our proposed design-realization-application framework for data-inspired spectral imaging hardware. The design stage (marked

in blue arrow) is data-driven. It includes an end-to-end network to simultaneously learn the filter response and the spectral reconstruction

mapping. The learned spectral response function on CAVE dataset is also shown. In the realization stage (marked in red arrow), the learned

response functions are realized by using film filter production technologies, and a data-inspired multispectral camera is constructed. In the

online application stage, the captured multispectral image is imported into the already trained spectral reconstruction network to generate

hyperspectral images. This framework is illustrated using the multi-chip setup with three channels.

eras.

With the deeply learned filters, we propose our data-

inspired multispectral camera for snapshot hyperspectral

imaging.

Our contributions can be summarized as follows:

1. The connection between camera spectral response

function and the convolution layer of neural networks.

We find that the camera spectral response can be re-

garded as a hardware implementation of the convolu-

tion layer.

2. By simulating the camera response as a convolution

layer and appending onto the spectral reconstruction

network, we can simultaneously learn the optimized

response functions and hyperspectral reconstruction

mapping.

3. We propose two setups for optimized filter design: a

three-chip setup without mosaicing and a single-chip

setup with a Bayer-style 2x2 filter array. We demon-

strate that the deeply learned response functions are

better than standard RGB responses in a specific com-

puter vision task, spectral reconstruction.

4. We realize the deeply learned filters by using inter-

ference film production technologies, and construct a

snapshot hyperspectral imaging system.

The remaining parts of this paper are organized as fol-

lows. In Sec. 2, we briefly discuss the related work. Sec.

3 highlights a novel framework for data-inspired hardware

construction, and Sec. 4 includes our end-to-end network

for simultaneous filter design and hyperspectral reconstruc-

tion. Numerical simulation results are shown in Sec. 5, and

the practical construction of the filters and imaging system

are given in Sec. 6. Finally, we conclude this research in

Sec. 7.

2. Related Work

To resolve the speed bottleneck of scanning based hy-

perspectral cameras, scanning-free devices have been pro-

posed by using, for example, fiber bundles [25] and aperture

masks with randomly [32, 13] or regularly [7] distributed

light windows. The major drawback of such snapshot de-

vices lies in their limited spatial resolution. There are also a

number of fusion based super-resolution algorithms to boost

the spatial resolution by using a high-resolution grayscale

[18, 35] or RGB [8, 20, 1, 22, 23, 2] image.

Rather than making a hyperspectral imager directly, ap-

proaches for increasing the spectral resolution of a single

RGB image have recently attracted much attention. The

key in hyperspectral reconstruction is to find a mapping be-

tween the RGB value and the high-dimensional spectral sig-

nal, which is obviously an ill-posed problem, and requires

proper priors for reconstruction. In [26], Nguyen et al. tried

to eliminate the illumination effect via a white balancing

algorithm, and learn the mapping from illumination-free

RGB values to reflectance spectra on the basis of a radial

basis function (RBF) network. Robles-Kelly [28] aimed

at the same problem and proposed to learn a representa-

tive dictionary using a constrained sparse coding method.

Arad and Ben-Shahar [4] focused on hyperspectral images

of natural scenes and developed an RGB-to-spectrum map-

ping method using sparse coding. Very recently, Jia et al.
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[17] examined the intrinsic dimensionality of natural hyper-

spectral scenes and proposed a three-dimensional manifold

based mapping method for spectral reconstruction.

In contrast to sparse coding and shallow neural net-

works, deep learning has recently been applied to RGB

based hyperspectral reconstruction. Galliani et al. [30]

first introduced a convolutional neural network for spec-

tral reconstruction from a single RGB image. They adapted

the Tiramisu network and reported favorable results over

the dictionary based method [4] and the shallow network

[26]. Alvarez-Gila et al. [3] applied a conditional generative

adversarial framework to better capture spatial semantics.

Xiong et al. [33] proposed a unified convolutional neural

network for hyperspectral reconstruction from RGB images

and compressively sensed measurements. Compared with

pixelwise operations [26, 28, 4], the imagewise operations

in deep learning based methods [30, 3, 33] are more likely

to incorporate spatial consistency in the reconstruction.

All the research above simulated RGB images using typ-

ical response functions from commercial RGB cameras.

Very recently, Arad and Ben-Shahar [5] recognized the ac-

curacy of hyperspectral reconstruction is dependent on the

filter response, and tried to find the best filter combination

among a finite set of candidate filters via brute force search

and hit-and-run evolutionary optimization. In this paper,

we further expand the search domain to the infinite space

of nonnegative and smooth curves. Leveraging powerful

deep learning techniques, we simultaneously learn an opti-

mized filter response and the spectral reconstruction map-

ping. Interestingly, our hardware implementation of opti-

mized filter responses has parallels with ASP vision [10],

which uses custom CMOS diffractive image sensors to di-

rectly compute a fixed first layer of the CNN to save energy,

data bandwidth, and CNN FLOPS. However, in the case of

ASP vision, their aim is to hard code a pre-defined edge fil-

tering layer that is common to CNNs and the v1 layer of the

human visual cortex. Then [10] uses it in solving various

tasks such as recognition efficiently. Our aim is to leverage

the CNN and deep learning framework to optimize camera

filter design. To our knowledge, we are the first to achieve

this and demonstrate accurate hyperspectral reconstruction

from our designed filters.

3. Design-Realization-Application Framework

In this paper, we advocate a novel design-realization-

application framework for data-inspired and task-oriented

spectral imaging hardware development, which is illus-

trated in Fig. 1. As for the data-driven design stage, we con-

struct an end-to-end network by appending a tailored convo-

lution layer onto the spectral reconstruction network. Since

we properly incorporate the nonnegativity and smoothness

constraints, the convolution layer acts in effect as the filter

spectral response functions that we aim to design. It en-

codes an input hyperspectral image into the most appropri-

ate hidden feature map (multispectral image), such that the

succeeding reconstruction network can recover the original

input hyperspectral image as faithfully as possible. In this

sense, our end-to-end network is similar to the autoencoder-

decoder.

In the realization stage, we try to physically realize the

deeply learned response functions by using film filter pro-

duction technologies. In the multi-chip setup, we can easily

construct a multispectral camera such that the output of this

camera is sufficiently close to the learned hidden feature

map. We admit that it is much more involved to realize the

learned filter array in the single-chip setup. Yet, we believe

this can be achieved in the near future, thanks to the latest

progress in micro filter array production technologies.

In the online application stage, we use the customized

multispectral camera to capture images, and directly im-

port them into the already trained reconstruction network to

generate hyperspectral images. Therefore, our reconstruc-

tion will in principle share all the benefits arising from deep

learning, as mentioned in [30, 3, 33].

It is worth mentioning that, compared with the study on

filter selection [5], our work not only expands the search do-

main for better filters, but also saves on reconstruction time,

since we do not need to calculate the sparse code online.

Also, in contrast to reconstruction, our designed filters ac-

tually offer a principled lossy compression method to save

on storage space for existing hyperspectral images.

Although our framework is presented for spectral recon-

struction, we believe it can also be generalized to many

other data-driven hardware design tasks.

4. Filter Design and Spectral Reconstruction

In this section, the details on the end-to-end network for

simultaneous filter response design and spectral reconstruc-

tion will be given. We will start with the spectral recon-

struction network, and later append a special convolution

layer onto it to learn the filter response functions as well.

4.1. Spectral Reconstruction Network

Noted that arbitrary end-to-end network could be used

for our spectral reconstruction. Here, for the sake of gen-

erality, we construct a spectral reconstruction network by

adapting the well-known U-net [29] architecture, which has

been widely used for image-to-image translation applica-

tions, such as pix2pix [16], CycGAN, Semantic Segmenta-

tion [31] and hyperspectral reconstruction [3]. Many previ-

ous encoder-decoder networks [27] pass the input through

a series of down-sampling operations, such as maxpooling,

until a bottleneck layer before reversing the process. Pass-

ing the information through these layers would inevitably

sacrifice much of low-level details in the high resolution

input grid. Therefore, in the image-to-image application,
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Figure 2. Similarity between the 1×1 convolution and the filter

spectral response.

the skip connection structure would allow low-level infor-

mation to be directly shared across layers. Basically, the

skip connection allows information to reach deeper layers

as applied in [15, 14, 11]. This structure can mitigate the

issue with vanishing/exploding gradients when the model is

“very deep” [14]. What is more, U-net also works well on

small sized training datasets [31]. This suits our application

particularly well as existing hyperspectral datasets are still

limited in scale.

We use modules formed as follows: 2D convolution-

BatchNorm-Relu. The network takes images of size

256×256×3 as input and finally produces the correspond-

ing spectral images of size 256×256×31. Let Ck denote a

convolutional block including one convolutional layer with

k filters, one leakyReLU activation layer, one BatchNor-

malization layer. The convolutional layer in each Ck has

3×3 sized kernels with stride 2. The downsampling factor

is 2, with proper zero padding to edges. The α parame-

ter in the leakyReLU layer is set to 0.2. CDk denotes the

same block as Ck, except that the convolution layer is re-

placed by the deconvolution layer. It upsamples the input

by a factor of 2 as well. A dropout layer with 50% dropout

rate is added after each block. The whole architecture

is composed as: C64-C128-C256-C512-C512-C512-C512-

CD512-CD512-CD512-CD256-CD128-CD64-CD31.

Compared to a standard U-net, we modify the last layer

of the U-net from 3 channels to 31 channels, and change

the loss function from cross-entropy to Mean Squared Error

(MSE).

4.2. Filter Spectral Response Design

As shown in Fig. 1, one key novelty of this paper is

in drawing the connection between camera color imaging

formulation and a convolutional layer. This allows us to

optimize the spectral imaging parameters by using exist-

ing network training algorithms and tools. For simplicity,

we will assume that the CCD/CMOS sensor has an ideal

flat response temporarily, and will address this factor when

constructing a real system.

Figure 3. The typical Bayer filter array setup and our special con-

volution kernel for the Bayer-style 2×2 filter array design.

Given the spectral radiance L(x, y, λ) at position (x, y),
the recorded intensity by a linear sensor coupled with a

color filter is given by

Ic(x, y) =

∫

λ

Sc(λ)L(x, y, λ)dλ, (1)

where λ is the wavelength and Sc(λ) is the spectral re-

sponse function of the color filter. In most commercial

cameras, there are red-green-blue trichromatic filters, i.e.

c ∈ {R,G,B}, so as to mimic the human color perception.

In practice, the above equation could be discretely ap-

proximated as

Ic(x, y) =
N
∑

n=1

Sc(λn)L(x, y, λn), (2)

where the filter response is in the form of a vector Sc =
[Sc(λ1), Sc(λ2), · · · , Sc(λN )] at sampled wavelengths, and

N is number of spectral channels.

An interesting observation is that Eq. 2 is identical to

the convolution operation of a 1x1 convolution kernel in

forward propagation. By regarding the filter spectral re-

sponse function Sc as the weight of 1x1 convolution kernel,

as shown in Fig. 2, the intensity Ic(x, y) could be inter-

preted as the output activation map of a convolution, which

is actually the dot product between entries of the convolu-

tion kernel (color filter) and input (incident light) L(x, y).
With this observation, as shown in Fig. 1, we now add a

1x1 convolution layer with three convolution kernels, which

act like the three color filters in a three-channel camera.

With the appended layer, we train this end-to-end network

with the N -channel hyperspectral images as input. With

this strategy, we can obtain the optimized spectral responses

from the learned weight of the 1x1 convolution kernel.

4.2.1 Multi-chip Setup without Mosaicing

Some commercial RGB cameras adopt the multi-chip setup,

that is, to have a separate color filter for each CCD/CMOS
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Figure 4. RMSE of each epoch of our designed and existing spec-

tral response function on the CAVE dataset [34].

sensor. They use the specialized trichroic prism assembly.

Without spatial mosaicing, they are usually superior in color

accuracy and image noise than the Bayer filter array assem-

bly in a single-chip setup. One alternative is to combine

beam splitters and color filters together, as illustrated in Fig.

1, which is suitable in constructing multi-channel camera

prototypes.

In this multi-chip setup, it is obvious that we can directly

obtain the filter spectral response functions as described

above.

4.2.2 Single-chip Setup with a 2x2 Filter Array

The majority of commercial RGB cameras have a single

CCD/CMOS sensor inside, and use the 2×2 Bayer color

filter array to capture RGB images with spatial mosaicing.

A demosaicing method is needed to obtain full-resolution

RGB images.

Our strategy could also be extended to this single-chip

scenario. Inspired by the spatial configuration of the Bayer

filter array, we consider a 2×2 filter array with three inde-

pendent channels, and design their spectral response func-

tions through our end-to-end network.

As illustrated in Fig. 3(a), in the Bayer filter array pat-

tern, in each 2×2 cell, there are only one blue pixel, one

red pixel, and two green pixels. We could directly simulate

them with a 2×2 convolution kernel of stride 2, which is

shown in Fig. 3(b). This would transform the 2x2 convo-

lution kernel to a 1x1 convolution at a specific position. In

our implementation, for the ‘red’ and ‘blue’ channels, we

manually freeze 75% of the weights of the convolution fil-

ter to zero. For the ‘green’ channel, we only freeze half

the weights to zero. Since the Bayer pattern requires two

‘green’ filters to share the same spectral response function,

we approximate the shared spectral response function with

the average anti-diagonal weight of the convolution kernel.

4.3. Nonnegative and Smooth Response

Physical restrictions require that the filter response func-

tion should be nonnegative. Also, existing film filter

production technologies can only realize smooth response

curves with high accuracy. Therefore, we have to consider

these constraints in the numerical design process.

There are various regularizers in convolutional neural

network, which were originally designed to penalize the

layer parameters during training. Interestingly, our nonneg-

ativity and smoothness constraints on the spectral response

functions could be easily enforced by borrowing those reg-

ularizers.

To achieve nonnegative responses, we enforce a non-

negative regularizer on the kernel in our filter design con-

volution layer, such that Sc(λ) ≥ 0. As for the smooth-

ness constraint, we use the L2 norm regularizer, which

is commonly used to avoid over-fitting in deep network

training. Specifically, we introduce a regularization term

η

√

∑

N

n=1
(Sc(λn))

2
, where η controls the smoothness.

Throughout the experiment, η is set to 0.02.

5. Experiment Results Using Synthetic Data

Here, we conduct experiments on synthetic data to

demonstrate the effectiveness of our method. We evaluate

our method on the dataset comprising of both natural and

indoor scenes [34, 9].

5.1. Training Data and Parameter Setting

The CAVE [34] dataset is a popular indoor hyper-

spectral dataset with 31 channels from 400nm to 700nm at

10nm steps. Each band is a 16-bit grayscale image with

size 512*512. The Harvard dataset [9] is a real world hy-

perspectral dataset including both outdoor and indoor sce-

narios. The image data is captured from 420nm to 720nm

at 10nm steps. The image data is captured from 420nm

to 720nm at 10nm steps. For the sake of clarity, we label

50 images under natural illumination the “Harvard Natural

Dataset” and call the rest of the 27 images under mixed or

artificial illumination the “Harvard Mixed Dataset”.

In the training stage, we apply random jitter by randomly

cropping 256 × 256 input patches from the training im-

ages. We trained our algorithm with batch size 2 and 50

iterations for each epoch. We trained the network with the

Adam optimizer [21] with an initial learning rate of 0.002
and β1 = 0.5, β2 = 0.999. All of the weights were initial-

ized from a Gaussian distribution with mean 0 and standard

deviation 0.02.

We run our proposed algorithms on an NVIDIA GTX

1080 GPU. Our server is equipped with an Intel(R)
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Figure 5. Sample Results from the CAVE Database [34]

Core(TM) i7-6800K CPU @ 3.40GHz and 128GB of mem-

ory. The training time for the CAVE [34], Harvard Natural

and Mixed [9] datasets take 1.84, 8.88 and 8.52 hours, re-

spectively. The average time to reconstruct spectra from an

individual image takes about 5.83 seconds.

Throughout the experiment, we choose the root mean

square error (RMSE) as our evaluation metric. For each

dataset, we reconstruct the hyperspectral image for all of

the testing data and then calculate the average and variance

of the RMSE between the reconstructed hyperspectral im-

age and the ground truth. For the sake of consistency, we

re-scale all of the spectra into range of [0, 255].

5.2. Results on 3 Channel Multiple­Chip Setting

At first, we evaluate the multi-chip setup described in

Sec. 4.2.1. In this section, we evaluate the performance

of multi-chip setup with 3 sensors. The optimal spectral

response function for the CAVE dataset [34] is given in Fig.

1.

The average and variance of the RMSE are shown in

Table 1, which was compared with three baseline meth-

ods: [4], [26] and [17]. The RGB inputs of three baseline

methods are generated from the spectral response function

of Cannon 600D. This table shows that the RMSE of our

method outperforms the alternative methods in spectral re-

construction in all three datasets.

Table 1. Average and Variance of RMSE of reconstruction on the

hyperspectral databases [34, 9, 17].

CAVE[34] Harvard Natural[9] Mixed[9]

Our 4.48± 2.97 7.57± 4.59 8.88± 4.25
[4] 8.84± 7.23 14.89± 13.23 9.74± 7.45

[26] 14.91± 11.09 9.06± 9.69 15.61± 8.76
[17] 7.92± 3.33 8.72± 7.40 9.50± 6.32

We also demonstrate the spatial consistency of the re-

covered hyperspectral images from CAVE datasets in Fig.

5 which shows images at 7 different wavelengths. The sim-

ilar result on Harvard Nature and Mixed dataset could be

found in supplementary material.

We also represent the recovered spectra for random

points from three datasets in Fig. 6, which shows our

method is consistently better than the alternatives.

To demonstrate the efficacy of our spectral response

function, we also train and test our spectral reconstruction

network on the RGB images generated by existing types of

cameras. Here we compare the average RMSE on the test-

ing set for each training epoch in Fig. 4.
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CAVE Dataset [34]

Harvard Natural Dataset [9]

Harvard Mixed Dataset [9]

Figure 6. The reconstructed spectra samples for randomly selected pixels in the CAVE and Harvard Natural and Mixed datasets [34, 9].

Each row corresponds to its respective dataset.

As shown in Fig. 4, the reconstruction error of our

method rapidly converges as the epoch increases compared

to other spectral reconstruction networks based on existing

camera types. Our method also shows superior performance

at epoch 60.

We also discuss the robustness of our method in supple-

mentary material. Specifically, we first report performance

in the case of added Gaussian noise. Then we report the

response function trained without physical constraints.

5.3. Filter Array Design for Single Chip Setting

We also demonstrate our performance in designing the

filter array (Sec. 4.2.2). When comparing with the alterna-

tives, we simulate the single-chip digital camera by encod-

ing the image in a Bayer pattern. We then perform gradient-

corrected linear interpolation, a standard demosaic method,

to convert the Bayer-encoded image into the color image

before conducting the comparison.

Table 2. Average and Variance of RMSE of reconstruction with

filter array on CAVE dataset [34].

Our [4] [26]

4.73± 3.12 13.25± 13.88 18.13± 9.33

We present our quantitative analysis of 3 channel single-

chip settings on the CAVE dataset in Table 2. The optimal

spectral response function is given in 1 where the corre-

sponding position of each spectral response function is il-

lustrated in Fig. 3. Note that, similar to the Bayer Pattern,

the spectral response colored in green covers 50% of chip.

Our method maintains sufficient accuracy under the array

setting where the performance of existing methods deteri-

orate under the demosaicing process in the single chip set-

ting.

6. Data-Inspired Multipectral Camera

Here, we aim to construct a multispectral camera for

image capture and hyperspectral reconstruction. We use

the FLIR GS3-U3-15S5M camera to capture images, which

collects light in the spectral range from 300nm to 1100nm.

To block out UV and NIR sensitivity, we add a visible band-

pass filter onto the camera lens. Since the multi-sensor

setup is easier to implement than a filter array, we conduct

the design operation as in Sec. 5.2. When evaluated on the

CAVE dataset [34], the average RMSE of two-channel op-

timized filter is 5.76, slightly higher than the three-channel

setup 4.48. We note both our results are still far better

than the alternative algorithms based on three-channel in-
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(a) Measured Spectral Response (b) Whole System (c) Realized Filter 1 (d) Realized Filter 2

Figure 7. The realization of our multispectral camera. (a) The measured spectral response of our designed filter trained on CAVE [34].

Circles indicate the actual response while the solid lines are the designed spectral response function. (b) Our multispectral imaging system

setup. (c) Filter of (a)’s red curve. (d) Filter of (a)’s blue curve.

(a) Image of Filter 1 (b) Image of Filter 2 (c) Sample 1 (d) Sample 2

Figure 8. Results from our multispectral camera. (a,b) The captured images of filter 1 and 2, respectively. (c,d) The reconstructed spectra

of randomly selected pixels.

put. Due to the expensive cost in customizing filters, here

we choose to realize the designed filters in the case of two

channels, whose response functions are shown in Fig. 7(a).

We turned to a leading optics company to implement the

designed response functions. The realized film filters are

of size 50mm×50mm×1mm (see 7(c,d)), and the measured

spectral response functions are shown in Fig. 7(a) (Solid

line indicates designed response and circles indicate actu-

ally measured response). The film filter is an interference

filter consisting of multiple thin SiO2 and Nb2O5 layers.

With the interference effect between the incident and re-

flected lights at thin layer boundaries, the designed film fil-

ter endows us spectral response functions that are very close

to our design. We use a 50-50 beamsplitter to construct

a coaxial bispectral camera, and align two FLIR GS3-U3-

15S5M cameras properly as illustrated in Fig. 7(b). Sam-

ple images captured through two filters are shown in Fig.

8(a,b). We also report the reconstructed spectra via our sys-

tem compared to the ground truth. Consistent with the pre-

vious simulations, our reconstructions are reasonably accu-

rate, as shown in Fig. 8(c,d).

7. Conclusion

In this paper, we have shown how to learn the filter re-

sponse functions in the infinite space of nonnegative and

smooth curves by using deep learning techniques. We ap-

pended a specialized convolution layer onto the U-net based

reconstruction network, and successfully found better re-

sponse functions than standard RGB responses, in the form

of three separate filters and a Bayer-style 2x2 filter array.

For building a real multispectral camera, we have also in-

corporated the camera CCD included responses into the de-

sign process. We successfully designed/implemented two

filters, and constructed a data-inspired bispectral camera for

snapshot hyperspectral imaging.

At the very beginning of this research, we were specu-

lating that, given a proper dataset, the deeply learned re-

sponses should finally converge to the color matching func-

tion of human eyes, since the latter has been “optimized”

in the long history of evolution. However, we observed

in our current experiments that the learned response func-

tions might vary significantly from one training dataset to

another. We will leave the collection of a comprehensive

database as our future work. Meanwhile, we will also ex-

tend this work to optimize the camera for a wider range of

vision tasks such as classification [6].
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