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Abstract

Semantic video segmentation is challenging due to the

sheer amount of data that needs to be processed and la-

beled in order to construct accurate models. In this pa-

per we present a deep, end-to-end trainable methodology

for video segmentation that is capable of leveraging the in-

formation present in unlabeled data, besides sparsely la-

beled frames, in order to improve semantic estimates. Our

model combines a convolutional architecture and a spatio-

temporal transformer recurrent layer that is able to tempo-

rally propagate labeling information by means of optical

flow, adaptively gated based on its locally estimated un-

certainty. The flow, the recognition and the gated tempo-

ral propagation modules can be trained jointly, end-to-end.

The temporal, gated recurrent flow propagation component

of our model can be plugged into any static semantic seg-

mentation architecture and turn it into a weakly supervised

video processing one. Our experiments in the challenging

CityScapes and Camvid datasets, and for multiple deep ar-

chitectures, indicate that the resulting model can leverage

unlabeled temporal frames, next to a labeled one, in order

to improve both the video segmentation accuracy and the

consistency of its temporal labeling, at no additional anno-

tation cost and with little extra computation.

1. Introduction

Systems capable of computing accurate and tempo-

rally consistent semantic segmentations in video are cen-

tral to scene understanding, being useful in applications in

robotics, for instance grasping, or for autonomous vehicles

where one naturally works with videos rather than single

images, and high levels of precision are needed. Since the

emergence of deep learning methods for image classifica-

tion, the problem of semantic image segmentation has re-

ceived increasing attention, with some of the most success-

ful methods based on fully trainable convolutional architec-

tures (CNN). Data for training and refining single frame,

static models is now quite diverse [7, 29]. In contrast, fully

trainable approaches to semantic video segmentation face

the difficulty of obtaining detailed annotations for individ-

ual video frames, although datasets are emerging for the

(unsupervised) video segmentation problem [11, 36, 27].

Therefore some of the existing approaches to semantic

video segmentation [42, 43, 25] rely on single frame mod-

els with corresponding variables connected in time using

random fields with higher-order potentials, and mostly pre-

specified parameters. Fully trainable approaches to video

are rare. The computational complexity of video process-

ing further complicated matters.

One possible approach to designing semantic video seg-

mentation models in the long run can be to only la-

bel frames, sparsely, in video, as it was done for static

datasets[7, 29]. Then one should be able to leverage tempo-

ral dependencies in order to propagate and aggregate infor-

mation in order to decrease uncertainty during both learning

and inference. This would require a model that can integrate

spatio-temporal dependencies across video frames.

While approaches based on CNNs appear right, they are

non-trivial to adapt to video segmentation due to the amount

of data that needs to be processed for dense predictions. If

video processing and temporal matching were to be learned

without explicit components such as optical flow warping,

one possibility would be to design a model based on 3D-

convolutions, as used e.g. for action recognition[20, 3]. To

our knowledge no such approach has been pursued for se-

mantic video segmentation. Instead, we will take an explicit

modeling approach relying on existing single-frame CNNs

augmented with spatial transformer structures that imple-

ment warping along optical flow fields. These will be com-

bined with adaptive recurrent units in order to learn to fuse

the estimates from single (unlabeled) frames with the label-

ing information temporally propagated from nearby ones,

properly gated based on their uncertainty. The proposed

model is differentiable and end-to-end trainable.

2. Related Work

Our semantic video segmentation work relates to the dif-

ferent fields of semantic image segmentation, as well as,
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Figure 1. Overview of our Spatio-Temporal Transformer Gated

Recurrent Unit (STGRU), combining a Spatial Transformer Net-

work (§3.1) mapping φ for optical flow warping with a Gated Re-

current Unit (§3.2) to adaptively propagate and fuse semantic seg-

mentation information over time. E.g. the pole is not accurately

segmented by the static network (xt), but combining xt with the

segmentation at the previous timestep (ht−1) gives a more accu-

rate estimate ht.

more remotely, to unsupervised video segmentation. We

will here only briefly review the vast literature with some

attention towards formulations based on deep architectures

which represent the foundation of our approach.

Many approaches start with the network in [24, 39] and

refine it for semantic segmentation. In [15] residual con-

nections are used making it possible to increase depth sub-

stantially. [32] obtained semantic segmentations by turning

a network for classification [39] into a dense predictor by

computing segmentations at different scales and combining

all predictions. The network was made fully convolutional.

Another successful approach is to apply a dense conditional

random field (CRF) [23] as a post-processing step on top of

individual pixel or frame predictions. [4] use a fully convo-

lutional network to predict a segmentation and then apply

the dense CRF in post processing. [46] realized that in-

ference in dense CRFs can be formulated as a fixed point

iteration implementable as a recurrent neural network. An-

other successful approach is the deep architecture of [44]

where max pooling layers are replaced with dilated convo-

lutions. The network was extended by introducing a context

module where convolutions with increasingly large dilation

sizes are used.

Video segmentation has received significant attention

starting from early methodologies based on temporal ex-

tensions to normalized cuts [38], random field models and

tracking [42, 26], motion segmentation [34] or efficient

hierarchical graph-based formulations [14, 43]. More re-

cently, proposal methods where multiple figure-ground es-

timates or multipart superpixel segmentations are generated

at each time-step, then linked through time using optical

flow [27, 1, 35], have become popular.

The dense CRF of [23] has been used for semantic video

segmentation [25, 41], most notably by [25] using pairwise

potentials based on aligning the frames using optical flow.

Along similar lines as our earlier version of this work[33],

[10] independently present an end-to-end trainable system

for semantic video segmentation that warps two-frame in-

termediate representations in a CNN. We differ in that we

warp the segmentation outputs and we can use multiple

frames forward and backward in time. In a similar fashion,

[30] combines semantic segmentations by means of opti-

cal flow warping for body part segmentation in videos. In

[19], video propagation is performed by filtering in a bilat-

eral space instead of using optical flow to connect frames

temporally. The temporal matching can also be performed

using superpixels and optical flow, as in [16], where infor-

mation in matched regions is pooled using Spatio-Temporal

Data-Driven Pooling (STD2P). [21] use GANs [13] to first

predict future video frames in an unsupervised manner and

then use the learned features for semantic video segmenta-

tion. In [37] observe that intermediate representations in a

CNN change slowly in video, and present a method to only

recompute features when there is enough change, leading to

significant speed-ups.

3. Methodology

A visual illustration of how our semantic video seg-

mentation model aggregates information in adjacent video

frames is presented in fig. 1. We start with a semantic seg-

mentation at the previous time step, ht−1 and warp it along

the optical flow to align it with the segmentation at time t,

by computing wt = φt−1,t(ht−1) where φ is a mapping of

labels along the optical flow. This is fed as the hidden state

to a gated recurrent unit (GRU) where the other input is the

estimate xt computed by a single frame CNN for semantic

segmentation. The information contained in wt and xt has

significant redundancy, as one expects from nearby video

frames, but in regions where it is hard to find the correct

segmentation, or where significant motion occurs between

frames, they might contain complementary roles. The final

segmentation ht combines the two segmentations wt and

xt by means of learnt GRU parameters and should include

segments where either of the two are very confident. Our

model is end-to-end trainable and we can simultaneously

refine the GRU parameters θg , the parameters of the static

semantic segmentation network θs and the parameters of the

FlowNet θf .

Our overall video architecture can operate over multiple

timesteps both forward and backward with respect to the

timestep t, say, where semantic estimates are obtained. The
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illustration of this mechanism is shown in fig. 2. In training,

the model has the desirable property that it can rely only on

sparsely labeled video frames, but can take advantage of the

temporal coherency in the unlabeled video neighborhoods

centered at the ground truth. Specifically, given an estimate

of our static (per-image) semantic segmentation model at

timestep t, as well as estimates prior and posterior to it,

we can warp these using the confidence gated optical flow

forward and backward in time (using the Spatio-Temporal

Transformer Gated Recurrent Unit, STGRU, illustrated in

fig. 1) towards timestep t where ground truth information is

available, then fuse estimates in order to obtain a prediction.

The resulting model is conveniently differentiable. The loss

signal will then be used to backpropagate information for

training both the parameters of the gated recurrent units

(θgf , θgb), the parameters of the (per-frame) semantic seg-

mentation network (θs) and the parameters of the FlowNet

(θf ). In testing the network can operate either statically,

per frame, or take advantage of video frames prior and (if

available) posterior to the current processing timestep.

Given these intuitions we will now describe the main

components of our model: the spatio-temporal transformer

warping and the gated recurrent unit, and then describe im-

plementation and training details.

3.1. SpatioTemporal Transformer Warping

We will use optical flow as input to warp the seman-

tic segmentation estimates across successive frames. We

extend the spatial transformer network [18] to operate in

the spatio-temporal video domain. Elements on a two-

dimensional grid xij will map to yij according to

yij =
∑

m,n

xmnk(i+ f
y
ij −m, j + fx

ij − n), (1)

where (fx
ij , f

y
ij) is the optical flow vector for the pixel at

location (i, j). We will use a bilinear interpolation kernel

k(x, y) = max(0, 1− |x|)max(0, 1− |y|). The mapping is

differentiable and we can backpropagate gradients from y to

both x and f . The sum contains only 4 non-zero terms when

using the bilinear kernel, so it can be computed efficiently.

The methodology has been introduced earlier by us [33] and

also independently in [17, 30, 10].

3.2. GRUs for Semantic Video Segmentation

To connect the probability maps for semantic segmen-

tation at different timesteps, ht−1 and ht, we will use a

modified convolutional version of the Gated Recurrent Unit

[5]. In particular, we will design a gating function based

on the flow, so we only trust the semantic segmentation val-

ues warped from ht−1 at locations where the flow is certain.

We also use gating to predict the new segmentation proba-

bilities, taking into account if either ht−1 or xt have high

confidence for a certain class in some region of the image.

CNN (� )

STGRU (� )

CNN (� )

STGRU (� )

� −1 � � � +1

Loss
Prediction Ground Truth

…

FlowNet (� )

CNN (� ) CNN (� )

FlowNet (� )

STGRU (� �) STGRU (� �) …

Figure 2. Illustration of our temporal architecture entitled Gated

Recurrent Flow Propagation (GRFP) based on Spatio-Temporal

Transformer Gated Recurrent Units (STGRU), illustrated in fig.1.

The model can integrate both forward only and forward-backward

calculations, under separate recurrent units with different param-

eters θgf (forward) and θgb (backward). Each of the forward and

backward recurrent units have tied parameters across timesteps.

The parameters of the semantic segmentation architecture (θs) and

FlowNet (θf ) are shared over time. The predictions from the for-

ward model aggregated over frames t−T, . . . , t−1, t (in the above

illustration T = 1) and (when available and desirable) backward

model aggregated over frames t + T, . . . t + 1, t are fused at the

central location t in order to make a prediction that is compared

against the ground truth available only at frame t by means of a

semantic segmentation loss function.

To adapt a generic GRU for semantic video segmenta-

tion, we first change all fully connected layers to convolu-

tions. The hidden state ht and the input variable xt are no

longer vectors but tensors of size H×W×C where H is the

image height, W is the image width and C is the number of

channels, corresponding to the different semantic classes.

The input xt is normalized using softmax and xt(i, j, c)
models the probability that label is c for pixel (i, j). We

let φt−1,t(x) denote the warping of a feature map x from

time t− 1 to t, using optical flow given as additional input,

as described in section 3.1. The proposed adaptation of the

GRU for semantic video segmentation is

wt = φt−1,t(ht−1) (2)

rt = 1− tanh(|Wir ∗ (It − φt−1,t(It−1)) + br|) (3)

h̃t = Wxh ∗ xt +Whh ∗ (rt ⊙ wt) (4)

zt = σ(Wxz ∗ xt +Whz ∗ (rt ⊙ wt) + bz) (5)

ht = softmax(λ(1− zt)⊙ rt ⊙ wt + zt ⊙ h̃t), (6)

where W and b denote trainable convolution weights,

and biases, respectively. Instead of relying on a generic
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parametrization for the reset gate rt, we use a confidence

measure for the flow by comparing the image It with the

warped image of It−1. We also discard tanh when com-

puting h̃t and instead use softmax in order to normalize ht.

We multiply with a trainable parameter λ in order to com-

pensate for a possibly different scaling of h̃t relative to the

warped ht−1 due to the convolutions with Whh and Wxh.

Note that ht−1 only enters when we compute the warping

wt so we only use the warped ht−1, i.e. wt.

3.3. Implementation

For the static (per-frame) component of our model, we

rely on a deep neural network pre-trained on the CityScapes

dataset and fed as input to the gated recurrent units. We

conducted experiments using the Dilation architecture [44],

LRR [12] and PSP [45]. The convolutions in the STGRU

were all of size 7 × 7. We use the standard log-likelihood

loss for semantic segmentation

L(θ) = −
∑

i,j

log p(yij = cij |I, θ) (7)

where p(yij = cij |I, θ) is the softmax normalized output

of the STGRU, estimating the probability of the correct

class cij for the pixel at (i, j). The recurrent network was

optimized using Adam [22] with β1 = 0.95, β2 = 0.99 and

learning rate 2 · 10−5. Due to GPU memory constraints,

the per-frame semantic segmentation CNN computations

had to be performed one frame at a time with only the

final output saved in memory. When training the system

end-to-end the intermediate activations for each frame

had to be recomputed. We used standard gradient descent

with momentum for the experiments where the static

networks or flow networks were refined, with learning rate

2 · 10−12 and momentum 0.95. Note that the loss was

not normalized, hence the small learning rate. We used

FlowNet2 [17] for all experiments unless otherwise stated.

Default setup The GRFP model we use is, unless otherwise

stated, a forward model trained using 5 frames (T = 4 in

fig. 2) where the parameters of the STGRU θgf and the

parameters of the static segmentation CNN θs are refined,

while the parameters of the FlowNet θf are frozen.

4. Experiments

We perform an extensive evaluation on the challenging

CityScapes and CamVid datasets, where video experiments

nevertheless remain difficult to perform due to the large vol-

ume of computation. We evaluate under two different per-

spectives, reflecting the relevant, key aspects of our method.

First we evaluate semantic video segmentation. We will

compare our method with other methods for semantic seg-

mentation and show that by using temporal information we

can improve segmentation accuracy over a network where

Method IoU cls IoU cat

GRFP(PSP-MSc, FlowNet2) 81.3 90.7

PSP-MSc [45] 80.9 90.5

GRFP(PSP-SSc, FlowNet2) 80.2 90.2

PSP-SSc [45] 79.7 89.9

GRFP(LRR-4x, FlowNet2) 73.6 88.3

LRR-4x [12] 72.5 87.8

GRFP(Dilation10, FlowNet2) 69.5 86.4

Dilation10 [44] 68.7 86.3

Table 1. Average class (cls) and category (cat) IoU on the

CityScapes validation set for various single frame baselines we

tried our model GRFP on. By using our video methodology we

can see labelling improvements for all baselines we tried, show-

ing that our method is applicable to many different single frame

semantic segmentation CNNs. With SSc and MSc we mean single

scale and multi scale testing, see [45] for details.

the predictions are computed per frame and unlabeled video

data is not used. In the second evaluation we use our

method to compute semantic segmentations for all frames

in a longer video. We will then compare its temporal con-

sistency against the baseline method where the predictions

are performed per frame. We will show quantitatively that

our method gives a temporally more consistent segmenta-

tion compared to the baseline.

4.1. Semantic Video Segmentation

Method IoU cls IoU cat

GRFP(PSP-Msc, FlowNet2) 80.6 90.8

NetWarp [10] 80.5 91.0

PSP-Msc [45] 80.2 90.6

PEARL [21] 75.4 89.2

GRFP(LRR-4x, FlowNet2) 72.9 88.6

LRR-4x [12] 71.8 88.4

Adelaide context [28] 71.6 87.3

DeepLabv2-CRF [4] 70.4 86.4

GRFP(Dilation10, FlowNet2) 68.1 86.6

Dilation10 [44] 67.1 86.5

DPN [31] 66.8 86.0

FCN 8s [32] 65.3 85.7

Table 2. Average class (cls) and category (cat) IoU on the

CityScapes test set. We use Dilation10, LRR-4x and PSP as base-

lines, and we are able to improve the average class IoU with 1.0,

1.1 and 0.4 percentage points, respectively. Notice that our GRFP

methodology proposed for video is applicable to most of the other

semantic segmentation methods that predict each frame indepen-

dently – they can all benefit from potential performance improve-

ments at no additional labeling cost.

CityScapes [6] consists of sparsely annotated frames.

Each labeled frame is the 20th frame in a 30 frame video
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Figure 3. Illustration of the flow gating as estimated by our Spatio-

Temporal Transformer Gated Recurrent Unit. We show three ex-

amples each containing a video frame, the optical flow and its con-

fidence as estimated by our STGRU model. White regions indicate

a confident flow estimate (rt = 1) whereas black regions are un-

certain (rt = 0). Occluded regions are black, as expected.

Frames IoU cls IoU cat

1 68.8 86.3

2 69.2 86.4

3 69.4 86.4

4 69.5 86.4

5 69.5 86.4

Table 3. Average class (cls) and category (cat) IoU on the valida-

tion set of CityScapes when using a different number of frames

for inference. The model was trained using 5 frames. Notice that

using more than one frame improves performance which for this

dataset, however, saturates beyond 4 frames.

snippet. There is a total of 2,975 labelled frames in the

training set, 500 in the validation set and 1,525 in the test

set. We use a forward model with 5 frames and apply the

loss to the final frame. Notice however that due to compu-

tational considerations, while the STGRU unit parameters

θgf were trained based on propagating information from 5

frames, the unary network parameters θs were refined based

on back-propagating gradient from the 3 STGRU units clos-

est to the loss. The images had size 512 × 512 in training,

whereas in testing their size was increased to the full resolu-

tion 1024× 2048 as more memory was available compared

to the training setup.

We used Dilation10 [44], LRR [12] or PSP [45] as back-

end to our model. We obtain improved performance by us-

Class Dilation10 GRFP(5) GRFP(1)

Road 97.2 97.3 97.1

Sidewalk 79.5 80.1 79.2

Building 90.4 90.5 90.4

Wall 44.9 50.6 46.8

Fence 52.4 53.3 53.0

Pole 55.1 55.3 55.2

Traffic light 56.7 57.5 56.7

Traffic sign 69.0 68.7 68.9

Vegetation 91.0 91.1 91.0

Terrain 58.7 59.6 58.7

Sky 92.6 92.7 92.5

Person 75.7 76.2 75.7

Rider 50.0 50.3 50.1

Car 92.2 92.4 92.2

Truck 56.2 57.4 55.8

Bus 72.6 73.9 72.8

Train 53.2 53.4 54.5

Motorcycle 46.2 48.8 46.3

Bicycle 70.1 71.0 70.4

Average 68.7 69.5 68.8

Table 4. Average class IoUs on the CityScapes validation set

for the Dilation10 baseline, the GRFP model using 5 frames,

GRFP(5), and the refined Dilation10 net that the GRFP learns,

which is equivalent to GRFP(1).

ing the proposed video methodology compared to the static

per-frame baseline for all deep architectures used for static

processing. We show the results on the validation set in ta-

ble 1. In this experiment, we only refined the parameters of

the GRU and not the parameters of the PSP network.

In table 2 we show semantic segmentation results of our

model on the CityScapes test set, along with the perfor-

mance of a number of state of the art static semantic seg-

mentation models.

We used our GRFP methodology trained using Dila-

tion10, LRR-4x and PSP as baseline models and in all

cases we show improved labelling accuracy. Notice that

our methodology can be used with any semantic segmenta-

tion method that processes each frame independently. Since

we showed improvements using all baselines, we can pre-

dict that other single-frame methods can benefit from our

proposed video methodology as well.

In table 3 we show the mean IoU over classes versus the

number of frames used for inference for our model based

on Dilation10. One can see that under the current represen-

tation, in inference, not much gain is achieved by the for-

ward model beyond propagating information from 4 frames.

The results are presented in more detail in table 4 where we

show the estimates produced by the pre-trained Dilation10

network and the per-frame Dilation network with parame-

ters refined by our model, GRFP(1), as well as the results of

our GRFP model operating over 5 frames GRFP(5). Notice

that while the average of our GRFP(1) is almost identical
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Figure 4. From top to bottom: the image, video segmentation by GRFP, static segmentation by Dilation10, and the ground truth. Notice

the more accurate semantic segmentation of the car in the left example, the right wall in the middle example, and the left pole in the right

example. For the first two examples the static method fails where the some object has a uniform surface over some spatial extent. The pole

in the right image may be hard to estimate based on the current frame alone, but the inference problem becomes easier if earlier frames are

considered, a property our GRFP model has.

Method Dilation10 GRFP(5) GRFP(1) fwbw(a) fwbw(b) fwbw(c) fwbw(d) FlowNet2(e)

IoU 68.7 69.5 68.8 69.5 69.6 69.6 69.8 69.5

Table 5. Average class IoU on the CityScapes validation set for various forward-backward models and for models refining FlowNet2 and

training end-to-end. See Fig. 2 for how the parameters are defined. The first three models are described in more detail in table 4. (a) A

forward-backward model evaluated with T = 2 using the same parameters for the backward STGRU as the best forward model GRFP(5)

both in the forward direction and backward direction. We used θs and θgf as for GRFP(5) and set θgb = θgf . (b) as (a) but with T = 4.

(c) We used θgf and θs from GRFP(5) but refined θgb independently. We used T = 4. (d) We refined all parameters θgf , θgb and θs jointly

and used T = 4. (e) We used the setting in GRFP(5) and trained the Dilation10 network, the flow network and the recurrent network

jointly. It was evaluated in forward mode with T = 4.

to the one of the pre-trained Dilation10, the individual class

accuracies are different. It is apparent that most of our gains

come from contributions due to temporal propagation and

consistency reasoning in our STGRU models.

Figure 4 shows several illustrative situations where our

proposed GRFP methodology outperforms the single frame

Dilation10 baseline. In particular, our method is capable to

more accurately segment the car, the right wall, and the left

pole. In all cases it is apparent that inference for the current

frame becomes easier when information is integrated over

a longer temporal window, as in GRFP. in fig. 3 we show

several illustrative examples of the flow gating learned by

our STGRU units. Notice that the areas our model learns to

discard (rt = 0) correspond to occluded regions.

Combining forward and backward models. In table 5

we show the accuracy on the CityScapes validation set for

various settings where we used the forward and backward

models and averaged the predictions using Dilation10. This

joint model was described in fig. 2. The best results were
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Figure 5. Qualitative examples from the CamVid test set. From top to bottom: the image, static segmentation by Dilation8, video segmen-

tation by GRFP, and the ground truth. In the two examples to the left, notice that poles are better segmented by our video method. In the

two right images, the sidewalks are better segmented using video.

Method IoU

Dilation8 [44] 65.3

FSO [25] 66.1

GRFP(Dilation8, FlowNet2) 66.1

VPN [19] 66.7

NetWarp [10] 67.1

Table 6. Average IoU on the test set of CamVid for different video

segmentation methods all based on the per-frame Dilation8 CNN.

Note that out method GRFP obtains a higher score than the static

Dilation8 model it is based on.

obtained when a forward-backward model was trained by

averaging the predictions using 5 frames going forward

(using It−4, It−3, . . . , It) with the predictions using 5
frames going backward (using It+4, It+3, . . . , It). Better

results were obtained when the forward and backward

models were trained jointly, and not independently.

Joint training including optical flow. To make our model

entirely end-to-end trainable we also refine its optical

flow component. In training, we jointly estimate all the

component STGRU, Dillation10 and Flownet2 parameters.

The model produced competitive results, see (e) in table

5, although the performance was not improved compared

to models where we only refined the parameters of the

static network and those of the STGRU. We note that the

error signal passed to the FlowNet comes from a loss based

on semantic segmentation. This is a very weak form of

supervision for refining optical flow.

CamVid To show that our method is not limited to

CityScapes we also provide additional experiments on the

CamVid dataset [2]. This dataset consists of 4 videos that

are annotated at 1 Hz. We follow the setup in [44, 25] where

all images are downsampled to 480 × 640, and we use the

same split with 367 training images, 100 validation images

and 233 test images. We use our GRFP methodology with

Dilation8 [44] as static network and FlowNet2 [17] as flow

network. The results are shown in table 6. We can see that

the segmentation accuracy is improved by using additional

video frames as input, and our labeling results are on par

with the state-of-the-art[25]. Qualitative examples are
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Method Vid0 Vid1 Vid2 Avg

GRFP(PSP-SSc, FlowNet2) 88.15 90.99 85.64 88.26

PSP-Ssc 85.82 88.93 82.92 85.89

GRFP(LRR-4x, FlowNet2) 84.78 88.73 81.72 85.08

LRR-4x 80.74 86.22 77.88 81.61

FSO [25] 91.31 93.32 89.01 91.21

GRFP(Dilation10, FlowNet2) 84.29 88.87 81.96 85.04

Dilation10 79.18 86.13 76.77 80.69

Table 7. Temporal consistency (%) for demo videos Stuttgart 00,

Stuttgart 01 and Stuttgart 02 in the CityScapes dataset. Notice

that our GRFP semantic video segmentation method achieves a

more consistent solution than single frame baselines.

Dilation10 LRR-4x

Segmentation module 350 ms 200 ms

FlowNet2/FlowNet1 300/40 ms 300/40 ms

STGRU 35 ms 35 ms

Table 8. Timing of the different components of out GRFP method-

ology for a Titan X GPU. We show improved segmentation accu-

racy and temporal consistency by incurring an additional runtime

of 75 ms per frame if we use FlowNet1 or 335 ms per frame if we

use FlowNet2.

shown in fig. 5.

Temporal Consistency We evaluate the temporal con-

sistency of our semantic video segmentation method by

computing trajectories in video using [40] and calculating

for how many of the trajectories the labelling is the same in

all frames, following the evaluation methodology in [25].

We use the demo videos provided in the CityScapes dataset,

that are 600, 1100 and 1200 frames long, respectively.

Due to computational considerations, we only used the

middle 512 × 512 crop of the larger CityScapes images.

The results are given in table 7 where improvements are

achieved for all videos and for all methods compared to

per-frame baselines. This can also be seen qualitatively in

the videos provided in the supplementary material. There

is significantly less flickering and noise when using the

proposed GRFP semantic video segmentation methodology

compared to models that rely on single-frame estimates.

Note that while the temporal consistency is lower for our

method compared to FSO, the run-time is significantly

faster. Our method takes about 0.7 s per frame while FSO

takes more than 10s per frame.

Timing. We report timings for the different components

of our method when using a Titan X GPU. We report

results for both FlowNet1 [9] and FlowNet2 [17]. Table

8 show timings per frame for the three main components

of our framework: the static prediction, the flow, and

the STGRU computations. We report the time to process

(testing, not training) one frame in a video with resolution

512 × 512. With the proposed methodology we achieve

Method IoU cls

GRFP(LRR-4x, FlowNet2) 73.6

GRFP(LRR-4x, FlowNet1) 73.4

GRFP(LRR-4x, Farnebäck) 73.0

LRR-4x 72.5
Table 9. Assessing the robustness of our methodology w.r.t. optical

flow quality. We report the average class IoU on the validation set

of CityScapes. The optical flows computed using FlowNet1[9] or

the method of Farnebäck[8] have lower accuracy than FlowNet2,

yet our GRFP methodology can still improve the labelling accu-

racy over per-frame processing baselines.

both improved temporal consistency and labelling accuracy

at an additional runtime cost of 335 ms per frame with

FlowNet2 and 75 ms with FlowNet1.

Effect of Low Optical Flow Quality. To assess the robust-

ness of our methodology to inaccurate optical flow mod-

ules we perform experiments where Flownet1[9] or the op-

tical flow method of Farnebäck [8] were used at test time

instead of (the most competitive) FlowNet2 for a GRFP

model trained with LRR-4x and FlowNet2. The aver-

age end-point-error (EPE) on KITTI 2012 is 25.3 pixels

for Farnebäck, 9.1 pixels for FlowNet1, whereas the best

FlowNet2 model has an EPE of 1.8 pixels. Based on re-

sults in table 9 we conclude that our method can compen-

sate and still improve over per-frame processing baselines,

even when the optical flow has significantly lower quality

then FlowNet2.

5. Conclusions

We have presented a deep, end-to-end trainable method-

ology for semantic video segmentation – including the ca-

pability to jointly refine the static recognition, optical flow

and temporal propagation modules –, that is capable of

taking advantage of the information present in unlabeled

frames in order to improve estimates. Our model com-

bines a convolutional architecture and a spatio-temporal

transformer recurrent layer that learns to temporally propa-

gate semantic segmentation information by means of opti-

cal flow, adaptively gated based on its locally estimated un-

certainty. Our experiments on the challenging CityScapes

and CamVid datasets, and for different deep semantic com-

ponents, indicate that our resulting model can successfully

propagate information from labeled video frames towards

nearby unlabeled ones, in order to improve both the accu-

racy of the semantic video segmentation and the consistency

of its temporal labeling, at no additional annotation cost,

and with little supplementary computation.
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[8] G. Farnebäck. Two-frame motion estimation based on poly-

nomial expansion. Image analysis, pages 363–370, 2003. 8

[9] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş,
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