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Abstract

We propose to recover 3D shape structures from single

RGB images, where structure refers to shape parts repre-

sented by cuboids and part relations encompassing connec-

tivity and symmetry. Given a single 2D image with an ob-

ject depicted, our goal is automatically recover a cuboid

structure of the object parts as well as their mutual rela-

tions. We develop a convolutional-recursive auto-encoder

comprised of structure parsing of a 2D image followed by

structure recovering of a cuboid hierarchy. The encoder

is achieved by a multi-scale convolutional network trained

with the task of shape contour estimation, thereby learn-

ing to discern object structures in various forms and scales.

The decoder fuses the features of the structure parsing net-

work and the original image, and recursively decodes a hi-

erarchy of cuboids. Since the decoder network is learned

to recover part relations including connectivity and symme-

try explicitly, the plausibility and generality of part struc-

ture recovery can be ensured. The two networks are jointly

trained using the training data of contour-mask and cuboid-

structure pairs. Such pairs are generated by rendering

stock 3D CAD models coming with part segmentation. Our

method achieves unprecedentedly faithful and detailed re-

covery of diverse 3D part structures from single-view 2D

images. We demonstrate two applications of our method in-

cluding structure-guided completion of 3D volumes recon-

structed from single-view images and structure-aware inter-

active editing of 2D images.

1. Introduction

The last few years have witnessed a continued interest in

single-view image-based 3D modeling [2, 4, 5]. The perfor-

mance of this task has been dramatically boosted, due to the

tremendous success of deep convolutional neural networks

(CNN) on image-based learning tasks [10]. The existing

deep models, however, have so far been mainly targeting

the output of volumetric representation of 3D shapes [2].

Such models are essentially learned to map an input 2D im-

age to a 3D image (voxel occupancy of a 3D shape in a 3D
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Figure 1: 3D shape structures (2nd column) recovered from

photos of household objects (1st column). Top row: The

inferred 3D shape structure can be used to complete and

refine the volumetric shape estimated from the image using

existing methods [22]. Bottom row: The structure is used

to assist structure-aware image editing, where our cuboid

structure is used as an editing proxy [25].

volume). Some compelling results have been demonstrated.

While enjoying the high capacity of deep models in

learning the image-to-image mapping, the 3D volumes re-

constructed by these methods lose an important informa-

tion of 3D shapes – shape topology or part structure. Once

a 3D shape is converted into a volumetric representation,

it would be hard to recover its topology and structure, es-

pecially when there exist topological defects in the recon-

structed volume. Shape structure, encompassing part com-

position and part relations, has been found highly important

to semantic 3D shape understanding and editing [15]. In-

ferring a part segmentation for a 3D shape (surface or vol-

umetric model) is known to be difficult [8]. Even if a seg-

mentation is given, it is still challenging to reason about part

relations such as connection, symmetry, parallelism, etc.

We advocate learning a deep neural network that directly

recovers 3D shape structure of an object, from a single RGB

image. The extracted structure can be used for enhancing

the volumetric reconstruction obtained by existing methods,

facilitating structure-aware editing of the reconstructed 3D

shapes, and even enabling high-level editing of the input

images (see Fig. 1). However, directly mapping an image
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Figure 2: An overview of our network architecture. The structure masking network is a two-scale CNN which is trained to

produce a contour mask for the object of interest. The structure recovery network first fuses the feature map of the masking

network and the CNN feature of the original image, and decode the fused feature recursively into a box structure. The red

arrows in the resultant chair structure (right most) indicate recovered reflectional symmetries between chair legs.

to a part structure seems a dunting task. Tulsiani et al. [19]

proposed a deep architecture to map a 3D volume to a set

of cuboid primitives. Their method, however, cannot be

adapted to our problem setting since the output primitive

set does not possess any structural information (mutual re-

lations between primitives are not recovered).

Our problem involves the reasoning not only about shape

geometry, but also for higher level information of part com-

position and relations. It poses several special challenges.

1) Different from shape geometry, part decomposition and

relations do not manifest explicitly in 2D images. Mapping

from pixels to part structure is highly ill-posed, as com-

pared to pixel-to-voxel mapping studied in many existing

2D-to-3D reconstruction works. 2) Many 3D CAD models

of man-made objects contain diverse, fine-grained substruc-

tures. A faithful recovery of those complicated 3D struc-

tures goes far beyond shape synthesis modulated by a shape

classification. 3) Natural images always contain cluttered

background and the imaged objects have large variations of

appearance due to different textures and lighting conditions.

Human brains do well both in shape inference based on

low-level visual stimulus and structural reasoning with the

help of prior knowledge about 3D shape compositions. The

strength of human perception is to integrate the two ends of

processing and reasoning to form a capable vision system

for high-level 3D shape understanding. Motivated by this,

we propose to learn and integrate two networks, a structure

masking network for accentuating multi-scale object struc-

tures in an input 2D image, followed by a structure recovery

network to recursively recover a hierarchy of object parts

abstracted by cuboids (see Figure 2).

The structure masking network produces a multi-scale

attentional mask for the object of interest, thereby decerning

its shape structures in various forms and scales. It designed

as a multi-scale convolutional neural networks (CNN) aug-

mented with jump connections to retain shape details while

screening out the structure-irrelevant information such as

background and textures in the output mask image. The

structure recovery network fuses the features extracted in

the structure masking network and the CNN features of the

original input image and feed them into a recursive neu-

ral network (RvNN) for 3D structure decoding [13]. The

RvNN decoder, which is trained to explicitly model part re-

lations, expands the fused image features recursively into a

tree organization of 3D cuboids with plausible spatial con-

figuration and reasonable mutual relations.

The two networks are jointly trained, with the training

data of image-mask and cuboid-structure pairs. Such pairs

can be generated by rendering 3D CAD models and ex-

tracting the box structure based on the given parts of the

shape. Several mechanisms are devised to avoid overfitting

in training this model. Experiments show that our method

is able to faithfully recover diverse and detailed part struc-

tures of 3D objects from single 2D natural images. Our

paper makes the following contributions:

• We propose to directly recover 3D shape structures

from single RGB images. The faithful and detailed re-

covery of 3D structural information of an object, such

as part connectivity and symmetries, from 2D images

has never been seen before, to our knowledge.

• We present an architecture to tackle the hard learning

task, via integrating a convolutional structure masking

network and a recursive structure recovery network.

• We develop two prototype applications where we use

the recovered box structures 1) to refine the 3D shapes

reconstructed from single images by existing methods

and 2) to assist structure-aware editing of 2D images.

2. Related work

Reconstructing 3D shapes from a single image has been

a long-standing pursue in both vision and graphics fields.

Due to its ill-posedness, many priors and assumptions have
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been attempted, until the proliferation of high-capacity deep

neural networks. We will focus only on those deep learning

based models and categorize the fast-growing literature in

three different dimensions.

Depth estimation vs. 3D reconstruction. Depth estima-

tion is perhaps the most straightforward solution for recov-

ering 3D information from single images. Deep learning

has been shown to be highly effective for depth estima-

tion [3, 11]. Compared to depth estimation, reconstructing

a full 3D model is much more challenging due to the re-

quirement of reasoning about the unseen parts. The latter

has to resort to shape or structure priors. Using deep neu-

ral networks to encode shape priors of a specific category

has received much attention lately, under the background of

fast growing large 3D shape repositories [1]. Choy et al. [2]

develop a 3D Recurrent Reconstruction Neural Network to

generate 3D shapes in volumetric representation, given a

single image as input. A point set generation network is pro-

posed for generating from a 2D image a 3D shape in point

cloud [4]. We are not aware of any previous works that can

generate part-based structures directly from a single image.

Discriminative vs. Generative. For the task of 3D mod-

eling from 2D images, discriminative models are learned to

map an input image directly to the output 3D representation,

either by a deep CNN for one-shot generation or a recurrent

model for progressive generation [2]. The advantages of

such approach include ease of training and high-quality re-

sults. With the recent development of deep generative mod-

els such as variational auto-encoder (VAE) [9], generative

adversarial nets (GAN) [6] and their variants. Learning a

generative model for 3D shape generation has gained ex-

tensive research [22, 5, 13]. For generative models, the in-

put image can be used to condition the sampling from the

predefined parameter space or learned latent space [22, 5].

Generative models are known hard to train. For the task

of cross-modality mapping, we opt to train a discriminative

model with a moderate size of training data.

Geometry reconstruction vs. Structure recovery. The

existing works based on deep learning models mostly utilize

volumetric 3D shape representation [22, 5]. Some notable

exceptions include generating shapes in point clouds [4],

cuboid primitives [19] and manifold surfaces [14]. How-

ever, none of these representations contains structural in-

formation of parts and part relations. Interestingly, struc-

ture recovery is only studied with non-deep-learning ap-

proaches [24, 17, 7]. This is largely because of the lack of

a structural 3D shape representation suitable for deep neu-

ral networks. Recently, Li et al. [13] propose to use recur-

sive neural networks for structural representation learning,

nicely addressing the encoding/decoding of arbitrary num-

ber of shape parts and various types of part relations. Our

method takes the advantage of this and integrate it into a

cross-modality mapping architecture for structure recovery

from an RGB image.

3. Method

We introduce our architecture for learning 3D shape

structures from single images. It is an auto-encoder com-

posed of two sub-networks: a structure masking network

for decerning the object structures from the input 2D image

and a structure recovery network for recursive inference of

a hierarchy of 3D boxes along with their mutual relations.

3.1. Network architecture

Our network is shown in Fig. 2, which is composed of

two modules: a two-scale convolutional structure masking

network and a recursive structure recovery network. The

structure masking network is trained to estimate the con-

tour of the object of interest. This is motivated by the ob-

servation that object contours provides strong cues for un-

derstanding shape structures in 2D images [16, 18]. Instead

of utilizing the extracted contour mask, we feed the feature

map of the last layer of the structure masking network into

the structure recovery network. To retain more information

in the original image, this feature is fused with the CNN

feature of the input image via concatenation and fully con-

nected layers, resulting in a 80D feature code. An RvNN

decoder then recursively unfolds the feature code into a hi-

erarchical organization of boxes, with plausible spatial con-

figuration and mutual relations, as the recovered structure.

3.2. Structure Masking Network.

Our structure masking network is inspired by the re-

cently proposed multi-scale network for detailed depth es-

timation [12]. Given an input RGB image rescaled to

224 × 224, we design a two-scale structure masking net-

work to output a binary contour mask with a quarter of the

input resolution (56 × 56). The first scale captures the in-

formation of the whole image while the second produces a

detailed mask map at a quarter of the input resolution. As

our prediction target is a binary mask, we use the SoftMax

Loss as our training loss.

We employ VGG-16 to initialize the convolutional lay-

ers (up to pool5) of the first scale network, followed by two

fully connected layers. The feature maps and outputs of the

first scale network are fed into various layers of the second

scale one for refined structure decerning. The second scale

network, as a refinement block, starts from one 9 × 9 con-

volution and one pooling over the original input image, fol-

lowed by nine successive 5 × 5 convolutions without pool-

ing. The feature maps from the pool3, pool4 and the output

of last fully connected layer of first scale network are fused
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into the second, the fourth and the sixth convolutional layer

of the second scale network, respectively. All the feature

fusions get through a jump connections layer, which has a

5 × 5 convolutional layer and a 2x or 4x up-sampling to

match the 56× 56 feature map size in the second scale; the

jump connection from the fully connected layer is a sim-

ple concatenation. It is shown that jump connections help

extracting detailed structures from images effectively [12].

3.3. Structure Recovery Network

The structure recovery network integrates the features

extracted from the structure masking network and for the in-

put image into a bottleneck feature and recursively decodes

it into a hierarchy of part boxes.

Feature fusion. We fuse features from two convolutional

channels. One channel takes as input the feature map of

the structure masking network (the last feature map before

the mask prediction layer), followed by two convolutions

and poolings. Another channel is the CNN feature of the

original image extracted by a VGG-16. The output feature

maps from the two channels are then concatenated with size

7 × 7, and further encoded into a 80D code after two fully

connected layers, capturing the object structure information

from the input image. We found through experiments such

fused features not only improve the accuracy of structure re-

covery, but also attain good domain-adaption from rendered

images to real ones. We believe the reason is that the ex-

tracted features for mask prediction task retain shape details

through factoring them out of background clutters, texture

variations and lighting conditions. Since it is hard for the

masking network to produce perfect mask prediction, the

CNN feature of the original image provides complimentary

information via retaining more object information.

Structure decoding. We adopt a recursive neural network

(RvNN) as box structure decoder like in [13]. Starting from

a root feature code, RvNN recursively decodes its into a

hierarchy of features until reaching the leaf nodes which

each can be further decoded into a vector of box parameters.

There are three types of nodes in our hierarchy: leaf node,

adjacency node and symmetry node. During the decoding,

two types of part relations are recovered as the class of in-

ternal nodes: adjacency and symmetry. Thus, each node can

be decoded by one of the three decoders below, based on its

type (adjacency node, symmetry node or box node):

Adjacency decoder. Decoder ADJDEC splits a parent

code p into two child codes c1 and c2, using the map-

ping function:

[c1 c2] = tanh(Wad · p+ bad)

where Wad ∈ R
2n×n and bad ∈ R

2n. n = 80 is the

dimension of a non-leaf node.
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Figure 3: Recursive decoding of a 3D box structure from a

2D image feature (top) and an illustration of decoder net-

work at a given node (bottom).

Symmetry decoder. Decoder SYMDEC recovers a sym-

metry group in the form of a symmetry generator (a

node code c) and a vector of symmetry parameters s:

[c s] = tanh(Wsd · p+ bsd)

where Wsd ∈ R
(n+m)×n, and bsd ∈ R

m+n. We

use m = 8 for symmetry parameters consisting of:

symmetry type (1D); number of repetitions for rota-

tional and translational symmetries (1D); and the re-

flectional plane for reflective symmetry, rotation axis

for rotational symmetry, or position and displacement

for translational symmetry (6D).

Box decoder. Decoder BOXDEC converts the code of a

leaf node to a 12D box parameters defining the cen-

ter, axes and dimensions of a 3D oriented box, similar

to [13].

[x] = tanh(Wld · p+ bld)

where Wld ∈ R
12×n, and bld ∈ R

12.

The decoders are recursively applied during decoding.

The key is how to determine the type of a node so that

the corresponding decoder can be used at the node. This

is achieved by learning a node classifier based on the train-

ing task of structure recovery where the ground-truth box

structure is known for a given training pair of image and

shape structure. The node classifier is jointly trained with

the three decoders. The process of structure decoding is

illustrated in Fig. 3. In our implementation, the node classi-

fier and the decoders for both adjacency and symmetry are

two-layer networks, with the hidden layer and output layer

being 200D and 80D vectors, respectively.
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3.4. Training details

There are two stages in the training. First, we train the

structure masking network to estimate a binary object mask

for the input image. The first and the second scale of the

structure masking network are trained jointly. In the next,

we jointly refine the structure masking network and train

the structure recovery network, during which a low learn-

ing rate for structure masking network is used. The struc-

ture recovery loss is computed as the sum of the box recon-

struction error and the cross entropy loss for node classi-

fication. The reconstruction error is calculated as the sum

of squared differences between the input and output param-

eters for each box and symmetry node. Prior to training,

all 3D shapes are resized into a unit bounding box to make

the reconstruction error comparable across different shapes.

In Fig. 4 (top), we plot the training and testing losses for

box reconstruction, symmetry recovery and node classifi-

cation, respectively, demonstrating the convergence of our

structure recovery network.

We use the Stochastic Gradient Descent (SGD) to opti-

mize our structure recovery network with back-propagation

through structure (BPTT) for the RvNN decoder training.

The convolutional layers of VGG-16 are initialized with the

parameters pre-trained over ImageNet; all the other con-

volutional layers, the fully connected layers and the struc-

ture recovery network are randomly initialized. The learn-
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Figure 4: The convergence of the structure recovery net-

work. We show in the top plot the training and testing

losses for cuboid reconstruction, symmetry parameter re-

covery and node classification, respectively. The bottom

plot shows that our method with structure masking network

yields lower reconstruction loss than without it.

ing rate of the structure masking network is 10−4 for pre-

training and 10−5 for fine-tuning. During joint training, the

learning rate is 10−3 for structure masking network, 0.2 for

RvNN decoder and 0.5 for RvNN node classifier. These

learning rates are decreased by a factor of 10 for every 50
epoches. Our network is implemented with Matlab based

on the MatConvNet toolbox [20]. The details on generating

training data is provided in Section 4.1.

4. Experiments

We collected a dataset containing 800 3D shapes from

three categories in ShapeNet: chairs (500), tables (200),

aeroplanes (100). The dataset is split into two subsets for

training(70%) and testing (30%), respectively. With these

3D shapes, we generate training and testing pairs of image

mask and shape structure to train the network and evaluate

our method quantitatively. We also evaluate our methods

qualitatively with a Google image search challenge. Both

quantitative and qualitative evaluations demonstrate the ca-

pability of our method in recovering 3D shape structures

from single RGB images faithfully and accurately.

4.1. Training data generation

Image-structure pair generation. For each 3D shape,

we create 36 rendered views around the shape for every 30◦

rotation and with 3 elevations. Plus another 24 randomly

generated views, we create 60 rendered RGB images in total

for each shape. The 3D shapes are rendered with randomly

selected backgrounds from NYU v2 dataset. For each RGB

image, the ground-truth object mask can be easily extracted

using the depth buffer for rendering.

All 3D shapes in our dataset are pre-segmented based

on their original mesh components or using the symmetry-

aware segmentation proposed in [21]. We utilize symme-

try hierarchy [21] to represent the shape structure, which

defines how parts in a shape are recursively assembled

by connectivity or grouped by symmetry. We adopt the

method in [13] to infer consistent hierarchy trees for the

shapes of each category. Specifically, we train a unsuper-

vised auto-encoder with the task of self-reconstruction for

all shapes. During testing, we use this auto-encoder to per-

form a greedy search of grouping hierarchy for each shape.

For more details on this process, please refer to the original

work. Consequently, we generate 60 image-structure pairs

for each 3D shape.

Data processing and augmentation. To further enhance

our dataset and alleviate overfitting, we conduct on each

training 3D shape structure-aware deformation [23] based

on component-wise controllers [26] to generate a set of

structurally plausible variations for the training shape. Such

structure-aware deformation preserves the connection and
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Figure 5: Object mask predictions for six sample images

from the Internet. The probability of object mask is indi-

cated by the brightness in the grey-scale output.

symmetry relations between shape parts, while maintain-

ing the shape texture for each part. This step is fully au-

tomatic and the parameters for each variation generation is

randomly set within a given range. In our implementation,

we randomly generate 20 new variations for each 3D shape,

thus enlarging our database to 16K 3D shapes. For the input

images (and the corresponding object masks), we employ

the common operations for image data augmentation [12]

such as color perturbation, contrast adjustment, image flip

and transformation, etc.

4.2. Results and evaluation

We first show in Fig. 5 some results of object mask pre-

diction by our structure masking network. As can be seen in

the output, the background clutters are successfully filtered

out and some detailed structures of the objects are captured.

Google image challenge for structure recovery. We first

perform a qualitative evaluation on the capability and versa-

tility of our structure recovery. In order for a more objective

study, instead of cherry-picking a few test images, we opt to

conduct a small-scale stress test with a Google image chal-

lenge [24]. During the test, we perform text-based image

search on Google using the keywords of “chair”, “table”

and “airplane”, respectively. For each search, we try to re-

cover a 3D cuboid structure for each of the top 8 returned

images using our method.

The results are shown in Fig. 6. From the results, we can

see that our method is able to recover 3D shape structures

from real images in a detailed and accurate way. More im-

portantly, our method can recover the connection and sym-

metry relations of the shape parts from single view inputs,

leading to high quality results with coherent and plausible

structure. Examples of symmetry recovery include the re-

flectional symmetry of chair legs or airplane wings, the ro-

tational symmetry of legs in a swivel chair or a table.

There are some failure cases (marked with red boxes in

Fig. 6). The marked chair example is not even composed

of multiple parts and hence may not admit a part structure.

When the structure of the object of interest is unseen from

our training dataset of 3D shapes, such as the marked table

example, our method fails to recover a reasonable structure.

Quantitative evaluation. We quantitatively evaluate our

algorithm with our test dataset. For the structure mask-

ing network, we evaluate the mask accuracy by the overall

pixel accuracy and per-class accuracy against the ground-

truth mask (see table 1). We provide a simple ablation study

by comparing our method with two baselines: single-scale

(without refinement network) and two-scale (without jump

connection). The results demonstrate the effectiveness of

our multi-scale masking network.

Method Overall Pixel Per-Class

single-scale 0.953 0.917

two-scale (w/o jump) 0.982 0.964

two-scale (with jump) 0.988 0.983

Table 1: An ablation study of structure masking network.

For 3D shape structure recovery, we develop two mea-

sures to evaluate the accuracy:

• Hausdorff Error: 1
2T

∑T

i (D(Si, S
gt
i ) + D(Sgt

i , Si)),
where Si is a recovered shape structure (represented

by a set of boxes) and Sgt
i its corresponding ground-

truth. T is the number of models in the test dataset.

D(S1, S2) = 1
n

∑
B1

j
∈S1

min
B2

k
∈S2

H(B1
j , B

2
k) measures

the averaged minimum Hausdorff distance from the

boxes in structure S1 to those in S2, where B1
j and

B2
k represent the boxes in S1 and S2, respectively.

H(B1, B2) = max
p∈B1

min
q∈B2

||p−q|| is the Hausdorff dis-

tance between two boxes, with p and q being the corner

points of box. Since Hausdorff is asymmetric, the dis-

tance is computed for both directions and averaged.

• Thresholded Accuracy: The percentage of boxes Bi

such that δ = H(Bi, B
∗

i )/L(B
∗

i ) < threshold,

where Bi is the i-th box in recovered shape structure

S and B∗

i its nearest box in the ground-truth Sgt. H is

the Hausdorff distance between two boxes as defined

above. L is the diagonal length of a box.

We consider as our baseline where the structure mask-

ing network is simply a vanilla VGG-16 network. In ta-

ble 2, we compare the accuracy of structure recovery, based
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Figure 6: Google image search challenge for 3D shape structure recovery. We perform text-based image search on Google

with keywords “chair”, “table” and “airplane”, respectively. For each search, we run our method on the top 8 returned images

(duplicate or very similar images are removed). Failure cases are marked with red boxes.

on the above two measures, for our method and the base-

line. We also compare the two methods where VGG-16 is

replaced with VGG-19. The results demonstrate the signif-

icant effect of our structure masking network in helping the

structure decoding. This can also be observed from the re-

construction error plotted in Figure 4 (bottom). A deeper

structure masking network (with VGG-19) also boosts the

performance to a certain degree.

Method
Hausdorff Thresholded Acc.

Error δ < 0.2 δ < 0.1
Vanilla VGG-16 0.0980 96.8% 67.8%

Structure masking (VGG-16) 0.0894 97.8% 75.3%
Vanilla VGG-19 0.0922 96.4% 72.2%

Structure masking (VGG-19) 0.0846 97.6% 78.5%

Table 2: Comparison of structure recovery accuracy over

different methods.

Comparison. In Fig. 7, we give a visual comparison of

3D shape reconstruction from single-view images between

our method and two state-of-the-art methods, [7] and [19].

Both the two alternatives produce part-based representation

of 3D shapes, making them comparable to our method. The

method by Huang et al. [7] recovers 3D shapes through as-

sembling parts from database shapes while preserving their

symmetry relations. The method of Tulsiani et al. [19] gen-

erates cuboid representation similar to ours, but does not

produce symmetry relations. As can be seen, our method

produces part structures which are more faithful to the in-

put, due to the integration of the structure masking network,

and meanwhile structurally more plausible, benefiting from

our part relation recovery.

5. Applications

We develop two prototype applications to demonstrate

the utility of the recovered shape structure in structure-

aware shape editing and processing.
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Figure 7: Comparing single-view, part-based 3D shape re-

construction between our Im2Struct and two alternatives.

Figure 8: Examples of structure-aware image editing.

Given an input image (the left column), we show the edited

structures of 3D cuboids along with the edited images.

Structure-aware image editing. In [25], a structure-

aware image editing is proposed, where a cuboid struc-

ture is manually created for the object in the image to as-

sist a plausible shape deformation. With our method, this

cuboid structure can be automatically constructed. More-

over, the part relations are also recovered which can be used

to achieve structure-aware editing. Given an RGB image,

we first recover the 3D shape structure of the object of inter-

est using our method. To align the inferred cuboid structure

with the input image, we train another network to estimate

the camera view. The 3D cuboids are then projected to the

image space according to the estimated view. The object

in the image is segmented with a CRF-based method con-

strained with the cuboid projections [24]. Each segment is

assigned to a 3D cuboid based their image-space overlap-

ping. At this point, the image editing method in [25] can be

employed to deform the object of interest. Fig. 1 and 8 show

a few examples of structure-aware image editing based on

our 3D shape structure recovery.

Structure-assisted 3D volume refinement. A common

issue with 3D reconstruction with volumetric shape repre-

Figure 9: Part symmetry induced volume refinement. Given

a 2D image, a volumetric shape is recovered using 3D-

GAN [22] where the missing voxels break the symmetry

of the object. Our recovered 3D structure helps complete

the volume based on part symmetry relation.

sentation is that the resolution of volume is greatly limited

due to the high computational cost. This usually results

in missing parts and hence broken structure in the recon-

structed volume. Our recovered 3D structures can be used

to refine the 3D volumes estimated by existing approaches

such as 3D-GAN [22]. Given a 2D image, a 3D volume is

estimated with 3D-GAN and a cuboid structure recovered

by our method. They can be easily aligned with the help of

camera view estimation (as have been done above). Each

voxel is assigned to the closest cuboid, leading to a part-

based segmentation of the volume. We then utilize the part

symmetry relation in our recovered structure to complete

the missing voxels; see results in Fig. 9.

6. Conclusion

We have proposed a deep learning framework that di-

rectly recovers 3D shape structures from single 2D images.

Our network joins a structure masking network for decern-

ing the object structure and a structure recovery network

for inferring 3D cuboid structure. The recovered 3D struc-

tures achieve both fidelity with respect to the input image

and plausibility as a 3D shape structure. To the best of our

knowledge, our work is the first that recovers detailed 3D

shape structures from single 2D images.

Our method fails to recover structures for object cate-

gories unseen from the training set. For such cases, it would

be interesting to learn an incremental part assembler. Our

method currently recovers 3D cuboids only but not the un-

derlying part geometry. A worthy direction is to synthesize

detailed part geometry matching the visual appearance of

the input image. Another interesting topic is to study the

profound correlation between 2D features and 3D structure,

so as to achieve a more explainable 3D structure decoding.
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