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Abstract

Learning from web data is increasingly popular due to

abundant free web resources. However, the performance

gap between webly supervised learning and traditional su-

pervised learning is still very large, due to the label noise of

web data as well as the domain shift between web data and

test data. To fill this gap, most existing methods propose

to purify or augment web data using instance-level super-

vision, which generally requires heavy annotation. Instead,

we propose to address the label noise and domain shift by

using more accessible category-level supervision. In partic-

ular, we build our deep probabilistic framework upon vari-

ational autoencoder (VAE), in which classification network

and VAE can jointly leverage category-level hybrid infor-

mation. Then, we extend our method for domain adaptation

followed by our low-rank refinement strategy. Extensive ex-

periments on three benchmark datasets demonstrate the ef-

fectiveness of our proposed method.

1. Introduction

The recent success of image classification is largely fu-

eled by available large-scale image datasets. However, man-

ually annotating large-scale dataset is time-consuming and

labor-intensive. So it is unsurprising that learning from web

images becomes increasingly popular because of the large

amount of freely available web data. However, the labels

of web images crawled from public website are very noisy

and often inaccurate. Moreover, the data distributions be-

tween web data (i.e., source domain) and test data (i.e.,

target domain) are quite different, which is known as do-

main shift. Therefore, when applying the classifier learnt

on the noisy web training images to the test images, the per-

formance will be significantly degraded. Although abun-

dant research works are intended to tackle the label noise

and domain shift [42, 6, 3, 49, 57, 34], webly supervised

learning is still struggling to compete with conventional su-

pervised learning. To facilitate webly supervised learning,

some works tend to utilize extra supervision to purify or

augment the web data by selecting informative web data to

label [17] or leveraging strong supervision (e.g., clean im-

ages, part landmarks, or bounding boxes) from well-labeled

dataset [50, 52]. However, these approaches are in high de-

mand of manual annotations on the instance level, which

are generally difficult to acquire.

Compared with instance-level supervision, category-

level supervision is more accessible in real world. One of

the most prominent category-level supervision is attribute,

which is manually designed semantic cue for each cate-

gory [9, 18] such as the shape (e.g., cylindrical), mate-

rial (e.g., cloth), and color (e.g., white). When attribute

is not available, an alternative choice is the word vec-

tor, i.e., a real-valued vector, corresponding to each cat-

egory name obtained based on free online corpus (e.g.,

Wikipedia) [1, 10, 39, 54]. Besides, we can also summarize

category-level visual information based on free web images

despite their inaccurate labels (see Section 6). Therefore,

the availability of category-level information motivates us

to explore learning from web data with category-level su-

pervision, which is in the middle ground between no extra

supervision and instance-level supervision.

In order to cope with label noise with category-level

supervision, we opt for autoencoder-like network struc-

ture, because autoencoder has been used for outlier de-

tection [37, 46] and its hidden layer can be regulated by

prior information, which is suitable for our task. Specifi-

cally, we build our probabilistic framework upon a proba-

bilistic variant of autoencoder, i.e., variational autoencoder

(VAE) [14, 35], because its provided reconstruction proba-

bility density can be easily integrated into our probabilistic

framework. However, outlier detection is a non-trivial task

for VAE trained on multi-category noisy data. To tackle

this issue, we propose a framework named Webly Super-

vised learning with Category-level Information (WSCI), as

illustrated in Figure 1. It can be seen from Figure 1 that our

network consists of a classification network in the top flow

and variational autoencder (VAE) in the bottom flow, which

share common modules (i.e., CNN and encoder) and jointly

leverage category-level information. The classification net-
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work and VAE influence each other in the following way.

On one hand, VAE detects outliers to help learn a more ro-

bust classification network by assigning higher weights on

the losses of identified non-outliers. On the other hand, the

classification network injects relatively accurate discrimi-

native information into the hidden layer to learn a semantic

VAE for better outlier detection.

With the aim to further address the domain shift between

web data and test data, we extend our WSCI method to

WSCI-DA by reconstructing unlabeled test instances via

VAE in the training stage. Moreover, we also propose a

novel low-rank refinement strategy following WSCI-DA.

2. Related Work

Webly Supervised Image Classification: Recently, abun-

dant research works [7, 3, 27, 19, 30, 31, 28] are intended to

address the label noise and domain shift when learning from

web data. More recently, several CNN approaches were

proposed for webly supervised learning [49, 42, 6, 57, 34,

8]. To fill the performance gap between webly supervised

learning and traditional supervised learning, some research

works resort to auxiliary information such as selective la-

beling [17] or extraneous strong supervision [50, 52] (e.g.,

clean images, part landmarks, or bounding boxes), which

involve human annotation on the instance level. In the con-

trast, we tend to boost the performance of webly supervised

learning using more accessible category-level information.

Variational Autoencoder: Variational autoencoder (VAE)

[14, 35] is a probabilistic generative model and its techni-

cal details will be introduced in Section 3. Several works

[2, 41] use VAE for outlier detection, but they did not dis-

cuss how to handle the label noise in the multi-category

training data. Recently, one promising research direction

is to regulate the hidden layer of VAE more heavily such as

conditional VAE (CVAE) [40, 45, 53], adversarial autoen-

coder (AAE) [22], and semi-supervised VAE [13]. Gener-

ally speaking, our method also falls into this scope, i.e., reg-

ulating the hidden layer of VAE. However, our method reg-

ulates the hidden layer of VAE to eliminate the label noise

from training data, which has not been explored in the above

works [40, 45, 53, 22, 13].

Domain Adaptation: Domain adaptation (DA) meth-

ods [51, 26, 25, 29] aim to alleviate the domain shift be-

tween the source domain (i.e., training set) and the target

domain (i.e., test set). Among existing DA approaches,

the closest related works are autoencoder based DA meth-

ods [5, 12, 21] and low-rank based DA methods [11, 38].

However, all these methods only focus on domain adap-

tation while our WSCI-DA method can cope with the la-

bel noise and simultaneously address the domain issue

when learning from web data. Besides, our proposed low-

rank refinement following WSCI-DA is also quite different

from [11, 38] because our low-rank reconstruction is based

on latent variables on the hidden layer while theirs are based

on visual features.

3. Background

In the remainder of this paper, for better representation,

we denote a matrix/vector by using a uppercase/lowercase

letter in boldface (e.g., A denotes a matrix and a denotes a

vector). We use I (resp., 0) to denote identity matrix (resp.,

all-zero vector/matrix). AT is used to denote the transpose

of A. Moreover, we use A ◦B to denote the element-wise

product between A and B.

Now we introduce the background knowledge of vari-

ational autoencoder (VAE), upon which our probabilistic

framework is built. Assume data x can be generated from

latent variable z, then the marginal likelihood of x can be

represented as pθ1
(x) =

∫

pθ1
(x|z)pθ1

(z)dz with genera-

tive parameters θ1, in which pθ1
(z) is the prior over latent

variable z and pθ1
(x|z) is the likelihood of x given z.

However,
∫

pθ1
(x|z)pθ1

(z)dz is intractable over all con-

figurations of latent variables. To solve this issue, varia-

tional autoencoder (VAE) [14, 35] introduces approximate

posterior qθ2
(z|x) with variational parameters θ2. Then, in-

stead of maximizing the marginal likelihood pθ1
(x), VAE

proposes to maximize the lowerbound of marginal likeli-

hood pθ1
(x), i.e., Evidence Lower BOund (ELBO), which

is equal to minimizing the following objective function

(please refer to [14] for technical details):

KL[qθ2
(z|x)||pθ1

(z)]− Eqθ2 (z|x)
[log pθ1

(x|z)], (1)

in which the first regularizer is a penalty enforcing the learnt

qθ2
(z|x) to be close to the given prior pθ1

(z) based on

KL divergence between qθ2
(z|x) and pθ1

(z), and the sec-

ond regularizer is the reconstruction error measuring the

truthfulness of reconstruction based on the expectation of

log pθ1
(x|z) w.r.t. qθ2

(z|x). In summary, the objective

function in (1) aims to reduce the reconstruction error as

well as the KL divergence between the approximate poste-

rior and prior of latent variables at the same time. Note that

it is generally assumed that pθ1
(z) = N (z;0, I) for sim-

plicity. In this paper, following [14], we assume pθ1
(x|z)

(resp., qθ2
(z|x)) to be a multivariate Gaussian with diago-

nal covariance, i.e., pθ1
(x|z) = N (x;µx, diag(σ2

x)) (resp.,

qθ2
(z|x) = N (z;µz, diag(σ2

z))), which is specified by a

probabilistic decoder (resp., encoder) network with model

parameters θ1 (resp., θ2).

The forward process of VAE consists of three steps: 1)

generate approximate posterior qθ2
(z|x) (i.e., µz and σz)

using probabilistic encoder based on x; 2) sample latent

variables z based on qθ2
(z|x); 3) generate likelihood of

x given z, pθ1
(x|z) (i.e., µx and σx), using probabilis-

tic decoder based on the sampled z. The above proce-

dure can be seen from the bottom flow in Figure 1. Note
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Figure 1: Flowchart of learning from noisy web data with category-level semantic information. The top flow is classification

network and the bottom flow is variational autoencoder. Two flows share the common model parameters θ0 and θ2.

that reparameterization trick is generally used in the second

step for ease of optimization [14]. Specifically, instead of

sampling directly from approximate posterior qθ2
(z|x) =

N (z;µz, diag(σ2
z)), we can use deterministic mapping z =

gθ2
(x, ǫ) = µz + σz ◦ ǫ with ǫ ∼ N (0, I), because it

is proved that Ez∼N (µz,diag(σ2
z))

f(z) = Eǫ∼N (0,I)f(µz +

σz ◦ǫ) ≈
1
L

∑L

l=1 f(µz+σz ◦ǫ
l) with L being the number

of samples per training instance. In practice, each instance

can be sampled only once (i.e., L = 1) per training epoch

as long as the batch size is large enough [14].

4. Webly Supervised Learning with Category-

level Information

In this section, we build our method named Webly Su-

pervised learning with Category-level Information (WSCI)

upon variational autoencoder (VAE), in which the classifi-

cation network and VAE can jointly leverage category-level

information to handle label noise.

4.1. Semantic VAE for Outlier Detection

We rewrite the objective function of VAE introduced in

Section 3 as follows,

KL[qθ2
(z|x)||pθ1

(z)]− Eqθ2 (z|x)
[log pθ1

(x|z)], (2)

in which the reconstruction probability density pθ1
(x|z)

can be used for detecting outliers [2, 41]. Specifically, an

instance x
i is identified as an outlier if Eqθ2 (z|x

i)pθ1
(xi|z)

is below certain threshold. In ideal cases, VAE should be

trained on clean training data so as to learn a normal profile

for non-outliers, which is not applicable to our case because

our training labels are very noisy. One possible solution is

to learn one VAE for each category because the distribution

within each category is relatively coherent and the negative

effect of outliers can be mitigated to some extent, similar

to the explanation in [46]. However, this solution is rather

cumbersome especially when the number of categories is

very large. As an alternative, we tend to inject category-

level semantic information into the hidden layer and learn

a semantic VAE. The motivation and details will be elabo-

rated later in this section.

Suppose we have a noisy training set I = {Ii|ni=1} with

I
i being the i-th image and n being the number of train-

ing images, the visual feature of Ii (i.e., output of CNN in

Figure 1) is denoted as x
i and its associated label (resp.,

predicted label variable) is denoted as ci (resp., yi). Re-

call that in each training epoch, we only sample one latent

variable for each training instance using reparameterization

trick (see Section 3), so we use z
i = gθ2

(xi, ǫ1) to denote

the deterministic latent variable of xi. Then, the objective

function in (2) w.r.t. xi can be simplified as

KL[qθ2
(z|xi)||pθ1

(z)]− log pθ1
(xi|zi). (3)

In order to incorporate category-level semantic informa-

tion, we expect z
i to represent the semantic embedding

of x
i so that the hidden layer of VAE has specific se-

mantic meanings. By denoting X c̃ = {xi|ci = c̃} and

Z c̃ = {zi|xi ∈ X c̃}, each Zc corresponding to each cate-

gory should be densely distributed. Instead of enforcing the

distribution of Zc to be close to certain hypothetical dis-

tribution, we tend to regulate the hidden layer indirectly,

inspired by some recent ZSL approaches [1, 36, 24]. To

be exact, in ZSL methods [1, 36, 24], with C categories

in total, the classification score of x
i is calculated by us-

ing x
iT
VA, in which V ∈ Rd×m is mapping matrix with

m (resp., d) being the dimension of attribute vector (resp.,

visual feature), and A ∈ Rm×C is category-attribute ma-

trix with the c-th column a
c being the attribute vector of

the c-th category. Analogous to x
iT
VA, we expect zi

T
A

to be consistent with the classification score of x
i by at-

taching a classifier on the hidden layer of VAE (see Fig-

ure 1). Note that A used in our experiments is hybrid se-

mantic representation including attribute vector, which will
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be fully introduced in Section 6. Then, the predicted cate-

gory probability of zi, i.e., p(yi = ci|zi), can be calculated

by
exp(ziT

a
ci )

∑
C
c̃=1

exp(ziT ac̃)
. In semantic VAE, as opposed to impos-

ing non-discriminative generic prior pθ1
(z), we replace the

regularizer KL[qθ2
(z|xi)||pθ1

(z)] in (3) with softmax loss

− log p(yi = ci|zi) and obtain the following loss function:

lθ(x
i, ci) = − log p(yi = ci|zi)− log pθ1

(xi|zi), (4)

in which θ = {θ0,θ1,θ2} including the CNN parameters

θ0. The pθ1
(xi|zi) in semantic VAE (4) is more reliable

for indicating non-outliers than that in VAE (3), which can

be explained as follows. According to the analysis in [46],

when using gradient descent to minimize the reconstruc-

tion error, the learnt model is more capable of detecting

outliers if the gradients of non-outliers are more consis-

tent. Considering each Zc, due to the first regularizer in

(4), the distribution of Zc in semantic VAE should be more

concentrated than that in VAE. Hence, when minimizing

the reconstruction error
∑

zi∈Zc − log pθ1
(xi|zi) via gradi-

ent descent, the gradients of non-outliers in semantic VAE

should be more consistent than those in VAE. As a result, by

injecting discriminative information into the hidden layer,

semantic VAE becomes better at outlier detection and the

corresponding pθ1
(xi|zi) is a more reliable indicator of xi

being a non-outlier.

In the next section, we will explore how to learn a robust

classifier with the aid of semantic VAE and how the robust

classifier can affect semantic VAE in return. In the rest part

of this paper, “VAE” means semantic VAE by default and

original VAE without semantic information is differentiated

with the name “plain VAE” instead.

4.2. Learn Robust Classifier with Label Noise

In this section, we aim to learn a robust classifier by tak-

ing advantage of the reconstruction probability density from

VAE. Recall that we attach a classifier on the hidden layer

of VAE in Section 4.1. Instead of training a totally sepa-

rate classification network, we tend to modify the attached

classifier to account for label noise. Besides sharing model

parameters, another benefit of doing so is a more effective

VAE, which will be discussed later in this section.

To cope with the label noise, we introduce ỹi to denote

the noisy label variable of xi, distinctive from its predicted

label variable yi. Besides, we further introduce a hidden

variable hi as binary non-outlier indicator, i.e., hi = 1 if

x
i is a non-outlier and hi = 0 otherwise. Strictly speak-

ing, label noise of web data consists of outlier noise (im-

age belongs to none of the training categories) and label

flip noise (image belongs to one of the other training cat-

egories) [42]. Nevertheless, based on [50] as well as our

own observation, outlier noise is far more dominant than

label flip noise, so we simply treat all the noise as outlier

noise without treating label flip noise separately in this pa-

per. Now let us consider the conditional probability of noisy

label pθ(ỹ
i|xi, hi). When hi = 0, xi does not belong to

any training category and could be assigned with any cat-

egory label randomly, so pθ(ỹ
i|xi, hi = 0) = 1

C
. When

hi = 1, the associated label of xi is accurate and we ex-

pect yi predicted by our model to be aligned with ỹi. Thus,

pθ(ỹ
i|xi, hi) can be represented as

pθ(ỹ
i|xi, hi) =

{

1
C
, if hi = 0,

pθ(y
i|xi), if hi = 1.

(5)

Then, we aim to cope with the label noise by maximiz-

ing log p(ỹi = ci|zi) instead of log p(yi = ci|zi), so that

our assumption on noisy label in (5) can be taken into con-

sideration. Specifically, we replace log p(yi = ci|zi) in (4)

with log p(ỹi = ci|zi), leading to the new loss function:

l′θ(x
i, ci) = − log p(ỹi = ci|zi)− log pθ1

(xi|zi). (6)

With deterministic latent variable z
i given x

i, p(ỹi|zi) can

be approximated by pθ2
(ỹi|xi), so the loss function in (6)

can be simplified as

l′θ(x
i, ci) = − log pθ2

(ỹi=ci|xi)− log pθ1
(xi|zi)

= − log
∑

hi

pθ2
(ỹi=ci, hi|xi)− log pθ1

(xi|zi)

= − log
∑

hi

pθ2
(ỹi=ci|xi, hi)p(hi|xi)−log pθ1

(xi|zi)

≤ −
∑

hi

p(hi|xi) log pθ2
(ỹi=ci|xi, hi)

− log pθ1
(xi|zi) (7)

= −p(hi=1|xi) log pθ2
(yi=ci|xi)−log pθ1

(xi|zi)

−(1− p(hi=1|xi)) log
1

C
(8)

= −p(xi|hi=1)
p(hi=1)

p(xi)

(

log pθ2
(yi=ci|xi)+logC

)

− log pθ1
(xi|zi) + const, (9)

in which (7) is based on Jensen’s inequality and (8) is based

on the definition in (5). Recall that pθ1
(xi|zi) can be used

as an indicator of xi being a non-outlier as discussed in Sec-

tion 4.1, in accordance with the meaning of p(xi|hi = 1).
Thus, we approximate p(xi|hi = 1) in (9) with pθ1

(xi|zi).
After omitting the constant, (9) can be rewritten as

l′θ(x
i, ci) ∝−pθ1

(xi|zi)
(

log pθ2
(yi = ci|xi) + logC

)

−λi log pθ1
(xi|zi), (10)

where λi=
p(xi)

p(hi=1) . Since p(xi) and p(hi=1) cannot be

directly inferred from our model, we simply treat all λi’s

as a common parameter λ. It is worth noting that from the

7692



perspective of classification loss, −pθ1
(xi|zi) log pθ2

(yi =
ci|xi) in (10) is essentially weighted softmax loss, aiming

to assign higher weights to the training instances which are

less likely to be outliers.

Now let us switch to the perspective of VAE, the cor-

responding z
i’s of identified non-outliers (i.e., with larger

pθ1
(xi|zi)) are regulated more heavily than those of iden-

tified outliers. In this sense, the distribution of each Zc is

biased towards identified non-outliers from X c and thus ex-

pected to be closer to the distribution of ground-truth Z̄c,

which is the semantic embedding space of ground-truth

non-outliers from X c. With the distribution of Zc closer

to that of Z̄c, the corresponding z
i’s of ground-truth non-

outliers from X c should be more densely distributed, and

thus their gradients when minimizing the reconstruction er-

ror should be more consistent. Similar to the discussion

in Section 4.1, more consistent gradients of ground-truth

non-outliers will contribute to better capability of VAE for

outlier detection. Intuitively, by injecting relatively accurate

discriminative information into the hidden layer, we can ob-

tain a more effective VAE.

To this end, we aim to minimize the loss function in

(10), which is the upper bound of (6), by training an end-

to-end system as illustrated in Figure 1. However, we en-

counter two practical issues during training. The first is-

sue is that for high-dimension multivariate Gaussian dis-

tribution, the value of probability density function is usu-

ally too large or too small, leading to numerical problems.

Therefore, instead of directly computing pθ1
(xi|zi), we

first compute log pθ1
(xi|zi), then subtract the maximum

value for each training batch, and finally calculate the expo-

nential to recover pθ1
(xi|zi). Then we can obtain normal-

ized pθ1
(xi|zi) in the range of [0, 1], denoted as p̃θ1

(xi|zi).
The above trick is equivalent to multiplying the first term

in (10) with a constant for each training batch, which can

be approximately absorbed into the trade-off parameter λ,

leading to the new parameter λ̃. The second issue is that

log pθ1
(xi|zi)’s suffer from so high variance that in each

training batch, only one p̃θ1
(xi|zi) is 1 while all the others

are close to 0. To circumvent this problem, we fix σx as

1 so that pθ1
(x|z) = N (x;µx, I) to make log pθ1

(xi|zi)’s
more stable. Finally, we arrive at our optimization problem:

min
θ

n
∑

i=1

−p̃θ1
(xi|zi)

(

log pθ2
(yi=ci|xi) + logC

)

−λ̃ log pθ1
(xi|zi), (11)

in which n is the number of training instances.

In the testing stage, given a test instance x
i, we

use Eqθ2 (z|x
i)p(y

i|z) ≈ 1
L

∑L

l=1 p(y
i|zi,l) with z

i,l =

gθ2
(xi, ǫl) (see Section 3) for prediction. Specifically, we

pass each test instance through the classification network

for 5 times (i.e., L = 5) and average the predicted category

probabilities as its final category probability.

5. Extension for Domain Adaptation

In order to reduce the domain shift between source do-

main (i.e., web data) and target domain (i.e., test data), we

extend our WSCI method to WSCI-DA by reconstructing

the target domain instances using the same variational au-

toencoder (VAE) as for the source domain instances, and the

reason can be explained as follows. Unlike low-level visual

features, intermediate-level semantic embeddings are more

insusceptible to hidden factors (e.g., pose and illumination)

and thus more domain invariant. Therefore, the data distri-

bution difference between source domain and target domain

can be disentangled in the hidden layer by reconstructing

the data from both domains [5, 15]. By denoting the objec-

tive function in (11) as
∑n

i=1 F (xi, yi;θ), our WSCI-DA

method can be formulated as

min
θ

n
∑

i=1

F (xi, yi;θ) +

n̂
∑

i=1

(

−λ̃ log pθ1
(x̂i|ẑi)

)

, (12)

where {x̂i|n̂i=1} is the test set and ẑ
i is the deterministic

latent variable of x̂i.

Given that our WSCI-DA method in (12) does not con-

sider the relation of semantic embeddings between source

domain instances and target domain instances, we addi-

tionally propose a low-rank refinement strategy following

our WSCI-DA method. In particular, after the training

process based on (12), we can obtain the semantic em-

beddings of source domain instances (i.e., ẑi’s) and target

domain instances (i.e., z
i’s) based on the trained model.

Then, we assume that the semantic embeddings of target do-

main instances can be linearly reconstructed based on those

of source domain instances, and the reconstruction matrix

should be low-rank because the reconstruction coefficients

corresponding to the target domain instances from the same

category should be grouped together. Formally, with the

semantic embedding of the i-th target (resp., source) do-

main instance being ẑ
i ∼ N (µ̂i

z, diag(σ̂i2

z )) (resp., zi ∼

N (µi
z, diag(σi2

z ))), we assume ẑ
i can be linearly recon-

structed based on z
i’s, i.e., ẑi =

∑n

j=1 sjiz
j . Then, by sim-

ply assuming z
i’s are mutually independent, it can be easily

known that µ̂i
z =

∑n

j=1 sjiµ
j
z and σ̂i2

z =
∑n

j=1 s
2
jiσ

j2

z .

Let us define the reconstruction matrix S with each entry

being sji, Z
µ (resp., Ẑµ) with the i-th column being µi

z

(resp., µ̂i
z), and Z

σ (resp., Ẑσ) with the i-th column be-

ing σi2

z (resp., σ̂i2

z ). Then, we assume S to be low-rank to

capture the intrinsic relatedness of target domain instances,

considering that the columns in S corresponding to the tar-

get domain instances within the same category should be

similar with each other. In analogy to low-rank represen-

tation (LRR) [20], we can reach the following optimization

problem:
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min
S,Eµ,Eσ

‖S‖∗ + ‖E‖2,1, (13)

s.t. Ẑ
µ = Z

µ
S+E

µ,

Ẑ
σ = Z

σ(S ◦ S) +E
σ,

where ‖S‖∗ is the nuclear norm [33] (the convex approxi-

mation of rank function) enforcing S to be low-rank, and

‖E‖2,1 is L2,1 norm [55] of reconstruction error matrix

E = [Eµ;Eσ], which enforces E to be column-sparse to

tolerate larger reconstruction errors for “noisy” target do-

main instances. Note that we employ L2,1 norm on verti-

cally stacked E
µ and E

σ to ensure the consistency of sparse

columns in E
µ and E

σ . The optimization problem in (13)

can be solved using inexact Augmented Lagrange Multi-

plier (ALM) [4].

After obtaining S by solving (13), we update Ẑ
µ (resp.,

Ẑ
σ) by Ẑ

µ = Z
µ
S (resp., Ẑσ = Z

σ(S◦S)), and generate ẑi

based on updated {µ̂i
z, σ̂

i
z} with reparameterization trick,

followed by the same prediction strategy as in Section 4.

6. Category-level Semantic Representation

In this section, we introduce the category-level semantic

representation used in our experiments (matrix A in Sec-

tion 4), which consists of three types of information. Two

common types of category-level semantic information are

attribute and word vector. To overcome the drawbacks of

attribute (e.g., not free) and word vector (e.g., free yet not

visually grounded), we propose a third type of category-

level semantic information called visual encoding, which is

both free and visually grounded.

Attribute: Attribute representation [18, 9] for each cate-

gory is a high-level description in the form of semantic cues,

such as the shape (e.g., cylindrical), material (e.g., cloth),

and color (e.g., white). Such attribute representations are

acquired based on expertise from human experts and thus

not freely available.

Word Vector: Each word can be represented by a real-

valued vector (e.g., Word2Vec [23] and GloVe [32]) us-

ing the linguistic model trained on free online corpus (e.g.,

Wikipedia). Recently, word vectors have been used for im-

age classification in zero-shot learning (ZSL) by using the

word vector of category name as the intermediate semantic

representation of each category [1, 10, 39, 54]. However,

word vector focus on linguistic regularities and patterns,

and hence may lack visual grounding [16].

Visual Encoding: We propose a free and visually grounded

encoding method, which encodes each category as vi-

sual bag-of-word representation by using Gaussian Mixture

Model (GMM) as the visual codebook. Specifically, we first

generate region proposals for each training image using ex-

isting method and then train a K-component GMM based

on sampled region proposals. We define the probability that

the i-th region proposal belongs to the j-th Gaussian model

as γi(j). With γi = [γi(1), . . . , γi(K)], we calculate the

average of γi’s of all the region proposals from the images

belonging to the c-th category as the encoding vector of the

c-th category, which is denoted as γ̄c. However, there are

two issues with the obtained visual encoding vector γ̄c: 1)

region proposals from one category may be very noisy due

to inaccurate image labels; 2) some components in GMM

(i.e., visual words in the codebook) are category-invariant

and commonly shared by all categories (e.g., visual words

that fall in the background), which renders the visual encod-

ing vector less discriminative. For the first issue, we reset

the entries with small values. For the second issue, we learn

a project matrix to maximize the category separation and

reduce the dimension of γ̄c to K̃.

In practice, we can concatenate available types of seman-

tic representations of each category as the hybrid semantic

representation of that category. More experimental details

will be introduced in Section 7.

7. Experiments

In this section, we evaluate our WSCI method for image

classification on three benchmark datasets and also provide

some showcases for identified outliers/non-outliers.

Datasets: Since attribute vector is included as part of our

hybrid semantic information, we conduct experiments on

three popular benchmark datasets: AwA2, CUB, and SUN

Attribute, which are associated with attribute vector for

each category. For each benchmark dataset, we use the

entire dataset as test set while crawling 500 images from

Google image website for each category as training set.

1) AwA2 [47]: Animals with Attributes 2 (AwA2) dataset

releases more images than its previous version AwA.

Specifically, AwA2 consists of 37322 images of 50 animal

categories. The provided category-attribute matrix contains

85 numeric attribute values for all 50 categories.

2) CUB [44]: Caltech-UCSD Bird (CUB) has in total

11, 788 images distributed in 200 bird species. The CUB

dataset contains a 312-dim binary human specified attribute

vector for each image, so we average the attribute vectors

of the images within each category and use the averaged

attribute vector for that category.

3) SUN Attribute [48]: Scene UNderstanding (SUN) at-

tribute dataset has 717 scene categories with 20 images in

each category. Similar to CUB, we calculate the averaged

102-dim attribute vector for each category.

4) Google image dataset: We construct the web training

set by ourselves. Particularly, for each benchmark test set

(i.e., AwA2, CUB, and SUN), we use the category names as

queries to collect the top ranked 500 images from Google

image website for each category after performing PCA-

based near-duplicate removal [56].

Category-level Semantic Representation: As discussed

in Section 6, we employ three types of category-level infor-
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Table 1: Accuracies (%) of different methods on three

datasets. The best results are highlighted in boldface.

Dataset AwA2 CUB SUN Avg

CNN 84.02 72.24 35.91 64.06

bootstrap [34] 85.71 73.63 37.36 65.57

Chen and Gupta [6] 85.53 74.92 38.33 66.26

Sukhbaatar et al. [42] 86.11 73.51 38.61 66.08

Xiao et al. [49] 86.41 75.02 40.56 67.33

RGT+AT+R [57] 86.52 73.75 38.03 66.10

WSCI sim1 86.15 74.17 37.91 66.08

WSCI sim2 88.88 76.28 41.23 68.80

WSCI (w/o ve) 90.52 76.86 41.97 69.78

WSCI 91.14 77.34 42.26 70.25

mation: attribute, word vector, and visual encoding. In the

following, we provide the details of extracting these three

types of information: (1) for attribute, we use the 85-dim

(resp., 312-dim and 102-dim) continuous attribute vector

associated with the AwA2 (resp., CUB and SUN) dataset as

mentioned above; (2) for word vector, we train GloVe [32]

language model based on the latest Wikipedia corpus, with

the dimension of word vector set as 500. Then, we can ob-

tain the word vector corresponding to each category name.

For the category names with more than one word, we av-

erage the word vectors corresponding to all the words ap-

pearing in the category name as the final word vector of

that category; (3) for visual encoding, we set K (resp., K̃)

as 256 (resp., 128). At last, we concatenate three types of

information as hybrid semantic representation, leading to a

713-dim (resp., 940-dim and 730-dim) vector for each cat-

egory on the AwA2 (resp., CUB and SUN) dataset.

Network Architecture: Our network consists of a CNN

model, a VAE model, and a softmax classification model,

as shown in Figure 1. For the CNN model, we adopt

Inception-V3 [43], which outputs 2048-dim visual feature.

For the VAE model, we implement both encoder and de-

coder as multiple layer perceptron (MLP) with one hidden

layer. The dimension of the hidden layer in MLP is set as

1500, which is approximately d+m
2 with d being the dimen-

sion of Inception-V3 output (i.e., 2048) and m being the

dimension of category-level semantic representation. The

entire network is implemented using TensorFlow, based on

which we use Adam optimizer with batch size being 64 and

exponentially decaying learning rate initialized as 0.001.

Parameter: The objective function in (11) has one hyper-

parameter λ̃, which is empirically set as 10−4 for all

datasets. In our experiments, we observe that our methods

are relatively robust when setting λ̃ in certain range (e.g.,

[10−6,10−4]).

Baselines: We compare with three sets of baselines: ba-

sic CNN, Webly Supervised Learning (WSL) methods, and

simplified versions of our method.

1) For basic CNN, we train Inception-V3 without consider-

ing label noise, which is referred to as CNN in Table 1.

2) For WSL methods, we compare with the following

recent deep learning approaches: Chen and Gupta [6],

Sukhbaatar et al. [42], Xiao et al. [49], bootstrap [34], and

RGT+AT+R [57]. For Chen and Gupta [6] and Xiao et

al. [49], since we do not have clean images to estimate

the confusion matrix, we calculate the category similarities

based on semantic representations as the confusion matrix.

In this way, category-level information is utilized in [6, 49].

For Xiao et al. [49] and RGT+AT+R [57], they use partial

clean data when training the network, which is not available

under our setting, so we only utilize noisy web data to train

their models. For all the deep learning baselines mentioned

above, we use Inception-V3 as the basic network structure

for fair comparison.

3) For simplified versions of our WSCI method, we first

split the flowchart in Figure 1 into two separate flows with

joint loss at the end, in which the top flow is classification

network based on x and the bottom flow is a plain VAE de-

tached from the classifier. We use the same loss function as

in (11) and refer to this simplified version as WSCI sim1 in

Table 1. Based on WSCI sim1, we replace VAE with se-

mantic VAE by attaching a classifier on the hidden layer,

which can utilize category-level information A. Note that

the attached classifier has an additional standard classifica-

tion loss, which is independent on the classification network

in the top flow. This simplified version is referred to as

WSCI sim2. Another simplified version is nearly the same

as full-fledged WSCI except that we exclude our proposed

visual encoding from hybrid semantic representation, which

is referred to as WSCI (w/o ve).

Experimental Results: The experimental results are sum-

marized in Table 1, in which the results on the SUN dataset

are much worse than those on the other two datasets. This

is because the SUN dataset has far more categories and

the web images of scene categories are more noisy than

those of animal categories. We observe that the base-

lines [34, 6, 42, 49, 57] achieve better results than ba-

sic CNN, because they cope with label noise using dif-

ferent techniques. We also observe that WSCI sim2 out-

performs WSCI sim1, which shows it is helpful to utilize

category-level information. Moreover, WSCI is better than

WSCI sim2, indicating the advantage for classification net-

work and VAE to jointly leverage category-level informa-

tion. Another observation is that WSCI is slightly better

than WSCI (w/o ve), which validates the effectiveness of

our proposed visual encoding vector as part of hybrid se-

mantic representation. We also observe that in the absence

of manually annotated attribute vector, our method WSCI

(w/o ve) still outperforms all the baselines, which proves

the superiority of our method even only using free category-

level semantic information. Finally, our WSCI method

achieves the best results on all three datasets. This again
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Figure 2: The first (resp., second) row contains the web training images from the category “ox” (resp., “weasel”). The green

(resp., red) boxes on the left (resp., right) column group the top 5 images with highest (resp., lowest) p̃θ1
(xi|zi), which

indicates the identified non-outliers (resp., outliers).

demonstrates the superiority of our VAE based method, in

which VAE and classification network can jointly utilize

category-level supervision.

Qualitative Analysis: Recall that we use the reconstruc-

tion probability density p̃θ1
(xi|zi) in (11) as the indicator

of xi being a non-outlier. In order to qualitatively verify the

capability of our semantic VAE to detect outliers, we take

the categories “ox” and “weasel” from the dataset AwA2

as examples (see the top and bottom row in Figure 2). In

particular, we show the top 5 web training images from

each category with highest (resp., lowest) p̃θ1
(xi|zi) in the

green (resp., red) boxes. From Figure 2, it can be seen that

the top outliers and non-outliers are successfully identified,

contributing to a more robust classifier. We have similar ob-

servations on the other categories from the other datasets.

Extension for Domain Adaptation: We additionally con-

duct experiments under the domain adaptation setting, in

which unlabeled test instances are used in the training

stage. We compare with two sets of baselines: Domain

Adaptation (DA) methods and Webly Supervised Learn-

ing (WSL) methods which can address the domain issue.

For DA methods, we compare with several closely related

DA methods based on autoencoder/VAE or low-rank tech-

niques: mSDA [5], BAE [12], VFAE [21], RDALR [11],

and LTSL [38]. For DA-related WSL methods, we compare

with Bergamo and Torresani [3] and WSDG [27], which can

cope with the label noise and address the domain shift at the

same time. Note that the methods in [11, 38, 5, 12, 3, 27]

are all feature-based approaches. For fair comparison,

we extract visual features from Inception-v3 retrained on

our training sets, in which case feature-based methods can

achieve at least comparable results with CNN in Table 1.

For our WSCI-DA method, we report both results with or

without low-rank refinement.

The experimental results are reported in Table 2, from

which we observe that the DA baselines and DA-related

WSL baselines achieve better results than CNN, which indi-

cates the necessity of addressing the domain shift between

web data and test data. We also observe that WSCI-DA is

Table 2: Accuracies (%) of different methods with domain

adaptation on three datasets. The best results are high-

lighted in boldface.

Dataset AwA2 CUB SUN Avg

CNN 84.02 72.24 33.76 63.34

RDALR [11] 85.89 73.08 34.63 64.53

LTSL [38] 86.63 74.39 35.13 65.38

mSDA [5] 84.63 72.79 34.32 63.91

BAE [12] 84.87 73.80 36.55 65.07

VFAE [21] 86.91 75.15 36.56 66.20

Bergamo et al. [3] 87.99 75.96 37.33 67.09

WSDG [27] 86.56 75.10 36.71 66.12

WSCI 91.14 77.34 39.59 69.36

WSCI-DA 93.17 78.70 41.39 71.08

WSCI-DA (refinement) 94.28 80.83 42.70 72.60

better than WSCI, which shows it is beneficial to reconstruct

unlabeled test instances using VAE. Besides, WSCI-DA (re-

finement) further improves WSCI-DA, which demonstrates

the effectiveness of our low-rank refinement. Finally, our

WSCI-DA (refinement) method achieves superior perfor-

mance compared with all the baselines on all three datasets,

which indicates the advantage of our probabilistic frame-

work to handle label noise and domain issue with the aid of

category-level supervision.

8. Conclusion

In this paper, we have studied addressing the label noise

and domain shift by using category-level supervision when

learning from web data. Extensive experiments on three

benchmark datasets have demonstrated the effectiveness of

our proposed methods.
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