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Abstract

In self-supervised learning, one trains a model to solve a

so-called pretext task on a dataset without the need for hu-

man annotation. The main objective, however, is to transfer

this model to a target domain and task. Currently, the most

effective transfer strategy is fine-tuning, which restricts one

to use the same model or parts thereof for both pretext and

target tasks. In this paper, we present a novel framework

for self-supervised learning that overcomes limitations in

designing and comparing different tasks, models, and data

domains. In particular, our framework decouples the struc-

ture of the self-supervised model from the final task-specific

fine-tuned model. This allows us to: 1) quantitatively as-

sess previously incompatible models including handcrafted

features; 2) show that deeper neural network models can

learn better representations from the same pretext task; 3)

transfer knowledge learned with a deep model to a shal-

lower one and thus boost its learning. We use this frame-

work to design a novel self-supervised task, which achieves

state-of-the-art performance on the common benchmarks in

PASCAL VOC 2007, ILSVRC12 and Places by a significant

margin. Our learned features shrink the mAP gap between

models trained via self-supervised learning and supervised

learning from 5.9% to 2.6% in object detection on PASCAL

VOC 2007.

1. Introduction

Self-supervised learning (SSL) has gained considerable

popularity since it has been introduced in computer vision

[7, 39, 23, 20]. Much of the popularity stems from the fact

that SSL methods learn features without using manual an-

notation by introducing a so-called pretext task. Feature

representations learned through SSL in computer vision are

often transferred to a target data domain and a target task,

such as object classification, detection and semantic seg-

mentation in PASCAL VOC. These learned features implic-

itly define a metric on the data, i.e., which data samples are

similar and which ones are dissimilar. Thus, the main objec-

tive of a pretext task is to learn a metric that makes images

Figure 1: Most current self-supervised learning approaches

use the same architecture both in pre-training and fine-

tuning. We develop a knowledge transfer method to decou-

ple these two architectures. This allows us to use a deeper

model in pre-training.

of the same object category similar and images of differ-

ent categories dissimilar. A natural question is then: How

do we design such a task? Some SSL approaches define

pretext tasks through explicit desirable invariances of the

metric [32, 33, 10, 23] or such that they implicitly require a

good object representation [7, 21, 39].

Even if we had a clear strategy to relate pretext tasks

to a target task, comparing and understanding which one is

better presents challenges. Most of the recent approaches

transfer their learned features to a common supervised tar-

get task. This step, however, is complicated by the need to

use the same model (e.g., AlexNet [17]) to solve both tasks.

This clearly poses a major limitation on the design choices.

For example, some pretext tasks may exploit several data

domains (e.g., sound, text, videos), or may exploit differ-

ent datasets sizes and formats, or might require very deep

neural networks to be solved.

There is thus the need to build better representations by

exploring and comparing difficult, but learnable [29], pre-
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text tasks and arbitrarily deep architectures. Towards this

goal, one could use methods such as distillation [12, 4] to

transfer the representation in a strong model (the one trained

with the pretext task) to a smaller one (the one employed on

the target task).

In this paper, we propose to transfer knowledge by re-

ducing a learned representation to pseudo-labels on an un-

labeled dataset. First, we compute the features learned

through a pretext task which might use a complex model on

a dataset of unlabeled images. Second, we cluster the fea-

tures (e.g., using k-means) and use the cluster ID as pseudo-

labels for unlabeled images. Third, we learn our final repre-

sentation by training a smaller deep network (e.g., AlexNet)

to classify the images based on the pseudo-labels. By re-

ducing the feature representation of a model to data/pseudo-

label pairs, it seems that we are discarding a lot of informa-

tion. However, we know that given good labels that group

semantically similar images, standard supervised classifica-

tion methods work well. Also, we believe that in a good

representation space, semantically related images should be

close to each other. Hence, pseudo-labels obtained through

a simple clustering algorithm should be a robust estimate of

the learned representation.

Once we have obtained pseudo-labels on some dataset,

we can transfer knowledge by simply training a model to

predict those pseudo-labels. The simplicity and flexibility

of our technique allows us to:

1. Transfer knowledge from any model (different net-

work architecture and training settings) to any other

final task model; we can thus capture representations

of complex architectures as well as complicated pre-

text tasks (see Figure 1).

2. Compare different models (e.g., learned features via

neural network architectures versus handcrafted fea-

tures), built on different data domains with different

pretext tasks using a common reference model, data,

and task (e.g., AlexNet, PASCAL VOC, and object de-

tection)

Based on this analysis, to show the effectiveness of our al-

gorithm, we design a novel self-supervised task that is more

complicated and uses a deeper model. We start from an

existing pretext task, the jigsaw problem [21], and make it

more challenging by adding occlusions. We refer to this

task as the Jigsaw++ problem. Furthermore, we boost its

performance by training it on VGG16 [30] and then trans-

ferring to AlexNet [17] via our proposed transfer method.

The resulting model achieves state-of-the-art-performance

on several benchmarks shrinking the gap with supervised

learning significantly. Particularly, on object detection with

Fast R-CNN on PASCAL VOC 2007, Jigsaw++ achieves

56.5% mAP, while supervised pre-training on ImageNet

achieves 59.1% mAP. Note that the final model in both

cases uses the same AlexNet architecture. We believe our

knowledge transfer method can potentially boost the per-

formance of shallow representations with the help of more

complicated pretext tasks and architectures.

2. Prior Work

Self-supervised learning. As mentioned in the introduc-

tion, SSL consists of learning features using a pretext task.

Some methods define as task the reconstruction of data at

the pixel level from partial observations and are thus related

to denoising autoencoders [31]. Notable examples are the

colorization problem [39, 18], where the task is to recon-

struct a color image given its gray scale version. Another

example is image inpainting [27], where the task is to pre-

dict a region of the image given the surrounding. Another

category of methods uses temporal information in videos.

Wang and Gupta [32] learn a similarity metric using the

fact that tracked patches in a video should be semantically

related. Another type of pretext task, is the reconstruction

of more compact signals extracted from the data. For ex-

ample, Misra et al. and Brattoli et al. [20, 3] train a model

to discover the correct order of video frames. Doersch et

al. [7] train a model that predicts the spatial relation be-

tween image patches of the image. Noroozi and Favaro [21]

propose to solve jigsaw puzzles as a pretext task. Pathak

et al. [26] obtain a supervisory signal by segmenting an

image into foreground and background through the optical

flow between neighboring frames of a video. Then, they

train a model to predict this segmentation from a single im-

age. Other methods also use external signals that may come

freely with visual data. The key idea is to relate images to

information in other data domains like ego-motion [15, 1]

or sound [25]. Finally, recent work [23] has also exploited

the link between relative transformations of images to de-

fine relative transformations of features.

Currently, the above pretext tasks have been assessed

through transfer learning and benchmarked on common

neural network architectures (e.g., AlexNet) and datasets

(e.g., PASCAL). However, so far it is unclear how to design

or how to further improve the performance of SSL methods.

One natural direction is the combination of multiple tasks

[8, 33]. However, this strategy does not seem to scale well

as it becomes quickly demanding in terms of computational

resources. Moreover, a possible impediment to progress is

the requirement of using the same model both for training

on the pretext task and to transfer to another task/domain.

In fact, as we show in our experiments, one can learn bet-

ter representations from challenging tasks by using deep

models, than by using shallower ones. Through our knowl-

edge transfer method we map the representation in the deep

model to a reference model (e.g., AlexNet) and show that

it is better than the representation learned directly with the
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reference model. This allows to improve SSL methods by

exploring: 1) designs of architectures that may be more suit-

able for learning a specific pretext task; 2) data formats and

types different from the target domain; 3) more challeng-

ing pretext tasks. To illustrate these advantages, we make

the method of Noroozi and Favaro [21] more challenging

by incorporating occlusions in the tiles.

Knowledge distillation. Since we transfer knowledge from

a model trained on a pretext task to a target model, our work

is related to model distillation. [12, 2] perform knowledge

distillation by training a target model that mimics the output

probability distribution of the source model. [34, 37] extend

that method to regressing neuron activations, an approach

that is more suitable to our case. Our approach is funda-

mentally different. We are only interested in preserving the

essential metric of the learned representation (the cluster as-

sociations), rather than regressing the exact activations. A

clustering technique used in Dosovitskiy et al. [10] is very

related to our method. They also use clustering to reduce the

classification ambiguity in their task, when too many surro-

gate classes are used. However, they only train and re-train

the same network and do not exploit it for knowledge trans-

fer. Other related work uses clustering in the feature space

of a supervised task to extract labels from unlabeled data for

novel categories [36] or building hash functions [35]. Nei-

ther of these works uses clustering to transfer knowledge

from a deep network to a shallow one. Our HOG experi-

ment is related to [5] which shows the initial layers of VGG

perform similarly to hand-crafted SIFT features.

3. Transferring Knowledge

The common practice in SSL is to learn a rich repre-

sentation by training a model on a SSL pretext task with a

large scale unlabeled dataset and then fine-tune it for a fi-

nal supervised task (e.g., PASCAL object detection) by us-

ing a limited amount of labeled training data. This frame-

work has an inherent limitation: The final task model and

the SSL model must use the same architecture. This lim-

itation becomes more important as the community moves

on to more sophisticated SSL pretext tasks with larger scale

datasets that need more complicated deeper model architec-

tures. Since we do not want to change the architecture of

the final supervised task, we need to develop a novel way

of transferring the learned knowledge from the SSL task to

the final supervised model. Moreover, when trained on the

pretext task, the model learns some extra knowledge that

should not be transferred to the final task. For instance, in

standard fine-tuning, we usually copy the weights only up

to some intermediate convolutional layers and ignore the fi-

nal layers since they are very specific to the pretext task and

are not useful for general visual recognition.

In this section, we propose an algorithm to transfer the

part of knowledge learned in SSL that is useful for visual

(a)

(b)

pre-trained
(no labels)

features

model

dataset clustering

cluster centers

(c)

pre-trained
(no labels)

features

model

dataset clustering

pseudo-labels
assignment

A 
B 

C 

D 
A B C D 

(d)

pseudo-labels
classification

A 

B 

C 

D 
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dataset (no labels)

features

(from scratch)

Figure 2: Knowledge transfer pipeline. We break down

the four steps of our proposed method for knowledge trans-

fer: (a) an arbitrary model is pre-trained on an SSL pretext

task; (b) the features extracted from this model are clustered

and cluster centers are extracted; (c) pseudo-labels are de-

fined for each image in the dataset by finding the closest

cluster center; (d) training of the target model on the classi-

fication of the pseudo-labels.

recognition to the target task. Our idea is based on the in-

tuition that in the space of a good visual representation, se-

mantically similar data points should be close to each other.

The common practice to evaluate this is to search for near-

est neighbors and make sure that all retrieved results are se-

mantically related to the query image. This means a simple

clustering algorithm based on the Euclidean distance should
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group semantically similar images in the same cluster. Our

idea is to perform this clustering in the feature space and to

obtain the cluster assignments of each image in the dataset

as pseudo-labels. We then train a classifier network with the

target task architecture on the pseudo-labels to learn a novel

representation. We illustrate our pipeline in Figure 2 and

describe it here below.

(a) Self-Supervised Learning Pre-Training. Suppose that

we are given a pretext task, a model and a dataset. Our first

step in SSL is to train our model on the pretext task with the

given dataset (see Figure 2 (a)). Typically, the models of

choice are convolutional neural networks, and one consid-

ers as feature the output of some intermediate layer (shown

as a grey rectangle in Figure 2 (a)).

(b) Clustering. Our next step is to compute feature vec-

tors for all the unlabeled images in our dataset. Then, we

use the k-means algorithm with the Euclidean distance to

cluster the features (see Figure 2 (b)). Ideally, when per-

forming this clustering on ImageNet images, we want the

cluster centers to be aligned with object categories. In the

experiments, we typically use 2,000 clusters.

(c) Extracting Pseudo-Labels. The cluster centers com-

puted in the previous section can be considered as virtual

categories. Indeed, we can assign feature vectors to the

closest cluster center to determine a pseudo-label associ-

ated to the chosen cluster. This operation is illustrated in

Figure 2 (c). Notice that the dataset used in this operation

might be different from that used in the clustering step or in

the SSL pre-training.

(d) Cluster Classification. Finally, we train a simple clas-

sifier using the architecture of the target task so that, given

an input image (from the dataset used to extract the pseudo-

labels), predicts the corresponding pseudo-label (see Fig-

ure 2 (d)). This classifier learns a new representation in

the target architecture that maps images that were originally

close to each other in the pre-trained feature space to close

points.

4. The Jigsaw++ Pretext Task

Recent work [8, 33] has shown that deeper architec-

tures can help in SSL with PASCAL recognition tasks (e.g.,

ResNet). However, those methods use the same deep ar-

chitecture for both SSL and fine-tuning. Hence, they are

not comparable with previous methods that use a simpler

AlexNet architecture in fine-tuning. We are interested in

knowing how far one can improve the SSL pre-training of

AlexNet for PASCAL tasks. Since in our framework the

SSL task is not restricted to use the same architecture as in

the final supervised task, we can increase the difficulty of

the SSL task along with the capacity of the architecture and

still use AlexNet at the fine-tuning stage.

Towards this goal, we build on the method of Okanohara

et al. [24] to learn representations in the text domain. They

(a) (b)

(c) (d)

Figure 3: The Jigsaw++ task. (a) the main image. (b) a

random image. (c) a puzzle from the original formulation

of [21], where all tiles come from the same image. (d) a

puzzle in the Jigsaw++ task, where at most 2 tiles can come

from a random image.

replace a word at random in a sentence and train a model

to distinguish the original sentence from the corrupt one.

We combine this idea with the jigsaw [21] task by replacing

tiles in the image puzzle with a random tile from other im-

ages. We call this the Jigsaw++ task. The original pretext

task [21] is to find a reordering of tiles from a 3× 3 grid of

a square region cropped from an image. In Jigsaw++, we

replace a random number of tiles in the grid (up to 2) with

(occluding) tiles from another random image (see Figure 3).

The number of occluding tiles (0, 1 or 2 in our experiments)

as well as their location are randomly selected. The occlud-

ing tiles make the task remarkably more complex. First,

the model needs to detect the occluding tiles and second,

it needs to solve the jigsaw problem by using only the re-

maining patches. To make sure we are not adding ambi-

guities to the task, we remove similar permutations so that

the minimum Hamming distance between any two permu-

tations is at least 3. In this way, there is a unique solution to

the jigsaw task for any number of occlusions in our training

setting. Our final training permutation set includes 701 per-

mutations, in which the average and minimum Hamming

distance is .86 and 3 respectively. In addition to applying

the mean and std normalization independently at each im-

age tile, we train the network 70% of the time on gray scale

images. In this way, we prevent the network from using

low level statistics to detect occlusions and solve the jig-
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Table 1: Impact of the number of cluster centers

#clusters 500 1000 2000 5000 10000

mAP on voc-classification 69.1 69.5 69.9 69.9 70.0

Table 2: Impact of the data domain used in clustering and

pseudo-labels: We perform experiments where the train-

ing of clustering and extracting pseudo-labels (inference of

clustering) are done on different datasets. We see just a lit-

tle reduction in VOC2007 classification which means the

clustering is not relying on the ImageNet bias.

clustering on ImageNet ImageNet Places

pseudo-labels on ImageNet Places ImageNet

mAP on voc-classification 69.9 68.4 68.3

saw task. We train the Jigsaw++ task on both VGG16 and

AlexNet architectures. By having a larger capacity with

VGG16, the network is better equipped to handle the in-

creased complexity of the Jigsaw++ task and is capable of

extracting better representations from the data. Following

our pipeline in Figure 2, we train our models with this new

SSL task, transfer the knowledge by: 1) clustering the fea-

tures, 2) assigning pseudo-labels, and 3) training AlexNet to

classify the pseudo-labels. We execute the whole pipeline

by training VGG16 and AlexNet on the Jigsaw++ task. Our

experiments show that when we train VGG16 with the Jig-

saw++ task, there is a significantly better performance in

fine-tuning. This confirms that training on a deeper network

leads to a better representation and corresponding pseudo-

labels.

5. Experiments

We extensively evaluate the knowledge transfer method

and the Jigsaw++ task on several transfer learning bench-

marks including: fine-tuning on PASCAL VOC, nonlin-

ear classification on ImageNet, and linear classification

on Places and ImageNet. We also perform ablation stud-

ies to show the effect of the number of clusters and the

datasets used for clustering and pseudo-label assignment

in the transferred knowledge. Our experiments show that

pre-training on the Jigsaw++ task yields features that out-

perform current self-supervised learning methods. In all

the evaluations, the weights of the convolutional layers of

the target AlexNet model are copied from the correspond-

ing layers of the AlexNet model trained on the pretext task,

and the fully connected layers are randomly initialized. We

evaluate our knowledge transfer method in several cases

while the cluster classification network is always AlexNet:

1) Jigsaw++ trained with VGG16: This procedure

achieves the best performance on all the benchmarks.

2) Jigsaw++ trained with AlexNet: Our experiments show

that the performance does not drop in this case. This implies

that a pretext task can be reduced to a classification task, if

it has learned a proper similarity metric.

3) The method of Doersch et al. [7] trained on AlexNet:

Due to the difficulty of their task, they use batch normaliza-

tion [14] during training. This makes the fine-tuning chal-

lenging, because of the difference in the settings of the tar-

get framework. To address this issue, Krähenbühl et al. [16]

rescale the weights and thus boost the performance in fine-

tuning. Our experiments show that our pipeline is doing

significantly better than [16] in this case.

4) HOG: We cluster the HOG features to obtain the pseudo-

labels. Surprisingly, HOG pseudo-labels yield a high per-

formance in fine-tuning on classification in Pascal VOC.

5) Pseudo-labels of a random network: Zhang et al. [38]

showed that AlexNet can be trained to predict random la-

bels. We perform an experiment in the same spirit and

obtain random pseudo-labels by clustering the features of

a randomly initialized network. To make the cluster clas-

sification network converge in this case, we decreased the

initial learning rate to 0.001. By using this settings, the net-

work is able to predict random pseudo-labels on the train-

ing set with a high accuracy. However, its prediction accu-

racy on the validation set is close to random chance as ex-

pected. We found that the classifier network trained on ran-

dom pseudo-labels yields the same performance on transfer

learning on PASCAL VOC as random initialization.

6) Knowledge distillation: The standard knowledge dis-

tillation [12] is not directly applicable in many SSL tasks

where the loss function does not involve any probabil-

ity distribution. Similar to [2], we train a student net-

work to regress conv4-5 layers of the teacher network (both

AlexNet). The student gets 58.5% on VOC classification

while the teacher gets 69.8%. We compare our method

to [37] that minimizes the original loss function as well

in distillation. We use the Jigsaw++ network trained on

VGG as the teacher network and minimize eq. (5) of [37]

on AlexNet (the student), where L has been replaced by the

Jigsaw++ loss. As it is shown in Table 3, this method does

not boost sensibly the performance on Pascal-VOC dataset.

Implementation Details. We extract the features for all

the methods from conv4 layer and max-pool them to

5 × 5 × 384 in the case of AlexNet and 4 × 4 × 512 in

the case of VGG16. We implement the standard k-means

algorithm on a GPU with k = 2K. It takes around 4 hours

to cluster the 1.3M images of ImageNet on a single Titan

X. We use the standard AlexNet and ImageNet classifica-

tion settings to train the pseudo-label classifier network.

5.1. Ablation Studies

All the ablation studies are carried out with AlexNet

pre-trained on the Jigsaw++ task with ImageNet as dataset

(trainset without the labels). The pseudo-labels are also
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Table 3: PASCAL VOC fine-tuning. Evaluation of SSL

methods on classification, detection and semantic segmen-

tation. All rows use the AlexNet architecture at fine-tuning.

“CC+” stands for “cluster classification”, our knowledge

transfer method. “vgg-” means the VGG16 architecture is

used before the “CC+” step. In “CC+vgg-Jigsaw++”, we

train Jigsaw++ using VGG16, cluster, and train AlexNet

to predict the clusters. We also transfer using [37] in

“[37]+vgg-Jigsaw++”. In “CC+HOG”, we cluster bag of

words of HOG and predict them with AlexNet; this is not

fully unsupervised since HOG is hand-crafted. Surpris-

ingly, it outperforms many SSL algorithms on classification.

Method Ref Class. Det. Segm.

SS MS

Supervised [17] 79.9 59.1 59.8 48.0

CC+HOG [6] 70.2 53.2 53.5 39.2

Random [27] 53.3 43.4 - 19.8

ego-motion [1] [1] 54.2 43.9 - -

BiGAN [9] [9] 58.6 46.2 - 34.9

ContextEncoder [27] [27] 56.5 44.5 - 29.7

Video [32] [16] 63.1 47.2 - -

Colorization [39] [39] 65.9 46.9 - 35.6

Split-Brain [40] [40] 67.1 46.7 - 36.0

Context [7] [16] 55.3 46.6 - -

Context [7]∗ [16] 65.3 51.1 - -

Counting [23] [23] 67.7 51.4 - 36.6

WatchingObjectsMove [26] [26] 61.0 - 52.2 -

Jigsaw [21] [21] 67.7 53.2 - -

Jigsaw++ 69.8 55.5 55.7 38.1

CC+Context-ColorDrop [7] 67.9 52.8 53.4 -

CC+Context-ColorProjection [7] 66.7 51.5 51.8 -

CC+Jigsaw++ 69.9 55.0 55.8 40.0

[37]+vgg-Jigsaw++ 70.6 54.8 55.2 38.0

CC+vgg-Context [7] 68.0 53.0 53.5 -

CC+vgg-Jigsaw++ 72.5 56.5 57.2 42.6

assigned to ImageNet data unless specified otherwise. The

knowledge transfer is then completed by training AlexNet

on the pseudo-labels. Finally, this model is fine-tuned on

PASCAL VOC 2007 for object classification.

What is the impact of the number of clusters? The

k-means clustering algorithm needs the user to choose

the number of clusters. In principle, too few clusters will

not lead to discriminative features and too many clusters

will not generalize. Thus, we explore different choices to

measure the sensitivity of our knowledge transfer algo-

rithm. Since each cluster corresponds to a pseudo-label,

we can loosely say that the number of clusters determines

the number of object categories that the final network

will be able to discern. Therefore, one might wonder if a

network trained with very few pseudo-labels develops a

worse learning than a network with a very large number of

pseudo-labels. This analysis is analogous to work done on

the ImageNet labels [13]. Indeed, as shown in Table 1, we

find that the network is not too sensitive to the number of

Table 4: ImageNet classification with a linear classifier.

We use the publicly available code and configuration of

[39]. Every column shows the top-1 accuracy of AlexNet

on the classification task. The learned weights from conv1

up to the displayed layer are frozen. The features of each

layer are spatially resized until there are fewer than 9K di-

mensions left. A fully connected layer followed by softmax

is trained on a 1000-way object classification task.

Method Ref conv1 conv2 conv3 conv4 conv5

Supervised [17] [40] 19.3 36.3 44.2 48.3 50.5

CC+HOG [6] 16.8 27.4 20.7 32.0 29.1

Random [40] 11.6 17.1 16.9 16.3 14.1

Context [7] [40] 16.2 23.3 30.2 31.7 29.6

ContextEncoder [27] [40] 14.1 20.7 21.0 19.8 15.5

BiGAN [9] [40] 17.7 24.5 31.0 29.9 28.0

Colorization [39] [40] 12.5 24.5 30.4 31.5 30.3

Split-Brain [40] [40] 17.7 29.3 35.4 35.2 32.8

Counting [23] [23] 18.0 30.6 34.3 32.5 25.7

Jigsaw++ 18.2 28.7 34.1 33.2 28.0

CC+Jigsaw++ 18.9 30.5 35.7 35.4 32.2

CC+vgg-Jigsaw++ 19.2 32.0 37.3 37.1 34.6

clusters. Perhaps, one aspect to further investigate is that,

as the number of clusters increases, the number of data

samples per cluster decreases. This decrease might cause

the network to overfit and thus reduce its performance

despite its finer categorization capabilities.

What is the impact of the cluster data domain? Our

knowledge transfer method is quite flexible. It allows us to

pre-train on a dataset, cluster on another, and then define

pseudo-labels on a third one. In this study, we explore

some of these options to illustrate the different biases of

the datasets. The results are shown in Table 2. In all

these experiments, we pre-train AlexNet on the Jigsaw++

task with ImageNet. Then, we decouple the training and

inference of the clustering algorithm. For instance, in the

right column of Table 2, we learn cluster centers on conv4

features of Jigsaw++ extracted on Places and then run the

assignment of clustering on ImageNet to get pseudo-labels

to be used in the training of the final AlexNet. We see

only a small reduction in performance, which implies that

our clustering method is not relying on particular biases

inherent in the ImageNet dataset.

5.2. Transfer Learning Evaluation

We evaluate the features learned with different SSL

methods on PASCAL VOC for object classification, de-

tection, and semantic segmentation. Also, we apply our

knowledge transfer method to some of these SSL methods

under relevant settings. In particular, we apply our knowl-

edge transfer to: Context [7], Context-ColorDropping [7],

Context-ColorProjection [7], Jigsaw++, and HOG [6].
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Table 5: Places classification with a linear classifier. We

use the same setting as in Table 4 except that to evaluate

generalization across datasets, the model is pre-trained on

ImageNet (with no labels) and then tested with frozen layers

on Places (with labels).

Method conv1 conv2 conv3 conv4 conv5

Places labels [41] 22.1 35.1 40.2 43.3 44.6

ImageNet labels [17] 22.7 34.8 38.4 39.4 38.7

CC+HOG [6] 20.3 30.0 31.8 32.5 29.8

Random 15.7 20.3 19.8 19.1 17.5

Context [7] 19.7 26.7 31.9 32.7 30.9

Jigsaw [22] 23.0 31.9 35.0 34.2 29.3

Context encoder [27] 18.2 23.2 23.4 21.9 18.4

Sound [25] 19.9 29.3 32.1 28.8 29.8

BiGAN [9] 22.0 28.7 31.8 31.3 29.7

Colorization [39] 16.0 25.7 29.6 30.3 29.7

Split-Brain [40] 21.3 30.7 34.0 34.1 32.5

Counting [23] 23.3 33.9 36.3 34.7 29.6

Jigsaw++ 22.0 31.2 34.3 33.9 22.9

CC+Jigsaw++ 22.5 33.0 36.2 36.1 34.0

CC+vgg-Jigsaw++ 22.9 34.2 37.5 37.1 34.4

Fine-Tuning on PASCAL VOC. In this set of experiments,

we use fine-tuning on PASCAL VOC as a common bench-

mark for all the SSL methods. The comparisons are based

on object classification and detection on VOC2007 using

the framework of [16] and Fast-RCNN [11] respectively.

We also report semantic segmentation result on VOC2012

dataset using the framework of [19]. We found that in most

recent SSL papers, the settings of the detection task used

for the evaluation of SSL methods are not the same as the

ones used for supervised learning. More specifically, most

SSL methods are using multi-scale fine-tuning for 150K it-

erations, with the basic learning rate of 0.001 and divid-

ing the learning rate by 10 every 50K iterations. Moreover,

some of the methods have been evaluated using the multi-

scale test. We found that fine-tuning supervised weights

with these settings achieves 59.1% and 59.9% with multi

scale and single scale test respectively. We believe that it

would be useful to use these as the baseline. We follow the

same settings in all of our evaluations and report the results

for both cases. We have locked the first layer in all cases

including supervised weights as it is the default settings of

Fast-RCNN. In Table 3, we use “CC+” when our knowl-

edge transfer method is used and “vgg-” when VGG16 is

used in pre-training. All methods in Table 3 use AlexNet for

cluster prediction and fine-tuning. In the case of HOG fea-

tures [6] we only apply the cluster classification on pseudo-

labels obtained from HOG on ImageNet. Surprisingly, these

handcrafted features yield a very high performance in all

three tasks. Our knowledge transfer method does not have a

significant impact on the performance when the source and

destination architectures are the same. However, when pre-

training on VGG16, there is a significant boost of 2.6% in

Table 6: ImageNet classification with a nonlinear clas-

sifier as in [21]. Every column shows top-1 accuracy of

AlexNet on the classification task. The learned weights

from conv1 up to the displayed layer are frozen. The rest

of the network is randomly initialized and retrained. Notice

that the reported results of [32] are based on the original pa-

per. All evaluations are done with 10 croppings per image.

Method Ref conv1 conv2 conv3 conv4 conv5 fc6 fc7

Supervised [17] [17] 57.3 57.3 57.3 57.3 57.3

Random [21] 48.5 41.0 34.8 27.1 12.0 - -

Video [32] [21] 51.8 46.9 42.8 38.8 29.8

BiGAN [9] [9] 55.3 53.2 49.3 44.4 34.9 - -

Counting [23] [23] 54.7 52.7 48.2 43.3 32.9 - -

Context [7] [21] 53.1 47.6 48.7 45.6 30.4 - -

Jigsaw [21] [21] 54.7 52.8 49.7 45.3 34.6 - -

Jigsaw++ 54.7 52.9 50.3 46.1 35.4 - -

CC+-vgg-Context 55.0 52.0 48.2 44.3 37.9 29.1 20.3

CC+Jigsaw++ 55.3 52.2 51.4 47.6 41.1 33.9 25.9

CC+vgg-Jigsaw++ 55.9 55.1 52.4 49.5 43.9 37.3 27.9

classification, 1.6% in detection, and 2.6% in semantic seg-

mentation. These results show state-of-the-art performance

on all tasks. More importantly, the gap between SSL meth-

ods and supervised learning methods is further shrinking by

a significant margin. We believe that our method allows to

use larger scale datasets and deeper models in pre-training,

while still using AlexNet in fine-tuning.

Linear Classification. We also evaluate the SSL meth-

ods by using a linear classifier on the features extracted

from AlexNet at different convolutional layers [40]. We

apply this on both ImageNet [28] and Places [41] and

evaluate the classification performance on the respective

datasets. We illustrate the performance on ImageNet in

Table 4 and on Places in Table 5. As can be observed,

the performance of Jigsaw++ is comparable to prior state-

of-the-art methods. Surprisingly, our knowledge transfer

method seems to be beneficial to the transferred model

CC+Jigsaw++. Consistently with other experiments, we

also observe that pre-training with VGG16 in CC+vgg-

Jigsaw++ gives a further substantial boost (an average of

almost 2% improvement). We also notice that HOG fea-

tures do not demonstrate a performance in line with the per-

formance observed on PASCAL VOC. A similar scenario

is observed on the Places dataset. Notice that the perfor-

mance obtained with CC+vgg-Jigsaw++ is quite close to

the performance achieved with supervised pre-training on

ImageNet labels.

Nonlinear Classification. We freeze several layers ini-

tialized with evaluating weights and retrain the remaining

layers from scratch. For completeness, we also evaluate

SSL features as done in [21], by freezing a few initial lay-

ers and training the remaining layers from random initial-

ization. In comparison to the previous experiments, the

main difference is that here we use a nonlinear classifier

that consists of the final layers of AlexNet. This experi-
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(a) (b) (c)

(d) (e) (f)

Figure 4: conv1 filters of the cluster classification network using the AlexNet architecture trained with different pseudo-

labels obtained from: (a) a randomly initialized AlexNet network, (b) CC+HOG, (c) Doersch et al. [7] trained with Color-

Dropping, (d) Doersch et al. [7] trained with ColorProjection, (e) CC+Jigsaw++ task trained on AlexNet, (f) the CC+vgg-

Jigsaw++ task trained on VGG16.

Figure 5: Some cluster samples used to train CC+vgg-

Jigsaw++. Each row shows the 11 closest images to their

corresponding cluster center.

ments is another way to illustrate the alignment between

the pseudo-labels obtained from cluster classification and

the ground truth labels. We show the comparisons in Ta-

ble 6. The performance obtained by most SSL methods

seems to confirm the pattern observed in the previous ex-

periments. However, the difference between the previous

state-of-the-art and CC+vgg-Jigsaw++ is quite remarkable.

Also, the boost in performance of other prior work such as

[7] through pre-training with VGG16 is up to 9% at conv5.

5.3. Visualizations

We show some filters of the cluster classifier network

in Figure 4. We can see the impact of the pre-trained net-

work on the cluster classifier. Interestingly, there is no color

in the filters of the “color dropping” method of [7] after

knowledge transfer. This is consistent with the fact that this

method does not see any color image in the pre-training

stage. We also show some sample clusters used in train-

ing CC+vgg-Jigsaw++ in Figure 5. Each row corresponds

to images closest to the center of a single cluster. Ideally,

for high-quality representations, we expect images from the

same category on each row.

6. Conclusions

Self-supervised learning is an attractive research area in

computer vision since unlabeled data is abundantly avail-

able and supervised learning has serious issues with scal-

ing to large datasets. Most recent SSL algorithms are re-

stricted to using the same network architecture in both the

pre-training task and the final fine-tuning task. This lim-

its our ability in using large scale datasets due to limited

capacity of the final task model. We have relaxed this con-

straint by decoupling the pre-training model and the final

task model by developing a simple but efficient knowledge

transfer method based on clustering the learned features.

Moreover, to truly show the benefit, we increase the com-

plexity of a known SSL algorithm, the jigsaw task, and use

a VGG network to solve it. We show that after applying our

ideas to transfer the knowledge back to AlexNet, it outper-

forms all state-of-the-art SSL models with a good margin

shrinking the gap between supervised and SSL models from

%5.9 to %2.6 on PASCAL VOC 2007 object detection task.
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