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Abstract

We propose a novel way to measure and understand con-

volutional neural networks by quantifying the amount of in-

put signal they let in. To do this, an autoencoder (AE) was

fine-tuned on gradients from a pre-trained classifier with

fixed parameters. We compared the reconstructed samples

from AEs that were fine-tuned on a set of image classifiers

(AlexNet, VGG16, ResNet-50, and Inception v3) and found

substantial differences. The AE learns which aspects of the

input space to preserve and which ones to ignore, based on

the information encoded in the backpropagated gradients.

Measuring the changes in accuracy when the signal of one

classifier is used by a second one, a relation of total order

emerges. This order depends directly on each classifier’s in-

put signal but it does not correlate with classification accu-

racy or network size. Further evidence of this phenomenon

is provided by measuring the normalized mutual informa-

tion between original images and auto-encoded reconstruc-

tions from different fine-tuned AEs. These findings break

new ground in the area of neural network understanding,

opening a new way to reason, debug, and interpret their re-

sults. We present four concrete examples in the literature

where observations can now be explained in terms of the

input signal that a model uses.

1. Introduction

Diagnostics for Deep Neural Networks often rely on

measurements taken at the end of the processing pipeline.

Pinpointing issues with a network’s architecture, learning

process, and capacity typically depends on metrics based

on the evolution of the loss function or on performance mea-

surements like top-k accuracy. For example, to establish the

presence of overfitting in a network, divergence of training

and validation losses is considered as a good indicator. Un-

der these circumstances, there are general guidelines to fol-

low like early stopping, loss regularization, acquiring more
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Figure 1. Overview of the proposed method and model. A pre-

trained AE is fine-tuned with gradients flowing through a pre-

trained image classifier whose parameters are fixed. After fine-

tuning the combined network, images reconstructed by the AE

preserve more information required by the classifier.

data or reducing the number of parameters in the model [3].

Although these strategies are indeed effective against vari-

ance, they do not provide detailed insights on why the net-

work failed to generalize in the first place. To further under-

stand the transformation of input samples into predictions,

strategies have been proposed to look at the internal signals

of networks [35, 25]. These provide insightful properties,

but they serve a descriptive purpose rather than a predictive

one.

Recently, Zhang et al. [36] pointed out that our current

understanding of how networks learn general features is in-

complete and requires a different angle. We propose a way

to study neural networks based on quantifying the informa-

tion contained in input samples that classification networks

rely on. In general, a deep convolutional neural network

(DCNN) can be modeled as a function y = f (x,θ) where

both the properties of the output y and parameters θ have

been widely studied. In contrast, we introduce a novel way

to examine the properties of the input x and, more precisely,

the amount of signal that the network itself takes in from x.

Intuitively a convolution operation with kernel size k and

striding s covers the entire input spatially as long as s ≤ k.

In other words, such operations incorporate the complete

input space. In this work, we investigate how influential the

input space is, not from the perspective of individual sam-

ples but rather of the model as a whole. We found that, in

practice, information from input samples that image clas-
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sifiers use for prediction differs greatly between architec-

tures. These differences were measured by pre-training an

AE on a large dataset and then fine-tuning its decoder using

gradients from an image classifier with fixed parameters,

as shown in Figure 1. Once the AE has been fine-tuned,

predictions take place by passing samples through the AE

first. The effect of this specialized compression and recon-

struction phase is two-fold: First, information that is useful

to the network gets preserved while irrelevant parts of the

original input are canceled out. Second, AEs fine-tuned in

conjunction with classifiers learn to reconstruct the input in

a way that attenuates any distracting aspects of the original

input, such as noise. Our approach offers the benefit that

analysis happens in the input space and hence, any learned

transformations by the AE are straightforward to visualize

and interpret. We have applied our method to five well-

known DCNNs trained for image classification: LeNet5,

AlexNet, VGG, Inception v3, and ResNet-50. Analyzing

the input signal that these networks take in (characterized by

the transformation of their corresponding fine-tuned AE),

we found that they rely on different amounts of input signal.

Furthermore, this signal may be entirely different between

classifiers.

Our main contributions are: First, a model architecture

and learning scheme that allows quantification of the in-

put signal used by DCNNs. Second, a relation of order

that exists between high performance DCNNs concerning

the input signal they use. Third, we present an extensive,

comparative evaluation of the input signal used by multi-

ple state-of-the-art DCNNs backed up by well-established

measures of information theory such as Mutual Information

(MI) [27].

2. Related Work

The need for interpretability in AI is growing with new

laws and regulations [7] being introduced that govern its ap-

plication. Given the ever growing body of evidence in favor

of the effectiveness of Deep Networks, there is a pressing

need for increased understanding how they work. One of

the first insights about their properties was that their features

were general enough to perform well in different classifica-

tion tasks [34, 24]. Not only are these features transferable

between tasks but they can also be distilled from an ensem-

ble to a single model [9].

A second family of strategies has focused on understand-

ing intermediate elements within networks like activation

maps or convolutional filters. Valuable insights came from

visualizing said elements [35], but also from inspecting the

degree of correlation that network filters share [15].

This kind of intermediate analysis has been extended all

the way down to the input domain (otherwise known as ac-

tivation maximization). Results show that not only are in-

termediate features encoding enough information to recon-

struct the original input [17, 5], but that it is also possi-

ble to identify areas within the input responsible for high

prediction probabilities. These areas can be modeled as a

generic subset of the input [38, 21] or as a collection of

higher-level features [16, 2, 18]. Moreover, this idea can be

refined by explicitly accounting for background and fore-

ground areas [25, 6], target and non-target classes [37], and

even for individual pixels [20, 4]. Interestingly, studying

the influence of individual pixels on deep image classifiers,

gave rise to the research area of adversarial examples [29].

The use of AEs to remap the input space into better

suited latent-space has been explored with general-purpose

architectures like the variational auto-encoder [11], as well

as in specific tasks like noise suppression [31]. Moreover,

it has been shown that initializing the weights of a network

based on an auto-encoding scheme provides a good starting

point for learning another task [19].

Despite all these advances in understanding neural net-

works, recent work shows that we are still far from having a

comprehensive notion about the learned features [36]. This

highlights the need for new ways to analyze the capacity

of a neural network (e.g., in terms of activation patterns or

trajectory length [22]).

3. Methods

This section describes the selection of the AE architec-

ture and training scheme, and analysis performed on the re-

sulting networks. We pre-train a shared base AE and fine-

tune it in conjunction with different classification networks

to create tailored AEs. We quantify and compare the in-

formation contained in images reconstructed by these fine-

tuned AEs through (1) relative changes of accuracy when

input signals tailored to one classifier is used to measure the

accuracy of another and (2) the amount of information that

is present in images reconstructed by fine-tuned AEs.

3.1. Autoencoder Selection

For our purposes we need an AE architecture that is ca-

pable of reliably capturing a large portion of information

contained in input samples. The reconstruction quality is

primarily measured through the AE’s loss. Additionally,

we define a validation measure that depends on the clas-

sification accuracy of a pre-trained network. Informally,

an AE produces good reconstructions if the accuracy of a

pre-trained classifier does not change compared to the accu-

racy obtained by using the original inputs. We chose Seg-

Net [1] as the architecture for our AE, since it meets all the

aforementioned requirements. SegNet is a fully convolu-

tional AE originally designed for semantic segmentation of

RGB images. It consists of two VGG-16 [26] networks with

batch normalization [10] where the second half of the net-

work has its layers reversed. Max-pooling indices generated

during the encoding stage are used to upsample activations
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Figure 2. Training and cross-validation mean-square reconstruc-

tion error of SegNet network trained on either YFCC100m or Im-

ageNet.

in the decoder. This enables the network to produce pixel-

accurate reconstructions even though the smallest activation

map is only 1
32

of the input size.

3.2. Autoencoder Pre­training

As mentioned before, we first train the AE to minimize

unsupervised reconstruction loss. Ultimately, we do this

so that transformed samples do not significantly change

the accuracy of a pre-trained classifier (which will be ad-

dressed in Section 3.3). Hence, we train the AE using the

YFCC100m [30]. This dataset consists of 100 million me-

dia objects taken from Flickr with roughly 99.2 million im-

ages. This set presents a comprehensive selection of the

kinds of photos taken by a large group of people. It con-

stitutes the largest, publicly available image dataset to date.

We remove potential sources of noise in the form of place-

holder images (i.e., samples that are listed in the dataset

but were later removed by the user) and other non-photos

(e.g., very small file size, single color) for a final count of

≈ 92.1 million training images. Using the YFCC100m as

training set comes with some unique advantages. First, the

concept of training step or epoch does not apply, since given

the scale images do not need to be reused. As shown in

Figure 2, the reconstruction error during training, smoothly

converges to good local minima before the dataset is used

up. Second, learning without using any sample more than

once makes the training loss an unbiased estimator of the

model’s ability to generalize at every step of the process.

A separate validation set is no longer required, since new

samples have never been seen by the network.

We also compare this first run to the learning behavior

of a second SegNet AE using ImageNet [23] instead of

YFCC100m. Both AEs were trained under similar con-

ditions: Input size of 256 × 256 pixels, MSE loss, SGD

with momentum 0.9 and initial learning rate of η = 0.01.

When training on the YFCC100m, the reconstruction er-

ror is checked every 1 million images and learning rate is

reduced to η ′ = 0.2η if the loss does not improve after

two consecutive checks. For comparability and fairness,

when using ImageNet, we let the AE train for 72 epochs

which amounts to ≈ 92.2 million images that will be seen

by the network during learning. Although necessary for Im-

ageNet but not for YFCC100m, we apply a common set of

data augmentation operations (scale, rotation, shift, noise,

blur, brightness, contrast, color, mirror) in both cases. We

also measured validation in two different ways: For the AE

trained on YFCC100m, we use ImageNet’s validation set.

For the AE trained on ImageNet, we computed a validation

scored based on ImageNet’s validation set and, addition-

ally, also on a subset of 50000 random samples taken from

YFCC100m. All training and validation curves are shown

in Figure 2.

At a glance we observe that both learning schemes reach

good local minima for both training and validation. How-

ever, using YFCC100m produces a faster-converging net-

work which also reaches a consistently well-behaved lower

bound for the loss function. In contrast, training on Ima-

geNet yields an asymptotic, unstable learning curve. Val-

idation losses closely followed the training curves with

the AE trained on ImageNet and validated on a subset of

YFCC100m producing the highest error.

These experiments indicate that initial training using the

YFCC100m is optimal for the AE, as it produces consistent,

low error image reconstructions that generalize better than

using a smaller dataset. Having a well trained AE as a start-

ing point for further training has been recommended [3, 19]

and proven to improve convergence.

3.3. Autoencoder Fine­Tuning

Using the AE from Section 3.1, we now fine-tune it with

gradients that originate from a pre-trained classification net-

work with fixed parameters. Intuitively, by letting the AE

adapt the reconstruction function to produce samples that

are likely to enhance classification performance, the AE will

be rewarded for keeping the parts of the input that are rele-

vant for inference. Conversely, the fine-tuned AE will dis-

regard any portions of the original input that do not have

positive impact on the performance of the classifier. An AE

could then learn to represent all the information that is used

by a classifier, if the accuracy of the latter does not decrease

by using input reconstructions from the former.

Fine-tuning the AE occurs by feeding the reconstructed

sample from the AE into a classifier, computing the pre-

diction loss and, backpropagating the gradients all the way

down to the input pixels and, further down the AE archi-

tecture. Since the target of analysis is the classifier and not

the combined AE-classifier network, the parameters of the

classifier are not updated by the flowing gradients. Only pa-

rameters belonging to the AE architecture get updated once

gradients from the classifier start flowing into the AE itself.

Incoming gradients can be used to update parameters either
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on the encoding, the decoding, or both sides of the AE. We

found that the best results were obtained by updating only

the weights belonging to the decoder.

To test the influence of architectural elements from the

classification network in the fine-tuning process, we fine-

tune copies of the pre-trained AE on four different classi-

fiers pre-trained on ImageNet, as provided by the torchvi-

sion project1: AlexNet [12], VGG-16 [26] with batch nor-

malization, Inception v3 [28], and ResNet 50 [8]. We also

added a version of LeNet-5 [14] modified to take input im-

ages of size 224× 224 pixels as a simple, lower bound in

terms of classification accuracy. These networks have been

recognized as high performing models when they were first

proposed. Furthermore, they include a series of different

structural elements that have played an important role to

push the state of the art on image classification e.g., higher

depth, batch normalization, inception modules, and residual

connections. We measure changes in accuracy when these

networks use the unaltered images from the ImageNet vali-

dation set and when they use reconstructions from the AE of

the same samples. Moreover, we check if the reconstructed

samples from the original pre-trained AE already encode all

the information that each classifier uses for inference.

For the remainder of this paper, classifiers will be refer-

enced by their first letter (L, A, V , I, and R) where applica-

ble. Furthermore, we will use the shorthand notation j ◦Ai

to indicate that the classifier j is using input samples from

an AE that has been fine-tuned with gradients provided by

classifier i. Additionally, AS will refer to the SegNet AE

pre-trained on YFCC100m and, Ai(x) will refer to a re-

construction of input sample x using Ai. We also define

C = {L,A,V, I,R}, the set of all classifiers evaluated.

Table 1 shows top-1 and top-5 accuracies for the afore-

mentioned classifiers before and after pre-pending them

with their corresponding fine-tuned AE. As described

above, we also computed the baseline i ◦AS, i ∈ C for ref-

erence. We see that the baseline lays between 1.2 and 3.7

points below the accuracy of the classifiers alone. Although

this is not a dramatic drop, it does indicate that some in-

formation has been lost during the reconstruction of input

samples. Taking into account that the difference between

x and AS(x) is quite small, we can infer that the miss-

ing signal that is relevant for inference has to be small as

well. Notwithstanding, fine-tuning AS on any classifier, al-

ready makes up for the initial loss of information and, for

most cases, even surpasses the performance of the classi-

fiers alone.

3.3.1 Encoded Representations of Fine-Tuned AEs

Once we obtain all Ai, i ∈ C ∪{S} by fine-tuning, we can

have a look at the reconstructed images. Figure 3 shows

1https://github.com/pytorch/vision, commit 10a387a

Table 1. Center-crop, single-scale accuracies on ImageNet vali-

dation set for: original classifier, classifier using reconstructions

from AS and, classifier using reconstructions from the AE that was

fine-tuned in combination with the classifier.

Network top-1 diff top-5 diff

L 32.30 54.63

L◦AS 31.08 −1.22 53.01 −1.62

L◦AL 34.85 +2.55 57.79 +3.61

A 54.96 77.98

A◦AS 51.89 −3.07 75.52 −2.46

A◦AA 56.13 +1.17 78.96 +0.98

V 71.35 90.50

V ◦AS 67.59 −3.76 87.95 −2.55

V ◦AV 71.65 +0.30 90.55 +0.05

R 74.02 92.01

R◦AS 71.19 −2,83 90.23 −1.78

R◦AR 74.94 +0.92 92.27 +0.26

I 77.12 93.25

I ◦AS 74.42 −2.70 91.87 −1.38

I ◦AI 76.71 −0.41 93.03 −0.22

an original image and the corresponding reconstructions by

each Ai. Below each reconstructed image, we visualize

channel-wise histograms in L*a*b* color space. These his-

tograms allow us to identify global changes in perceived

brightness and opposing colors. The L* channel represents

the luminance, a* encodes color changes between green and

magenta and, b* encodes changes between blue and yellow.

We chose this colorspace because it relates closely to how

human vision works. It neatly separates perceived bright-

ness from color and does not suffer from range singularities

like HSV. Distances between colors are approximately lin-

ear with respect to perception.

The observed transformations are unique for each clas-

sifier and are easily identified as large changes in all three

channels when compared to the original image. Changes

introduced by AV are the smallest among all AEs. AA and

AR introduce consistent checkerboard artifacts over the en-

tire input space. These artifacts appear as peaks in the his-

tograms in channels a* and b*. AR and AI compress the

range of the luminance, making dark areas brighter and

bright areas darker. AI introduces a strong shift in b* values

that manifest as a lack of blues and a yellow/brown tint. AA

produces images with a distinct pink hue.

3.3.2 Emergent Resilience to Noise

We noticed that a consequence of fine-tuning AEs, as pro-

posed in this work, is that their reconstructions are preserv-

ing more information under noise than the original inputs.

We tracked the top-1 accuracy of the classifiers in C on Im-

ageNet’s validation set under an increasing additive uniform

noise drawn from U(−s,s) with strength s∈ [0,1]. We com-
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Figure 3. Example taken from ImageNet’s validation set. Each image corresponds to a reconstruction produced by one of the fine-tuned

AEs. Below each reconstruction, global histograms of the image in L*a*b* colorspace are shown. Zoomed portions of the image recon-

structions are provided, showing the emergent patterns in more detail.

pared the results to a similar setup where the accuracy was

computed using reconstructed samples from Ai∈C∪{S}.

For the first experiment (dashed lines in Figure 4) accu-

racy decays steadily as noise increases. Using reconstruc-

tions from AS (Figure 4; left) worsens performance even

more, suggesting that the AE itself has not learned a de-

noising transformation. Note that these results are aligned

with initial findings presented in Section 3.3.1 where clas-

sification with reconstructed samples of AS alone were al-

ready lower than the corresponding baseline. In contrast,

reconstructions from fine-tuned AEs are consistently more

0.0 0.5 1.0

s

0.0

0.2

0.4

0.6

0.8

to
p

-1
a
cc

Pre-Trained SegNet

0.0 0.5 1.0

s

Fine-Tuned SegNets

I
I ◦AS/I

A

A ◦AS/A

R
R ◦AS/R

L
L ◦AS/L

V
V ◦AS/V

Figure 4. Top-1 accuracy on ImageNet’s validation set under in-

creasing noise strength s. Dashed lines correspond to networks

evaluated on the original inputs. Solid lines depict evaluation of

the networks using reconstructed inputs from AEs. Left: recon-

structions from AS. Right: reconstructions from Ai, i ∈ C .

resilient to noise, even when compared to the stand-alone

classifiers (Figure 4; right). Accuracy for classifiers of the

form i◦Ai present higher accuracies for all levels of noise,

indicating that all Ai∈C have indeed learned a representa-

tion of the information that is useful to the classifier it was

fine-tuned on. The most pronounced difference can be seen

with AlexNet, which falls below the accuracy of LeNet-5

at s = 0.3, yet it manages to remain above LeNet-5 when

using inputs from AA. This measurable resilience to noise

is also visually perceptible as shown in Figure 5.

3.4. Measuring Information through Classifiers

We explored the relationship between different encod-

ings defined by fine-tuned AEs. By observing the wide

visual differences between image reconstructions from all

Ai, i ∈ C , it is clear that each classifier prefers different re-

In
p

u
t

A
S

s = 0.0

A
V

s = 0.5 s = 1.0

Figure 5. Example for additive noise used to evaluate performance

in noisy environments for different values of the strength parame-

ter s. Top is the original input image. Middle and bottom rows are

reconstructions of AS and AV .
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Table 2. Cross-validation accuracies on ImageNet validation set

for classifiers with AEs fine-tuned on different models.

L A V I R

AL 0.3484 0.3077 0.0416 0.4352 0.4730

AA 0.0211 0.5613 0.0097 0.5375 0.0925

AV 0.2929 0.5362 0.7163 0.7400 0.7300

AI 0.1829 0.3024 0.4555 0.7671 0.4540

AR 0.0163 0.4972 0.0710 0.7249 0.7494

constructions and thus, different information. Hence, we

measured changes in accuracy for each classifier when us-

ing input reconstructions from AEs that were fine-tuned on

other classifiers. More formally, we evaluate the accuracy

of j ◦Ai,∀i, j ∈ C . Results are summarized in Table 2.

We observed that accuracy drops consistently for each

classifier when they use other AEs. However, some com-

binations of j ◦ Ai tend to preserve the accuracy of the

lowest performing model in that combination i.e., ∃i6= j :

acc( j ◦Ai) ≈ min(acc(i),acc( j)). Informally, this effect

can be interpreted as networks that use at least the sig-

nal that the lowest performing model uses. To quantify

this, we define the relative rate of change (RRC) of an AE-

classifier pair as follows: RRC( j ◦Ai) =
acc( j◦Ai)

m(i, j) where

m(i, j) = min(acc(i),acc( j)). Computing RRC values on

the cross-validation experiment reveals which combinations

of AEs and classifiers preserve more signal, as shown in

Figure 6. From this curve, we see how the input signal

used by VGG is enough to make both ResNet 50 and Incep-

tion v3 perform better than VGG itself. Additionally, the

signal from Inception v3 seems to be quite different from

the one used by any other model, as none of the models in

C \ {I} performed well (i.e., below 0.65 of their original

accuracy) using AI .

To further examine the relation between AEs and clas-

sifiers, we use formal concept analysis (FCA) [32] to de-

rive a hierarchical ontology between all possible combina-

tions of them. FCA is of particular interest here because

it allows us to model partially order sets (under the inclu-

j ◦Ai by RRC
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Figure 6. Every tested j ◦Ai combination, sorted by RRC. Parts

are color coded according to their associated classifier: L purple,

A blue, V orange, I red, R green.
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Figure 7. FC lattices for different RRC thresholds. Attributes (sig-

nal) are always below the nodes, objects (classifiers) are on top.

sion operation ⊆). To this end, we need to define a formal

context K = (G,M,I) where G is a set of objects, M is

a set of attributes and I is a binary relation between ele-

ments of G×M that expresses whether G has the attribute

M or not. Formal concepts of K are object-attribute sub-

set pairs (SA,SB) such that S′A = SB and S′B = SA, where

S′A = {m ∈ M|∀g∈GgIm} and S′B = {g ∈ G|∀m∈MgIm}. The

lattice of formal concepts for K is constructed by ordering

pairs of formal concepts (SA,SB),(SC,SD) under the opera-

tion ≤: (SA,SB)≤ (SC,SD)↔ SA ⊆ SC. Please refer to [33]

for a more intuitive introduction on FCA. Let G = C and

M = {Ai∈C }. Finally, let I = {(i, j) : RRC( j ◦Ai) ≥ t} for

a given threshold t. In other words, we convert the table

of RRC values into a binary relationship between AEs and

classifiers by applying a threshold to it. We generate lattices

for the FCs at thresholds t ∈ {0.1,0.2,0.8,0.9}, shown in

Figure 7. For any two nodes connected by an edge, the up-

stream connection can be interpreted as the signal encoded

by Ai is used by classifier j. Looking at t ∈ {0.1,0.9} gives

an idea of the most sensitive and robust changes in signal

behavior since they are close to the upper and lower bound

in the range of RRCs. Similarly, FCs for t ∈ {0.2,0.8} char-

acterize the largest changes in signal intake (i.e., they lay

in between the largest gaps) among classifiers. Note that

any value of t between those intervals ([0.17 − 0.52] and

[0.66−0.84]) yield the same FC, thus the same lattice. This

is important for establishing more precise lower and upper

bounds between signals and classifiers later on.

Looking at the first lattice in Figure 7a, we can see that

the signal from ResNet 50’s AE is already not enough to

make VGG or LeNet reach an accuracy that can go above

10% of what either of them achieves on their own, using

their corresponding AE. This is especially surprising for

VGG, considering how similar its performance is compared

to ResNet 50. Conversely, in Figure 7d we see how the sig-

nal of VGG is enough for making ResNet 50’s performance

at least 90% of what VGG–the lowest performing of the
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Figure 8. Difference between intra-class nMI and inter-class nMI.

The former measures information between the original sample and

reconstructions from different AEs. The latter measures recon-

structions of different samples using the same AE.

two–is originally capable of. For Inception, we see that it

shares up to 50% of the signal that the other classifiers are

picking up on. However, the remaining half of the signal

used by all other networks appears to be completely differ-

ent from the one Inception uses to achieve its high perfor-

mance. As a general trend, VGG stands out as the classifier

making the most exhaustive use of the input signal. The AE

fine-tuned on VGG preserves a signal that enables all other

classifiers retain at least 80% of their performance.

This analysis shows that all networks extract features

based on a common portion of the input signal, but said

portion can be as small as 10%, as pointed out earlier for

ResNet 50. Note how any FC for thresholds between 0.2

and 0.8 yield lattices describing a totally ordered set. The

only changing element is the AE fine-tuned on Inception.

Such a total order exposes an unexplored aspect that net-

works are sensitive to, namely that DCNNs are only extract-

ing features from a reduced portion of the input signal. We

interpret this hierarchy as the amount of general or special-

ized signal used by a network.

3.5. Measuring Information through Image Recon­
structions

We validate the pattern found in the cross-validation ex-

periments from Section 3.4 by measuring loss and preser-

vation of information between input reconstructions. We

use the normalized mutual information (nMI) [27] measure

to calculate bounded values reflecting relative changes in

the information that is preserved or lost when input samples

are passed through each AE. There are two complementary

cases to be considered, as shown in Figure 8:

Intra-class nMI: compare reconstructions from each

fine-tuned AE to the original sample. Reconstructed sam-

ples should preserve as much information as possible from

the original image and hence, a high correspondence is ex-

pected. To compute the intra-class nMI, an input sam-

ple is passed through all AEs and the nMI is computed

None AS AV AL AR AA AI

AE used for reconstruction

0.1

0.2

0.3

0.4

n
M

I

inter-mi

intra-mi

Figure 9. Normalized mutual information for input samples recon-

structed from different AEs. Intra-class nMI measures informa-

tion between reconstructions of the same sample

with respect to the original sample. In other words,

intra-nMI(x,Ai) = nMI(x,Ai(x)). For each AE, the av-

erage nMI and the standard deviation of all samples in the

validation set of ImageNet (50000 samples) are reported.

Inter-class nMI: compare reconstructions of two differ-

ent samples using a single fine-tuned AE. Reconstructed

samples of two independent images should yield low nMI

values. Therefore, a low correspondence is expected. To

compute the inter-class nMI, two samples are drawn at

random, passed through the same AE, and the nMI is

calculated between those two reconstructions. More for-

mally, inter-nMI(x1,x2,Ai) = nMI(Ai(x1),Ai(x2)). For

each AE, the average nMI and the standard deviation of

consecutive sample pairs over the entire set of ImageNet

(25000 pairs) are reported.

Results in Figure 9 show that AS is able to preserve the

highest amount of the input signal. Moreover, there is a

well-defined order with respect to classifiers whose fine-

tuned AEs preserve more information. Regardless of the

variant of nMI used for comparison, all fine-tuned AEs can

be sorted as follows: AV > AI > AL > AR > AA. Note that

both AA and AR show comparatively high amounts of inter-

class nMI, which is consistent with earlier observations of

highly regular patterns in their reconstructions as described

in Section 3.3.1. The resulting totally ordered set aligns

closely to the attributes in the lattice of Figure 7b which

also describes a totally ordered set.

This analysis provides further evidence of the existence

of a pattern, where different networks are using of more or

less information from the original input. Furthermore, con-

sidering that classification accuracy dropped consistently

for all classifiers when the original AE was used, we can in-

fer that the lost information, though irrelevant in most cases,

is indeed used by all classifiers. The nature of information

reconstructed by AS and its fine-tuned versions suggests that

classifiers are using parts of the inputs that are less relevant

for accurate reconstruction.
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3.6. Understanding Previous Work based on Signal

We have so far been able to quantify the amount of signal

different classifiers use for their predictions. Another way

of interpreting our findings resulted in lattices that describe

(partial) orders of classifiers according to (non-) overlap-

ping parts of the input signal they process. These results

coincide with several prior publications on understanding

the operations performed by deep neural network. Zeiler et

al. [35] discovered that AlexNet is highly sensitive to local

structures. This can be understood in part as a consequence

of the reduced input signal that AlexNet uses. Raghu et

al. [22] showed that parameters on shallower layers have

a higher impact on the final prediction than deeper layers.

Shallower layers are closer and hence more exposed to the

entire signal and can therefore drop more of it. Modify-

ing shallow layers alters the amount and the kind of sig-

nal that goes into the network, affecting prediction scores

significantly. The work of Montavon et al. [20] shows rel-

evance reconstruction maps that are coarser for CaffeNet

than for GoogleNet. This phenomenon is consistent with

other work [13] and can now be understood from the point

of view of the input signal. In one of their latest exper-

iments, Bau et al. [2] trained a variant of AlexNet with

wider layers and global average pooling to explore its in-

terpretability. Despite all those changes, the accuracy was

similar to the original architecture even after increasing the

number of filters of the last convolutional layer by a factor

of 4 and 8. They suggest that the capacity of the network

has been exhausted although, by definition, more filters in-

dicate a higher capacity. We propose a complementary idea:

adding more filters in deeper layers do not affect the perfor-

mance not because the capacity of the model is exhausted,

but because the input signal is. In other words, deeper layers

already interpret all the signal that is available to them.

4. Discussion & Future Work

In this work, we introduced a novel, alternative way to

understand the behavior of deep neural networks by study-

ing the reconstruction performed by autoencoders that were

fine-tuned to suit their needs. This setup allowed us to ana-

lyze the amount of signal that a network uses before it enters

the model itself. Our approach is fundamentally different

from previous work since we did not focus on measuring

the behavior of intermediate or end results (e.g., through

bias-variance metrics or activation maximization analysis).

We propose a training scheme for the autoencoder that

ensures excellent generalization and reproducible results by

using the YFCC100m as dataset for pre-training. Further-

more, we use the resulting model as basis for further fine-

tuning of the decoder with gradients from different pre-

trained image classifiers. By looking at the response of

classifiers when different auto-encoded images are fed, we

were able to establish a relation of order between classifiers

that depends on the input signal. We presented evidence

of this underlying pattern by using formal concept analy-

sis and validate our findings by measuring the information

contained in the different image reconstructions.

Additional Findings: There are some further observa-

tions that spawn from our proposed method that we like to

highlight.

The two-stage training strategy for autoencoders has in-

fluenced these networks to learn denoising operations. Said

function is effective because it favors the preservation of

parts of the input signal that are used by the classifier, in-

creasing the overall tolerance to noise within individual

samples.

The amount of signal used by most classifiers is small

compared to the amount of signal that is available from the

input. High performing image classifiers like ResNet can

use as little or less than 10% of the original input. This

can be seen as a beneficial property, as less evidence is re-

quired to make a correct prediction. Possible downside of

this reliance on little evidence is that small changes to rele-

vant parts of the input, also known as adversarial examples,

can change the prediction. Classifiers that take advantage

of redundant information are more robust to changes that

were unaccounted for during training. Note also that the

amount of input signal does not correlate with the number

of parameters or performance.

However, the relevant portion of the input signal does

follow a general, distributed pattern as seen by the global

checkerboard artifacts that appear in reconstructions pro-

duced by some AEs. In other words, these patterns do not

depend on the specific content of each image, but rather to

general patterns (e.g. darken bright areas, increased distance

between colors).

Future Work: As next steps, we want to compare the

denoising properties of fine-tuned autoencoders with other

architectures and training strategies that are explicitly de-

signed to denoise. Moreover, we would like to explore al-

ternatives to SegNet as autoencoder that are more efficient

and light-weight. Finally, we are not yet able to point to

specific points in the architecture of a deep network that

are responsible for losing signal. A better understanding of

how the flow of signal through a network can be controlled

will allow for a more principled approach to design future

architectures.
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