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Abstract

Despite the recent success of stereo matching with con-

volutional neural networks (CNNs), it remains arduous to

generalize a pre-trained deep stereo model to a novel do-

main. A major difficulty is to collect accurate ground-

truth disparities for stereo pairs in the target domain. In

this work, we propose a self-adaptation approach for CNN

training, utilizing both synthetic training data (with ground-

truth disparities) and stereo pairs in the new domain (with-

out ground-truths). Our method is driven by two empirical

observations. By feeding real stereo pairs of different do-

mains to stereo models pre-trained with synthetic data, we

see that: i) a pre-trained model does not generalize well to

the new domain, producing artifacts at boundaries and ill-

posed regions; however, ii) feeding an up-sampled stereo

pair leads to a disparity map with extra details. To avoid

i) while exploiting ii), we formulate an iterative optimiza-

tion problem with graph Laplacian regularization. At each

iteration, the CNN adapts itself better to the new domain:

we let the CNN learn its own higher-resolution output; at

the meanwhile, a graph Laplacian regularization is imposed

to discriminatively keep the desired edges while smoothing

out the artifacts. We demonstrate the effectiveness of our

method in two domains: daily scenes collected by smart-

phone cameras, and street views captured in a driving car.

1. Introduction

Stereo matching is a classic yet important problem for

many computer vision tasks (e.g., 3D reconstruction [7] and

autonomous vehicles [6]). Particularly, given a rectified im-

age pair captured by stereo cameras, one aims at estimating

the disparity of each pixel between the two images. Tra-

ditionally, a stereo matching pipeline starts from matching

cost computation and cost aggregation. Further optimiza-

tion and refinement lead to the output disparity [13]. Recent

advances in deep learning has inspired a lot of end-to-end

convolutional neural networks (CNNs) for stereo matching,

e.g., [18, 23]. Unlike the traditional wisdom, an end-to-end

CNN integrates the stereo matching pipeline into a holistic

deep architecture by learning from the training data. Under

confined scenarios with proper training data (e.g., the KITTI

dataset [6]), the end-to-end deep stereo models achieve un-

precedented state-of-the-art performance.

However, it remains difficult to generalize a pre-trained

deep stereo model to a novel scenario. Firstly, the con-

tents in the source domain may have very different char-

acteristics from the target domain. Moreover, real stereo

pairs collected with different stereo modules suffer from

several degenerations—e.g., noise corruption, photometric

distortions, imperfections in rectification—to different ex-

tents. Directly feeding a stereo pair of the target domain to a

CNN pre-trained from another domain deteriorates its per-

formance significantly. Consequently, state-of-the-art ap-

proaches, e.g., [18, 28], train their models with synthetic

datasets [23], then perform finetuning on a fewer amount

of domain-specific data with ground-truths. Unfortunately,

besides a few public datasets for research purpose, e.g., the

KITTI dataset [6] and the Middlebury dataset [32], it is ex-

pensive and troublesome to collect real stereo pairs with ac-

curate ground-truth disparities.

To resolve this dilemma, we propose a self-adaptation

approach to generalize deep stereo matching methods to

novel domains. We utilize synthetic training data and stereo

pairs of the target domain, where only the synthetic data

have known disparity maps. Our approach is compatible

with end-to-end deep stereo methods, e.g., [23, 28], guiding

a pre-trained model to gradually adapt to the target scenario.

We start our explorations by feeding real stereo pairs from

different domains to models pre-trained with synthetic data,

resulting in two empirical observations:

(i) Generalization glitches: a pre-trained model does not

generalize well on the target domain—the produced

disparity maps can be blurry at object edges and erro-

neous at ill-posed regions;

(ii) Scale diversity: feeding a properly up-sampled stereo

pair (the same stereo pair at a finer scale) leads to

another disparity map with more meaningful details,

e.g., sharper object boundaries, more high-frequency

contents of the scene.

To avoid the issues of (i) while exploiting the benefits of (ii),
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Left DispNetC DispNetC-80 Ours

Figure 1. Feeding stereo pairs collected from smartphones to mod-

els pre-trained from synthetic data leads to blurry edges and arti-

facts. In contrast, our self-adaptation approach brings significant

improvements to the disparity maps.

we propose an iterative regularization scheme for finetuning

deep stereo matching models.

We formulate the CNN training as an iterative optimiza-

tion problem with graph Laplacian regularization. On one

hand, we let the CNN learn its own finer-grain output; on

the other hand, a graph Laplacian regularization is imposed

to discriminatively retain the useful edges while smooth-

ing out the undesired artifacts. Our formulation, composing

of a data term and a smoothness term, is solved iteratively,

leading to a model well suited for the novel domain e.g.,

Figure 1. The proposed self-adaptation approach is called

zoom and learn, or ZOLE, for short. We demonstrate the ef-

fectiveness of our approach to two different domains: daily

scenes collected by smartphone cameras, and street views

captured from the perspective of a driving car.

This paper is structured as follows. Related works are

reviewed in Section 2. We then illustrate our observations

about deep stereo models in Section 3. The proposed self-

adaptation approach is introduced in Section 4. Section 5

presents the experimental results and Section 6 concludes

our work.

2. Related Works

We first review several stereo matching algorithms based

on convolutional neural networks (CNNs). We then turn to

related works on graph Laplacian regularization and itera-

tive regularization/filtering.

Deep stereo algorithms: Recent breakthroughs in deep

learning have reshaped the paradigms of many computer

vision tasks, including stereo matching. Early works em-

ploying CNNs for stereo matching focuses on learning a ro-

bust similarity measure for matching cost computation e.g.,

[11, 37]. To produce disparity maps, modules in the tra-

ditional stereo matching pipeline are indispensable. The

remarkable work, DispNet, proposed by Mayer et al [23],

is the first end-to-end CNN approach for stereo matching,

where an encoder-decoder architecture is employed for su-

pervised learning. Other recent works with leading per-

formance include CRL [28], GC-NET [18], DRR [8], etc.

These works explore different CNN architectures tailor-

made for stereo matching. They achieve superior results

on the KITTI 2015 stereo benchmark [6], a benchmark con-

taining driving scenes. Despite the success of these method-

ologies, to adopt them in a novel domain, it is necessary to

fine-tune the models with new domain-specific data. Unfor-

tunately, in practice, it is very difficult to collect accurate

disparity maps for training [6, 32].

To mitigate this problem, some recent works proposed

semi-/un-supervised approaches to train a CNN model for

stereo matching (or its related problem, monocular depth

estimation). This category of works is essentially based on

left-right consistency/warping, e.g., [10, 19, 38, 39]. For

instance, one may synthesize the left (or right) view ac-

cording to the estimated left (or right) disparity and the

right (or left) view for computing a loss function. However,

left-right consistency becomes vulnerable when the stereo

pairs are imperfect, e.g., when the two views have differ-

ent photometric distortions. Another line of research by

Tonioni et al. [34] propose to finetune a pre-trained model

to achieve domain adaptation. Their method relies on the

results of other stereo methods and confidence measures.

Our work also performs finetuning with a pre-trained stereo

model. In contrast, we do not rely on external models or

setups: our self-supervised domain adaptation method lets

the CNN discriminatively learn the useful details from its

own finer-grain outputs.

Other related works: According to [21, 33], graph

Laplacian regularization is particularly useful for the recov-

ery of piecewise smooth signals, e.g., disparity maps. By

having an appropriate graph, edges can be preserved while

undesired defects are suppressed [26, 27]. Hence, we pro-

pose to apply graph Laplacian regularization to selectively

learn and preserve the meaningful details from the higher-

resolution disparity outputs.

Iterative regularization/filtering is an important tech-

nique in classic image restoration [17, 24, 25]. To restore a

corrupted image, it is regularized iteratively through a vari-

ational formulation, so that its quality improves at each it-

eration. To utilize scale diversity while avoiding general-

ization glitches (as mentioned in Section 1), we embed iter-

ative regularization into the CNN training process, making

the model parameters improve gradually. Different from it-

erative refinement via a stacked neural network architecture,

e.g., [15, 35], our iterative process occurs during training.
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3. Observations

We first present two phenomena by feeding real-world

stereo pairs in different domains to deep stereo models pre-

trained with synthetic datasets (e.g., FlyingThings3D [23],

MPI Sintel [3], Virtual KITTI [5]). Underlying reasons

for these phenomena will also be presented. We choose

the off-the-shelf DispNet [23] architectures—both the one

with explicit correlation (DispNetC) and the one based on

convolution only (DispNetS)—for our discussions. Their

encoder-decoder architectures are representative and also

widely used in the deep learning literature, e.g., [1, 22, 31].

3.1. Generalization Glitches

In general, a stereo model pre-trained with synthetic data

does not perform well on real stereo data in a particular do-

main. Firstly, the contents of the synthetic data may dif-

fer from that of the target domain. Moreover, real stereo

pairs inevitably suffer from defects arising from the imag-

ing process. For instance, they are likely corrupted by noise.

Besides, the two views may have different photometric dis-

tortions due to inconformity of the two cameras. In some

cases, the stereo pair may not even be well rectified, e.g.,

two corresponding pixels are not on the same scan-line. All

the above factors deteriorate the performance of a model

pre-trained with synthetic data.

For illustration, we use smartphones equipped with

two rear-facing cameras to collect a few stereo pairs (of

size 1024×1024), then perform the following tests. We

first adopt the released DispNetC model pre-trained with

the FlyingThings3D dataset [23]. Since stereo pairs of

smartphones have small disparity values, we also fine-

tune a model from the released model, where we remove

those FlyingThings3D stereo pairs with maximum disparity

larger than 80. Data augmentation is introduced for the two

views individually during training, please refer to Section 5

for more details. The resulting model is called DispNetC-

80. Both DispNetC and DispNetC-80 perform very well

on the FlyingThings3D dataset, but are problematic when

applied to real smartphone data. Figure 1 shows a few dis-

parity estimates of DispNetC and DispNetC-80. As can be

seen, the results are blurry at object edges. Moreover, at

ill-posed regions, i.e., object occlusions, repeated patterns,

and textureless regions, the disparity maps are erroneous.

In this work we call this generalization glitches, meaning

the mistakes that a deep stereo model (pre-trained with syn-

thetic data) make when it is applied to real stereo pairs of a

certain domain.

3.2. Scale Diversity

In spite of the unpleasant generalization glitches, we find

that deep stereo models have an encouraging property. Sup-

pose we have a stereo pair P = (L,R), where L and R are

Figure 2. For the same stereo pair, feeding its zoomed-in version to

a stereo matching CNN leads to a disparity map with extra details.

The four rows are the left image, the disparity maps obtained by

(1), with up-sampling ratio r = 1, 1.5, 2, respectively.

the left and the right views, respectively. We denote a deep

stereo model parameterized by Θ as S(·;Θ). By applying it

to the stereo pair P leads to a disparity map D = S (P ;Θ).
The operation of up-sampling by r times is denoted as ↑r(·)
while down-sampling by r times is ↓r(·). By passing an up-

sampled stereo pair to S then down-sampling the result, we

obtain another disparity map, D′, of the same size as D,

D′ =
1

r
· ↓r (S (↑r(P );Θ)) . (1)

Note that after downsampling, the factor 1/r is necessary

for making D′ to have the correct scaling. Compared to

D, D′ usually contains more high-frequency details. To see

this, we apply the released DispNetC model to a few stereo

pairs captured by smartphones. We make the original size

of the stereo pairs as 640× 640. For each of them, we esti-

mate three disparity maps based on (1) with r ∈ {1, 1.5, 2}.

Visual results are shown in Figure 2. We see that as r grows,

more fine details are produced on the disparity maps.

However, a bigger r does not necessarily mean better re-

sults. For further inspection, we adopt the released Disp-

NetC and DispNetS models (trained with the FlyingTh-

ings3D dataset) and measure their performance on the train-

ing set of KITTI stereo 2015 [6] at different resolutions.

The results, in terms of the percentage of pixels with an er-

ror greater than 3, or three-pixel error rate (3ER), are listed
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Table 1. The average three-pixel error rates of the released Disp-

NetC and DispNetS models on the training set of KITTI stereo

2015. A resolution of N means the stereo pairs are resized to

N ×N before passing to the CNNs.

Network
Resolution

896 1280 1664 2048 2432

DispNetC 14.26% 9.97% 8.81% 9.17% 10.53%

DispNetS 18.95% 11.61% 9.18% 8.64% 9.08%

in Table 1. We see that as the input resolution increases, the

performance first improves then deteriorates. Because:

(i) Up-sampling the stereo pairs enables the model to per-

form stereo matching at a localized manner with sub-

pixel accuracy. Hence, more details on the stereo pairs

are taken into account for computation, leading to dis-

parity estimates with extra high-frequency contents;

(ii) A finer-scale input translates to a smaller effective

search range (or receptive field). As a CNN becomes

too “short-sighted,” it lacks non-local information to

estimate a proper disparity map, and its performance

start to decline.

This phenomenon—different results can be observed with

different input scales—is called scale diversity, akin to the

concept of transmit diversity in communication [30]. We

find that scale diversity also exists in other problems, e.g.,

optical flow estimation [15, 23] and image segmentation

[22], please refer to the supplementary material for more

details.

4. Zoom and Learn

To achieve effective self-adaptation, our approach—

zoom and learn (ZOLE)—finetunes a model pre-trained

with synthetic data. It iteratively suppresses generalization

glitches while utilizing the benefits of scale diversity.

4.1. Graph Laplacian Regularization

Graph Laplacian regularization is employed in a wide

range of image restoration literature, e.g., [4, 9, 24]. It is

also proven to be effective for the recovery of piecewise

smooth signals [14, 26, 33]. We adopt graph Laplacian reg-

ularization (on a patch-by-patch basis) to guide the learn-

ing of CNNs. Graph Laplacian regularization assumes the

ground-truth signal s ∈ R
m—in our case, a patch on the

ground-truth disparity—is smooth with respect to a pre-

defined graph G with m vertices. Specifically, it imposes

that the value of s
T
Ls, i.e., the graph Laplacian regular-

izer, should be small for the ground-truth patch s, where

L ∈ R
m×m is the graph Laplacian matrix of graph G.

Given a disparity map D produced by a deep stereo model,

we compute the values of the graph Laplacian regularizers

for the patches on D. The obtained values are summed up

as a graph Laplacian regularization loss for CNN training.

For an effective regularization with graph Laplacian, it is

critical to constructing a graph G properly. We employ the

graph structure of [12, 26] which works well for disparity

map denoising. For illustration, we first introduce the con-

cept of exemplar patches. Exemplar patches are a set of K
patches, fk ∈ R

m where 1 ≤ k ≤ K, that are statistically

related to the ground-truth patch s. For instance, an exem-

plar patch can be a rough estimate of s, or the co-located

patch on the left image, etc. Our choices of the exemplar

patches will be presented in Section 4.2. With the exemplar

patches, the edge weight wij connecting pixel i and pixel j
on patch s is given by

wij =

{

exp
(

−d2ij
)

if |dij | ≤ ǫ,
0 otherwise,

where ǫ is a threshold, d2ij is a distance measure between

pixel i and pixel j. Hence, the resulting graph G is an ǫ-
neighborhood graph, i.e., there is no edge connecting two

pixels with a distance greater than ǫ. We choose an indi-

vidual value of ǫ for each patch, making every vertex of the

graph has at least 4 edges. The distance measure d2ij is de-

fined as follows:

d2ij =
∑K

k=1
(fk(i)− fk(j))

2
+ α · l2ij , (2)

where fk(i) and fk(j) denote the i-th and the j-th entries

of fk, respectively, so the first term of (2) measures the Eu-

clidean distance between pixels i and j in a K-dimensional

space defined by the exemplar patches. lij is simply the

spatial distance (length) between pixels i and j, and α is a

constant weight, empirically set to be a small value 0.2.

The adjacency matrix of G is denoted as A, where the

(i, j)-th entry of A is wij . The degree matrix of G is a di-

agonal matrix D, its i-th diagonal entry is
∑m

j=1 wij . Then

the graph Laplacian L is given by L = D − A, leading

to the graph Laplacian regularizer s
T
Ls ∈ R. From the

analysis of [26], graph Laplacian regularizer is an adaptive

metric. If the same edge (or gradient ) pattern appears in

the majority of the exemplar patches, minimizing the graph

Laplacian regularizer promotes the very edge pattern; if the

exemplar patches are inconsistent, graph Laplacian regular-

ization leads to a smoothed patch. We exploit this property

to guide a deep stereo model to selectively learn the desired

details.

4.2. Training by Iterative Regularization

We borrow the notion of iterative regularization [24] for

generalizing deep stereo models to novel domains, giving

rise to the proposed zoom and learn approach. Suppose

we have a deep stereo model S(·;Θ(0)) (parameterized by

Θ
(0)) pre-trained with synthetic data. We also have a set

2073



of N stereo pairs, Pi = (Li, Ri), 1 ≤ i ≤ N , where the

first Ndom of them are real stereo pairs of the target domain

while the rest Nsyn = N − Ndom pairs are synthetic data,

among which only the synthetic data has ground truth dis-

parities Di (Ndom + 1 ≤ i ≤ N ).

We solve for a new set of model parameters Θ
(k+1) at

iteration k. For a constant r > 1, we first create a set of

“ground-truths” for the Ndom real stereo pairs by zooming

(up-sampling), i.e.,

Di =
1

r
· ↓r

(

S
(

↑r(Pi);Θ
(k)

))

, 1 ≤ i ≤ Ndom. (3)

From Section 3.2, Di contains more details than

S(Pi;Θ
(k)). We divide a disparity map Di into M

square patches tiling it where each patch is a vector of

length m. The vectorization operator is denoted as vec(·)
so that vec(Di) ∈ R

Mm. The m-by-Mm matrix extracting

the j-th patch from Di is denoted as Rj . With these

settings, we formulate the following iterative optimization

problem,

Θ
(k+1) = argmin

Θ

Ndom
∑

i=1

M
∑

j=1

‖sij − dij‖1+λ · s
T
ijL

(k)
ij sij+

τ ·

N
∑

i=Ndom+1

‖S(Pi;Θ)−Di‖1, (4)

s.t. sij = Rj · vec (S(Pi;Θ)) , dij = Rj · vec (Di) .

Here sij and dij are the j-th patches of S(Pi;Θ) and Di,

respectively. λ and τ are positive constants. Our optimiza-

tion problem (4) first minimizes over each patch on the

Ndom stereo pairs: the first term (data term) drives sij to

be similar to dij ; and the second term (smoothness term) is

a graph Laplacian regularizer induces from the matrix L
(k)
ij .

The third term of (4) lets Θ(k+1) be a feasible deep stereo

model; it literally means that: a deep stereo model works

well for the target domain should also has reasonable per-

formance on the synthetic data.

At iteration k, a graph G
(k)
ij (1 ≤ i ≤ Ndom, 1 ≤ j ≤

M ), and hence the corresponding graph Laplacian, L
(k)
ij , are

pre-computed for calculating a loss sTijL
(k)
ij sij . We choose

the following three exemplar patches for building G
(k)
ij :

fleft = wleft ·Rj · vec(Li),

fcurr = wcurr ·Rj · vec(S(Pi;Θ
(k))),

ffine = wfine ·Rj · vec(Di) = wfine · dij ,

where wleft, wcurr and wfine are constants. In other words,

fleft, fcurr, and ffine are the j-th patches of the left image

Li, the current prediction S(Pi;Θ
(k)) and the finer-grain

prediction Di (3), respectively.

Our chosen exemplar patches lead to a graph Laplacian

regularizer that discriminatively retain the desired details

from ffine whilst smoothing out possible artifacts on both

fcurr and ffine. We analyze how the patches fleft, fcurr and

ffine affects the behavior of the graph Laplacian:

(i) Suppose a desired object boundary (denoted by A)

does not appear in the current predicted patch fcurr.

However, it has appeared in the finer-grain patch

ffine by virtue of scale diversity (Section 3.2), then A
should also appear in fleft; otherwise the CNN cannot

generate A on ffine. In this case, both ffine and fleft

have boundary A, resulting in a Laplacian L
(k)
ij that

promotes A on sij .

(ii) Suppose due to generalization glitches, an undesired

pattern (denoted as B) is produced in one exemplar

patch, fcurr or ffine. Since B is absence in the other

exemplar patches, the corresponding graph Laplacian

L
(k)
ij penalizes B on sij .

Hence, our graph Laplacian regularizer guides the CNN to

only learn the meaningful details.

4.3. Practical Algorithm

Iteratively solving the optimization problem (4) can be

achieved by training the model S(·;Θ) with standard back-

propagation [20]. We hereby present how to use the pro-

posed formulation for finetuning a pre-trained model in

practice. Since a disparity map Di is tiled by M patches,

dij with 1 ≤ j ≤ M , the first term in (4) equals
∑Ndom

i=1 ‖S(Pi;Θ)−Di‖1. Hence, the objective of (4) can

be rewritten as:

Θ
(k+1) = argmin

Θ

Ndom
∑

i=1

‖S(Pi;Θ)−Di‖1+

τ ·

N
∑

i=Ndom+1

‖S(Pi;Θ)−Di‖1 + λ ·

Ndom
∑

i=1

M
∑

j=1

s
T
ijL

(k)
ij sij ,

(5)

We see that the first two terms of (5) are simply L1 loss

with different weightings for the target domain and the syn-

thetic data. The third term is the proposed graph Laplacian

regularization loss, we discuss its backpropagation in the

supplementary material.

In general, there are a lot of training examples (N is

large), yet in practice, every training iteration can only

take in a batch of n ≪ N training examples and perform

stochastic gradient descent. As a result, we shuffle all the

N stereo pairs and sequentially take out n of them to form a

training batch for the current iteration. For a synthetic stereo

pair Pi (Ndom + 1 ≤ i ≤ N ) in the batch, we directly use

its L1 loss for backpropagation since its ground-truth Di is
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Algorithm 1 Zoom and learn (ZOLE)

1: Input: Pre-trained deep stereo model S(·;Θ(0)),
training data {Pi}

Ndom

i=1 and {Pi, Di}
N
i=Ndom+1

2: Shuffle the training data to form a list ℓ

3: for k = 0 to kmax − 1 do

4: for b = 1 to n do

5: Draw an index i from list ℓ

6: if i ≤ Ndom then

7: Compute Di, then compute S(Pi;Θ
(k)) and hence

the graph Laplacian matrices L
(k)
ij

8: end if

9: Insert {Pi, Di} to the current batch

10: end for

11: Use the formed training batch and the pre-computed Lapla-

cian matrices to perform a step of gradient descent

12: if mod(k + 1, t) = 0 then

13: Perform validation, update Θ
(bst) and v(bst) if needed

14: end if

15: end for

16: Output: model parameters Θ(bst)

known. Otherwise, for a stereo pair Pi with 1 ≤ i ≤ Ndom

in the batch, we first feed its up-sampled version to the

CNN for computing the finer-grain “ground-truth” Di, we

also compute the current estimate S(Pi;Θ
(k)) and hence

the graph Laplacian matrices L
(k)
ij for each patch. With Di

and the pre-computed L
(k)
ij ’s, 1 ≤ j ≤ M , both the L1 loss

and the graph Laplacian regularization loss are employed

for backpropagation.

For every t training iterations, we perform a validation

procedure with left-right consistency, using another set of

N
(v)
dom stereo pairs in the target domain. We first estimate the

disparity maps with the up-to-date model then synthesize

N
(v)
dom left images with the estimated disparity maps and the

right images. Then we compute the peak signal-to-noise

ratios (PSNRs) between the synthesized left images and the

genuine ones. The average PSNR reflects the performance

of the current model. During the training process, we keep

track of the best PSNR value v(bst) and its corresponding

model Θ(bst). After kmax training iterations, we terminate

the training and output Θ(bst). Algorithm 1 summarizes the

key steps of our self-adaptation approach.

5. Experimentation

In this section, we generalize deep stereo matching for

two different domains in the real world: daily scenes cap-

tured by smartphone cameras, and street views from the

perspective of a driving car (the KITTI dataset [6]). We

again choose the representative DispNetC [23] architecture

for our experiments.

Figure 3. Validation performance of three different models during

finetuning. The curves are plotted in terms of the average PSNR

between the synthesized left images and the genuine ones.

5.1. Daily Scenes from Smartphones

Recently, many companies (e.g., Apple, Samsung) have

equipped their smartphones with two rear-facing cameras.

Stereo pairs collected by these cameras have small disparity

and possibly contaminated by noise due to the small area

of their image sensors. With two views of the same scene,

stereo matching is applied to estimate a dense disparity map

for subsequent applications, e.g., synthetic bokeh [2] and

segmentation [22].

We aim at generalizing the released DispNetC model

(pre-trained with the FlyingThings3D dataset [23]) for daily

scenes captured by smartphones cameras. For this pur-

pose, we used various models of smartphones to collect

Ndom = 1900, N
(v)
dom = 320 and N

(t)
dom = 320 stereo pairs

for training, validation, and testing, respectively. These

stereo pairs contain daily scenes like human portraits and

objects taken in various indoor and outdoor environments

(e.g., library, office, playground, park). All the collected

images are rectified and resized to 768× 768, their ground-

truth disparity maps are unknown. Besides, we use the Fly-

ingThings3D dataset for synthetic training examples in our

method, they are also resized to 768 × 768. Since their

original size is 960 × 960, their disparity maps need to be

rescaled by a factor of 0.8. To cater for the small disparity

values of the smartphone data, we only keep those synthetic

examples with maximum disparity no greater than 80 af-

ter rescaling, leading to 9619 available examples. Among

them, Nsyn = 8000 examples are used for training and the

rest N
(t)
syn = 1619 are withheld for testing. We call this set

of data FlyingThings3D-80. In our experiments, all stereo

pairs have intensity ranges from 0 to 255.

The Caffe framework [16] is employed to implement our

method. During training, we randomly crop the images

to 640 × 640 before passing them to a CNN, and let the

patch size be 20 × 20 for building the graphs, resulting in

32×32 = 1024 graphs for each training example. We mod-

ify the L1 loss layer of [23] to capture the first two terms of

(5): for a synthetic pair, its L1 loss is weighted by 1.2 times,

otherwise the weight is 1. We empirically set wleft = 0.3,
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Left image Tonioni et al. [34] DispNetC ZOLE-S ZOLE

Figure 4. Visual comparisons of several models on the test set of our smartphone data. This figure shows fragments of left images and the

corresponding disparity maps obtained with different models. It is clear that our ZOLE approach produces superior disparity results.

Table 2. Performance comparison of our obtained zoom and learn (ZOLE) model and the other four models.

Dataset Metric
Model

Tonioni [34] DispNetC DispNetC-80 ZOLE-S ZOLE

Smartphone PSNR SSIM 22.92 0.845 21.99 0.790 22.39 0.817 22.84 0.851 23.12 0.855

FlyingThings3D-80 EPE 3ER 1.08 6.79% 1.03 5.63% 0.93 5.11% 1.10 6.88% 1.11 6.54%

wfine = 0.8 and wcurr = 1, all the computed s
T
ijL

(k)
ij sij

are averaged then weighted by 1.5 times for a loss (the third

term in (5)). We have tried out different up-sampling ratios

r’s ranging from 1.2 to 2 for computing Di, and found the

the obtained CNNs have similar performance. In our exper-

iments, we let r = 1.5. Data augmentation is introduced

to the synthetic stereo pairs. For each individual view in

a synthetic pair, Gaussian noise (σ ∈ {0, 10, 15}) are ran-

domly added. The brightness of each image channel are

also randomly adjusted (by a factor of ρ ∈ {0.8, 1, 1.2}).

We let the batch size be 6, the learning rate be 5 × 10−5,

and finetune the model for kmax = 104 iterations, valida-

tion is performed every 500 iterations.

We first study the following models:

(i) ZOLE: Generalize the pre-trained model for smart-

phone stereo pairs with our method;

(ii) ZOLE-S: Remove graph regularization and simply let

the CNN iteratively learn its own finer-grain outputs;

(iii) DispNetC-80: Finetune the pre-trained model on the

FlyingThings3D-80 examples;

(iv) DispNetC: Released model pre-trained with Fly-

ingThings3D [23].

The very recent method [34] by Tonioni et al. also fine-

tunes a pre-trained model using stereo pairs from the target

domain. They first estimate disparity maps for the target do-

main with AD-CENCUS [36]. To finetune the model, they

treat the obtained disparity maps as “ground-truths” while

taking a confidence measure [29] into account. For com-

parison, we finetune a model with their released code under

their recommended settings.

Since the stereo pairs of smartphones do not have

ground-truth disparities, we evaluate the performance of a

model in a way similar to the validation process presented

in Section 4.3. We synthesize the left images with the esti-

mated disparities and the right images, then measure the dif-

ference between the synthesized left images and the genuine

ones, using both PSNR and SSIM as the difference metrics.

For testing or validation, all the stereo pairs are fed to the

CNN at a fixed resolution of 1024×1024. Figure 3 plots the

performance of ZOLE, ZOLE-S and DispNetC-80 on the

validation set of the smartphone data during training (mea-

sured in terms of average PSNR of the synthesized left im-

ages). Besides, Table 2 presents the performance of all the

aforementioned models, on both the test sets of the smart-

phone data and FlyingThings3D-80. We use end-point-
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Left image Tonioni et al. [34] DispNetC ZOLE

Figure 5. Visual comparisons of several models on the KITTI stereo 2015 dataset, where our ZOLE method produces accurate fine details.

Table 3. Objective performance on the KITTI stereo 2015 dataset.

Metric
Model

Tonioni [34] DispNetC ZOLE-S ZOLE

EPE 1.27 1.64 1.34 1.25

3ER 7.06% 11.41% 7.56% 6.76%

error (EPE) and three-pixel error rate (3ER) as the evalua-

tion metrics for the FlyingThings3D-80 dataset. Compared

to the models trained only with the synthetic data (Disp-

NetC and DispNetC-80), the one obtained with our method

(ZOLE) achieves the best PSNR and SSIM performance.

Figure 4 shows visual comparisons of four models on the

test sets of the smartphone data. One can clearly see that,

our approach leads to smooth disparities with very sharp de-

tails, while disparity maps produced by other models may

be blurry or contain artifacts.

5.2. Driving Scenes of KITTI

Our self-adaptation method is also applied to general-

ize the pre-trained DispNetC model to the KITTI stereo

2015 dataset [6], which contains dynamic street views from

the perspective of a driving car. The KITTI stereo 2015

dataset have 800 stereo pairs. Among them, 200 exam-

ples have publicly available (sparse) ground-truth disparity

maps. They are employed for testing, while the rest 600

pairs are used for validation. For training, we first gather

Nsyn = 9000 stereo pairs randomly from the FlyingTh-

ings3D dataset. Since the KITTI 3D object 2017 dataset

[6] have more than 10k stereo pairs of the same characteris-

tics as KITTI stereo 2015, we randomly pick Ndom = 3000
stereo pairs from it for training. During training, we adopt

similar settings as presented in Section 5.1. However, in

this scenario, all images are resized to 1280× 400 then ran-

domly cropped to 1024 × 384 before passing to the CNN

for training.

We hereby compare our approach, ZOLE, with models

obtained with ZOLE-S and [34]; while the original Disp-

NetC model is adopted as a baseline. For a fair comparison,

all the images are resized to 1280×384 before feeding to the

network. Table 3 presents the objective metrics of ZOLE,

along with those of the competing methods. We see that

our method has the best objective performance, while the

method of Tonioni et al. also provides a reasonable gain.

Figure 5 shows several fragments of the resulting dispar-

ity images. One can see that our method provides accurate

edges even for very fine details.

More results and discussions are provided in the supple-

mentary material. Our method is essentially different from

those deep stereo algorithms relying on left-right consis-

tency for backpropagation [38, 39]. Hence, it is possible

to combine our rationale—discriminatively learns from the

finer-grain outputs—with these methods to achieve further

improvements. Moreover, the same rationale can be applied

to other pixel-wise regression/classification problems, e.g.,

optical flow estimation [15, 23] and segmentation [22]. We

leave these research directions for future exploration.

6. Conclusion

Due to the deficiency of ground-truth data, it is difficult

to generalize a pre-trained deep stereo model to a novel do-

main. To tackle this problem, we propose a self-adaption

approach for CNN training without ground-truth disparity

maps of the target domain. We first observe and analyze

two phenomena, namely, generalization glitches and scale

diversity. To exploit scale diversity while avoiding general-

ization glitches, we let the model learn from its own finer-

grain output, while a graph Laplacian regularization is im-

posed to selectively keep the desired edges and smoothing

out the artifacts. We call our method zoom and learn, or

ZOLE for short. It is applied to two domains: daily scenes

collected by smartphone cameras and street views captured

from the perspective of a driving car.
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