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Abstract

In this paper, we propose a generative model in the space

of diffeomorphic deformation maps. More precisely, we uti-

lize the Kantarovich-Wasserstein metric and accompanying

geometry to represent an image as a deformation from tem-

plates. Moreover, we incorporate a probabilistic viewpoint

by assuming that each image is locally generated from a ref-

erence image. We capture the local structure by modelling

the tangent planes at reference images.

Once basis vectors for each tangent plane are learned

via probabilistic PCA, we can sample a local coordinate,

that can be inverted back to image space exactly. With ex-

periments using 4 different datasets, we show that the gen-

erative tangent plane model in the optimal transport (OT)

manifold can be learned with small numbers of images and

can be used to create infinitely many ‘unseen’ images. In

addition, the Bayesian classification accompanied with the

probabilist modeling of the tangent planes shows improved

accuracy over that done in the image space. Combining the

results of our experiments supports our claim that certain

datasets can be better represented with the Kantarovich-

Wasserstein metric. We envision that the proposed method

could be a practical solution to learning and representing

data that is generated with templates in situatons where

only limited numbers of data points are available.

1. Introduction

Optimal Transport based techniques for signal and data

analysis have received increased attention recently [10].

Given their abilities to provide accurate generative models

for signal intensities and other data distributions, they have

been used in a variety of applications including content-

based retrieval, cancer detection, image super-resolution,

and statistical machine learning, to name a few, and shown

to produce state of the art results in several applications.

Manifolds arise naturally as the appropriate representa-

tions for images. For example, when representing face im-

ages, the linear average of two faces often does not resem-

ble a face. One more reasonable representation, and the one

we adopt in this work, is to use diffeomorphic deformation

maps to capture the nonlinear characteristics innate in im-

age data. Here, geodesics are given by ‘optimal rearrange-

ments’ of one image into another, a notion made precise in

the optimal transport framework.

In previous works, Fletcher et al. [5] suggested a prin-

cipal component analysis for Lie Groups and computed the

approximate principal geodesics by minimizing the sum of

squared geodesic distances to the data. Ziezold et al. for-

mulated PCA for a Riemannian manifold in [7] based on

geodesics of the intrinsic mean. Boissard et al. [2] defined

principal geodesic components with respect to the Wasser-

stein metric assuming that each input measure has been gen-

erated from a single template density. Wang et al. [26] pro-

posed to find an approximate principal geodesic in the tan-

gent plane of the Wasserstein-Kantorovich space for a sin-

gle template. Cuturi et al. [18] proposed a new algorithm to

compute approximate geodesics for the Wasserstein space

by regularizing with entropy.

In addition, diffeomorphic maps have proven to be use-

ful in modeling shape space [23, 1], in reconstructing im-

ages from under-sampled data [11], learning the geometri-

cal transformations between the images [20, 17], visualiz-

ing the smooth deformations between the images [23, 27],

and differentiating different classes of shapes [25, 21].

Here, along the line of previous attempts to learn and

represent data in the diffeomorphic space, we propose to

utilize the geometric characteristic of diffeomorphic space

based on the Kantorovich-Wasserstein metric. We utilize

the geometric transforms learned between the images to

create even more images that can be utilized for various
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applications, i.e. classification. Additionally, we embody

the probabilistic viewpoint in modeling the diffeomorphic

space and generalize it to Bayesian classification that is

more natural with the data generation process. For the im-

age set that is created with a few templates, we suggest

that learning deformation maps are a better solution than a

machine-learning based approach such as using variational

auto-encoders [9], [16].

Our method is similar to the work by Simard et al. [20]

which synthesized images using random deformation maps

and to the work by Hauberg et al. [6] which learned the dif-

feomorphic mapping. However, our work differs from pre-

vious approaches in that we define multiple templates which

characterize multiple tangent planes, and associate it with

latent variables that governs which tangent plane the data

belongs to. We emphasize that our work is the first work to

address that a set of tangent planes accompanied with the

Kantorovich-Wasserstein metric can be used to formulate a

generative model for a image set, associate it with proba-

bilistic view point, and generalize this concept to generate

more data and apply it to perform classification of images.

The paper is structured as follows. In Sec. 2, we intro-

duce the notations and preliminaries. In Sec. 3, we describe

the method for modeling and learning the manifold with

tangent planes. In Sec. 4, we show experimental valida-

tion, and a useful application of our method. Sec. 5 wraps

up with conclusion, limitations, and future studies.

2. Preliminaries

2.1. The Optimal Transport Metric and Geometry

Here we consider the optimal transport framework in dis-

crete settings but we note that it is usually described in terms

of measures which can include both discrete and continuous

settings. The optimal transport distance is based around the

cost of transporting ‘mass’ from one image to another. Im-

ages are normalized so that intensities of all pixels sum to

one, i.e. each image contains an equal amount of mass.

Let c : Ω × Ω → [0,∞) be the cost function, so that

c(ω1, ω2) is the cost of transporting one unit of mass at ω1 ∈
Ω to ω2 ∈ Ω. A transport plan between a template image r

and a target image xi is any matrix π that transports r to xi,

mathematically we write this as

{ ∑

j π(ω, ωj) = r(ω) ∀ω ∈ Ω,
∑

j π(ωj , ω) = xi(ω) ∀ω ∈ Ω.
(1)

We say that π ∈ Π(r,xi) if π satisfies (1), Π(r,xi) is

the set of all mass preserving transportation plans. The

cost of a transport plan π between r and xi is given

by
∑

j,k π(ωj , ωk)c(ωj , ωk). We will use the quadratic

cost c(ω1, ω2) = |ω1 − ω2|
2 in which case we can de-

fine the Wasserstein distance (often called the Kantorovich-

Wasserstein distance) by

dW (r,xi) =



 min
π∈Π(r,xi)

∑

j,k

π(ωj , ωk)|ωj − ωk|
2





1

2

.

(2)

The minimum is attained and dW defines a metric [24]. Fur-

thermore the metric space is a Riemannian manifold [4] that

we describe now.

Suppose the optimal transport plan, i.e. π∗ which

achieves the minimum in (2), is unique and sends mass from

each pixel ω ∈ Ω to a unique location φ(ω) in Ω. Then

φ is called the optimal transport map. One can also write

dW (r,xi) =
(

∑

j |ωj − φ(ωj)|
2
r(ωj)

)
1

2

and define the

vector map v(ω) = φ(ω)− ω which gives the deformation

of each pixel. Clearly dW (r,xi) =
(

∑

j |v(ωj)|
2
r(ωj)

)
1

2

and in fact the set of vector maps

Tr =







v : Ω → R
2 :

∑

j

|v(ωj)|
2
r(ωj) < ∞







is the tangent plane at r. The Wasserstein distance

dW (r, xi) is the length of the shortest curve (geodesic) con-

taining r and xi.

Given a vector map v ∈ Tr one can define a ‘new’ im-

age by xnew(ω) = φ#r(ω) :=
∑

i s.t. φ(ωi)=ω r(ωi) where

φ = v + I is the transport map. The construction is such

that xnew lies on the geodesic from r in the direction v, in

particular, dW (r,xnew) =
(
∑

i |v(ωi)|
2
r(ωi)

)
1

2 . In the se-

quel, the idea is that the tangent plane is restricted to a low

dimensional space spanned by a small number of basis vec-

tors, i.e. we restrict the tangent plane to {v = Wα + µ =
∑ℓ

i=1 wiαi + µ : αi ∈ R} where {wi}
ℓ
i=1,µ are vector

maps.

2.2. Parameterizing Tangent Plane with Probabilis­
tic Framework

As we model the image manifold with tangent planes,

we parameterize the tangent planes as a joint distribution

over observed and hidden variables therefore embodying a

probabilistic setting:

P (v,αz, z) = P (v|z,αz)P (αz|z)P (z) (3)

where z indexes the tangent plane/reference image, αz ∈
R

ℓz are local coordinates, and v ∈ R
2d is a deformation

map of an image (d being the number of pixels in images).

The variable v is observed, whilst αz and z are hidden.

The tangent planes Trz have tangent planeial points rz
which also serve as template images. The tangent planes

are indexed by a discrete hidden variable z ∈ {1, · · · ,K}.
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The model assumes that an image is sampled from a tangent

plane Trz with prior P (z) = pz .

Each image has corresponding local coordinate (‘fea-

tures’) αz ∈ R
ℓz in each tangent plane. And in each tangent

plane the deformation map v can be represented with its

local coordinate αz and tangent planes’ basis vectors (i.e.

column vectors of Wz)

v = Wzαz + µz + ez, (4)

where ez is Gaussian random noise with distribution

N(0,Ψz). In addition, we assume that local coordinates

are independently normally distributed:

P (αz|z) =
1

√

(2π)ℓz
exp−

1

2
α

T

z
αz .

Therefore, P (v|αz, z) is normally distributed and P (v) is

a mixture of normal distributions:

P (v|αz, z) ∼ N (µz +Wzαz,Ψz) (5)

P (v) ∼
∑

z

pzN(µz,WzW
T
z +Ψz)

This is also well known as a Factor Analysis (FA) model

with Gaussian prior for P (αz) and prior P (z) = pz .

2.3. Probabilistic Principal Component Analysis
(PPCA)

Additionally, as we assume normally distributed noise

ez ∼ N(0, σ2
zI), Eq. (5) simplifies to the PPCA model.

The variables Wz , µz , and Ψz = σ2
zI in Eq. (3) can be

found via eigen-decomposition when 2d > ℓz , i.e. the

dimension of local coordinates αz is smaller than that of

deformation map v [22]. Consider a set deformations

Vz = [v1| · · · |vNz
] in tangent plane Trz . Let Uz be an

orthonormal matrix of eigenvectors and Λz a diagonal ma-

trix of eigenvalues from eigen-decomposition on the mean

centered covariance matrix ṼzṼ
T
z , i.e.

U−1
z ṼzṼ

T
z Uz = Λz.

The maximum likelihood (ML) estimator of Wz , µz , and

σz are

Wz = UℓzΛ
1/2
ℓz

, µz =
1

Nz

Nz
∑

k=1

vk, σ2
z =

1

2d− ℓz

2d
∑

i=ℓz+1

λii

where Uℓz is the orthonormal matrix with ℓz largest eigen-

vectors in columns and Λℓz is the diagonal matrix with ℓz
largest eigenvalues in descending order at its diagonal.

Once the feature αz is drawn from the normal distribu-

tion, a new OT deformation can be sampled according to (5)

via

vα =
1

Nz

Nz
∑

i=1

vi + UℓzΛ
1

2

ℓz
αz + ez.

3. Methods

3.1. How to find the template image

Consider a set of images {xi}
N
i=1. We assume that each

image is deformed with a smooth mass preserving map with

respect to a template image. We additionally assume that

the template image is an element in the set of templates

{rz}
K
z=1. In other words, the images can be clustered into

different groups that share the same template, and the cor-

responding optimal transport maps of images that share the

same template are denoted as {v
(z)
i }Nz

i=1 with the template

index z made explicit.

The question arises how to select the set of template im-

ages. In order to do this we briefly recap the linearized-OT

(LOT) distance [26]. Given a tangent planeial point u we

define χu(xi) = vi to be the OT deformation between xi

and u (u would often be called a template point but in or-

der to minimise confusion with the template images rz we

will use the terminology tangent planeial point here). One

has dW (xi, u) = ‖χu(xi)‖u = ‖χu(xi)− χu(u)‖u where

‖v‖2u =
∑

i v(ωi)
2u(ωi). The LOT distance is defined by

du,LOT (xi,xk) = ‖χu(xi) − χu(xk)‖u. Heuristically the

LOT distance projects xi and xk onto the tangent plane at

the point u and computes the Euclidean distance in the tan-

gent plane. When there does not exist a transport map (i.e.

if mass is split) then the situation is more complicated and

we refer to [26] for more details.

Before moving on to the algorithmic details, we men-

tion that for the tangent plane of the OT manifold at rz ,

the intrinsic mean with respect to the LOT distance and the

extrinsic mean (defined by averaging transport maps) coin-

cide. In particular, the intrinsic mean of the LOT distance

with tangent planeial point u is given as:

rintrinsic = argmin
r

N
∑

i=1

du,LOT (xi, r)

= argmin
r

N
∑

i=1

∑

j

(vxi
(ωj)− vr(ωj))

2
u(ωj)

= argmin
r

∑

j

N
∑

i=1

(vxi
(ωj)− vr(ωj))

2
u(ωj)

where vx is the OT deformation between x and u. Simple

calculus gives us that vr = 1
N

∑N
i=1 vri

and the intrinsic

mean corresponds to the density that is deformed from u by

the mass preserving map vr. This is exactly the extrinsic

mean.

Now we describe how to find the multiple template im-

ages from a set of images. Put simply, K-means clustering

with Euclidean distance is performed in the tangent plane

with global template u. The K cluster centers are then

mapped back to the image space, yielding ’K’ template im-
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Figure 1: Representing face image space with the optimal transport manifold which can be approximated with tangent planes.

The facial image corresponding to the tangent planeial point of each tangent plane is shown.

ages. As stated above the extrinsic mean (cluster center)

for each cluster is identical to the intrinsic mean. We note

that K-means clustering with Euclidean distance in the tan-

gent plane is an approximation of doing K-means clustering

with the Wasserstein distance. Also, we note that clustering

can be performed using alternative methods, e.g. Gaussian

mixture models, or classification can be used when the asso-

ciated labels that characterize the image sets are available.

The number of cluster centers, K, determines how many

templates govern the data generation process. K can be de-

termined via cross-validation. The cluster centers will serve

as the template when we compute the mass preserving map

for each image belonging to that cluster. Note that this lo-

cal template is different from the global template u that was

used to perform K-means clustering in the tangent plane

with the tangent planeial point u. After K-means clustering,

we now have K different tangent planes at tangent planeial

points {rz}
K
z=1.

3.2. Probabilistic deformation model

Consider a set of images {xi}
N
i=1, and corresponding

optimal transport (OT) maps {vi}
N
i=1, as before, generated

with respect to the template images {rz}
K
z=1 found via K-

means as described in the previous section. We now in-

troduce the probabilistic framework of the data generation

process. We assume that a discrete latent random variable

z ∈ {1, . . . ,K} is involved in the data generation process,

which governs how probable it is that the data is generated

from the template rz . We can model the distribution of OT

maps with a mixture of factor analyzers (MFA)

P (v) =

K
∑

z=1

pz

∫

P (v|αz, z)P (αz|z)dαz,

where P (v|α, z) and P (α|z) are normally distributed as in

Sec. 2.2.

The latent variable z indexes the tangent planes (or

equivalently the templates, rz). Fig. 1 illustrates an OT

manifold represented with 5 tangent planes, each associated

with prior P (z). The tangent planeial points (rz) are shown

on top of each tangent plane.

The red box in Fig. 1 draws an image generation

pipeline. Once z is given, an OT map v is drawn from

P (v|z). And then, v is converted back to an image x

by pushing forward the template measure by v + I, i.e.

x = (v + I)#rz . The relationship between an image space

(x), an OT map space (v), and a local coordinate (α) space

is shown.

The learning consists of two folds. In the first step one

finds the tangent plane assignments for every image xi and

the template images rz (via K-means clustering). At the

second step, the statistics for the tangent planes are col-

lected, i.e. Wz , µz , and σz in Eq. 4.

Procedure Generating unseen images using OT Space

Learning Step: Find Trz , z ∈ {1, · · ·K}.

1 Set the number of tangent planes K.

2 Find the tangent planeial points rz .

3 foreach tangent plane Trz do

4 For image xi in cluster z, compute the OT map vi

between rz and xi.

5 Learn Wz , µz , and σz via PPCA.

6 Find pz .

7 end

Generation Step: Generate Unseen Images.

8 Draw z ∼ p(z).
9 Draw α∗ ∼ N(0, I).

10 Compute the unseen OT map, i.e. v∗ = Wzα
∗.

11 Compute the unseen image via inverse OT mapping

i.e. (v∗ + I)#rz .

3.3. Generation Step

Here a step for synthesizing ‘unseen’ images is de-

scribed. First, z is drawn from p(z), which determines the

tangent plane Trz . Then, α∗ is drawn from N(0, I). The
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‘unseen’ OT map v
∗ is synthesized by

v
∗ = Wzα

∗ + µz, (6)

i.e. a linear combination of ‘deformation patterns’ in col-

umn vectors of Wz with Gaussian α. Once v
∗ is gener-

ated, an unseen image x
∗ can be uniquely identified by in-

verse OT mapping with respect to the template rz (tangent

planeial points for Tz), i.e. x∗ = (v∗ + I)#rz .

3.4. Bayesian Classification

Since we assume that the data is generated in a proba-

bilistic framework, it arises as a natural choice to formulate

Bayesian classification. Given a set of images x
N
i=1 with

labels yNi=1, let’s assume that we have learned the tangent

planes Trz , z = 1, . . . ,K such that each tangent plane rep-

resents the subset of images that belong to the same label.

When a new test data x comes in, we can determine the la-

bel of the data by finding the most probable tangent plane.

More specifically, we can find the tangent plane that yields

the highest posterior probability given the test image x:

z∗ = argmax
z=1,...,K

p(z|x)

= argmax
z=1,...,K

p(z|v)

= argmax
z=1,...,K

p(v|z)p(z)
∑K

z=1 p(v|z)p(z)

= argmax
z=1,...,K

p(v|z)p(z)

where p(v|z) is normal distribution with mean µz +Wzαz

and p(z) is the learned prior.

4. Experiments

4.1. Datasets

We test how accurately the tangent plane approximation

represents the image manifold on four datasets: MNIST,

FERET, ADNI PET, and the Thyroid Nuclei dataset.

MNIST digits: MNIST dataset [13] consists of 70,000

images of 10 digits (0-9) (of size 28 × 28). In the subse-

quent experiment, we randomly selected a subset of MNIST

dataset, 600 images per each digit and 6000 images in total.

FERET face images: The FERET dataset [14, 15] con-

sists of face images photographed from different angles. For

the experiment, frontal views were selected, and cropped

and aligned apriori, in total we used 2137 images (of size

130× 160).

ADNI PET Scans: Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database 1 [8] was set up to define the

progression of Alzheimer’s disease, which includes MRI

1http://adni.loni.usc.edu

- MNIST FERET ADNI NUCLEI

K 10 20 4 4

# tangent planes 10 20 4 2

d 784 20800 39676 36864

ℓz 9 20 40 60

Table 1: Number of clusters and tangent planes

(Magnetic resonance imaging) images, PET (Positron emis-

sion tomography) images, genetics, cognitive tests, blood

biomarkers, etc. The single axial slice from 18F-florbetapir

brain PET volumes were used for the experiment. The

dataset consists of 264 images (of size 218 × 182) which

are labeled either as Amyloid positive or negative.

Thyroid Nuclei images: The Thyroid Nuclei dataset con-

sists of segmented thyroid nuclei [3] from 47 patients with

two types of follicular lesions: follicular adenoma (FA, 27

patients) and follicular carcinoma (FTC, 20 patients) tissue

blocks, which were obtained from the archives of the Uni-

versity of Pittsburgh Medical Center. The dataset consists

of a total of 500 nuclei images (of size 192 × 192), either

labeled as FA or FTC based on its tissue block.

4.2. Finding the tangent planes

All aforementioned image datasets are chosen with the

consideration that i) images consist of different classes (i.e.

digits, identity of face, malign vs benign cells, Amyloid

positive vs negative brains) and ii) that the same classes of

images are more likely to be deformed from the shared class

templates (i.e. digit ‘2’ is highly likely to be deformed from

another digit ‘2’ not digit ‘3’).

The templates of each class are found via K-means clus-

tering. When label information is present (which is true for

all except the FERET dataset) the K-means clustering with

LOT distance is performed within the class so that the tem-

plates are learned per class not jointly. For example, K = 2
in the ADNI dataset, and therefore in total 4 tangent planes

(2 classes × 2 clusters) are used to represent the image man-

ifold. For the MNIST dataset, K = 10, and the mean image

was computed and used as a template image. The number of

tangent planes, the number of clusters (K), the dimension

for the image space (d), and the dimension for the tangent

planes (ℓz) are summarized in Table 1. Across all datasets,

ℓz ≪ d, implying that a d dimensional image space can be

represented with much lower ℓz dimensional tangent planes.

Once the templates are found, the deformation maps be-

tween each image and the templates are learned. The tem-

plates serve as tangent planeial points of the tangent planes,

and eigenvectors of deformation maps will represent the

tangent planes. For example, sample eigenvectors com-

puted from the deformation maps are shown in Fig. 2. The

direction of the arrows indicates where the masses (pixels)

are being transport to in the image and from the template,
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and the length of the arrows represents the amount of the

masses being transported (the longer the arrows, the larger

the amount of masses transported).

We sought to validate the proposed method by apply-

ing the method to solve two common problems: synthesiz-

ing more images and classification. We envision that the

method would be especially advantageous when only small

number of images are available. We also compared the syn-

thesized images to the conventional way of augmenting data

and applied it to train complex classifiers.

For the MNIST dataset which contains about 70k im-

ages, learning such templates and deformation maps can be

carried out easily. We note that for ADNI PET and Thyroid

Nuclei dataset, however, with much fewer available images

compared to the dimension of each image, learning such

templates and deformation maps becomes non-trivial. We

show here that the proposed method is capable of generat-

ing new unseen images without requiring massive datasets

and that the method can extend to the Bayesian classifica-

tion method, which both accentuate the benefits of the study

in applications where collecting large datasets is impractical

or unlimited number of synthetic images are desired.

4.3. Synthesizing Unseen Images

Once the image manifold is modeled with tangent

planes, we can sample synthetic images. Specifically, the

tangent plane the new synthetic image belongs to will be

determined according to its prior pz . Then, α will be drawn

out from normal distribution as in (6) to determine where in

tangent plane the synthetic image will be located at. Each

point in the tangent plane has a correspondence with a real

image, and therefore, we can generate a synthetic image by

mapping from the tangent space to the image space.

The synthesized images for MNIST, FERET, ADNI, and

Thyroid datasets are shown in Fig. 3.

For the MNIST dataset, the template images are shown

in the first row. The synthesized images in rows 2-15

are generated by deforming the template images. For the

FERET dataset, the templates are shown in the top row,

and synthetic ‘unseen’ faces are generated by transporting

masses (pixels) from template images. It is interesting to see

that synthetic deformation maps are capable of generating

new faces with a variety of facial expressions (smile with

visible teeth, grin, frown, neutral, etc.) and facial identities

(different shapes of eyebrows, eyes, and nose, presence of

mustache, size of cheek bones and jaws, etc.).

For the ADNI dataset and thyroid nuclei dataset, we vi-

sualized both real and synthetic images images to help read-

ers understand that visually there is barely any difference

between true images and synthesized images.

4.3.1 How are we sure that synthesized images are not

sampled from the training set?

Here we repeated the same experiment for FERET dataset,

but this time with only 19 images. We performed this ex-

ercise to make sure that synthetic images in Fig. 3 are not

copies of the existing 2137 images. By reducing the training

set to 19 images, we could confirm i) that the synthesized

images are not replicates of existing images, and ii) that the

method can synthesize richer data given a small number of

training samples. Fig. 4 shows 19 real images used for the

experiment (top row) and 38 synthesized images (rows 2-3).

Although artifacts are noticeable due to drastically reduced

initial training samples (i.e. blurred nose), the method is

capable of creating images with a variety of facial expres-

sions.

4.3.2 Comparison with synthesizing image with PPCA

In order to visualize how PPCA modeling with the Eu-

clidean distance would work out we performed the same

experiment of synthesizing images with the Euclidean dis-

tance instead of on the OT manifold. Fig. 5 shows ‘unseen’

images created by eigenvectors. As expected, linearly com-

bining eigenvectors doesn’t generate reasonable images be-

cause images do not lie on a linear Euclidean subspace.

4.4. Data augmentation for training CNN

Here, we tested whether enlarging the datasets with our

proposed method can facilitate learning complex systems

such as a convolutional neural network (CNN). For our task,

- MNIST ADNI PET NUCLEI

# Train 80 211 400

# Test 20 53 100

Default 89.90% 94.34% 77.50%

/w Jittering 99.00% 92.45% 80.00%

/w PCA 95.00% 93.40% 84.50%

# Synthesized Train 900 200 500

/w added train set 100.00% 94.86% 85.00%

Table 2: Classification Accuracy with and without the data

augmentation for CNN classifier

- MNIST ADNI PET NUCLEI

# Train 800 211 400

# Test 200 53 100

Logistic
89.00% 92.06% 70.20%

Regression

Bayesian
97.00% 96.23% 72.00%

Classification

Table 3: Classification Accuracy with Bayesian Classifier
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Figure 2: Sample Eigenvectors (from deformation maps) of Digit 0-9

Figure 3: Synthesized images of MNIST (left top) and FERET (right top) images, synthesized and true images of ADNI pet

scans and Thyroid nuclei images. For MNIST and FERET images, the top row shows the template images. For ANDI pet

scans and Thyroid nuclei images, top row shows the synthesized images whereas the bottom row shows the true images.

a CNN with two convolutional (conv.) layers and two dense layers was set up. The first conv. layer consists of 48 fil-
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Figure 4: ‘Synthesized’ faces (rows 2-3) generated only using 19 Real Faces (top row).

Figure 5: ‘Unseen’ Images generated by PPCA using Eu-

clidean distance

ters, the second conv. layer consists of 96 filters, and the

dense layer consists of 100 filters. ReLu activation layers

follow conv. and dense layers, except for the final dense

layer which has softmax output instead (or sigmoid for bi-

nary classification). The conv. layers’ filters configuration

is identical to that of Alexnet [12]. The Alexnet architec-

ture was utilized specifically in favor of using its pretrained

weights. Pretrained weights of Alexnet was loaded into

our smaller network by arbitrarily choosing 48 (conv1) - 96

(conv2) filter weights out of 96 (conv1) -256 (conv2) filter

weights.

For the MNIST dataset, the sample size was reduced to

100 images to emphasize the effect of how the proposed

method can facilitate better learning for complex classifiers.

Table 2 shows the classification accuracy with and with-

out synthetic data, as well as conventional data-jittering

(with translation, rotations, and shear transformation)

method. The testing accuracy consistently improved with

adding the synthesized data set. For the MNIST dataset,

with 100 initial training samples and with 900 synthetic

samples added, test accuracy reached 100%. For ADNI and

Thyroid, adding synthetic images does not harm nor ben-

efit the classification, therefore suggesting that synthesized

images closely reflect the original images and therefore do

not provide additional useful discriminant information for

classifiers to utilize.

4.5. Bayesian Classification

The images are generated from a probabilistic model

which gives a measure of how likely an image belongs to

a tangent plane. Here we test how our model can aid binary

classification for small datasets. More precisely, once the

tangent planes and latent priors are learned, for each new

test image, we can find the label by associating it to the tan-

gent plane that the image is most likely generated. The de-

tails on our Bayesian classifier described in Sec. 3.4, and Ta-

ble 3 show the Bayesian classification accuracy for MNIST,

ADNI, and Thyroid dataset. We note that for ADNI images,

this is the current best reported classification accuracy.

5. Conclusion

In this paper, we proposed to represent data with tem-

plates and diffeomorphic maps uniquely identified with

Wasserstein-Kantorovich cost. Regardless of the size of the

dataset, if the images share common templates, we showed

that images can be represented in tangent planes and pro-

vide alternative representation of the dataset that can be uti-

lized in synthesizing images and augmenting datasets for

complex classifier training. In addition, we used a proba-

bilitic framework by assigning each tangent plane with a la-

tent variable, and formulated the Bayesian classifier which

is demonstrated to be suitable for a dataset sharing common

templates.

However, we dot believe our methodology would gen-

eralise to non-structural images, e.g. uncategorized natural

images. Our method inherently assumes that images are

deformed from ‘template’ images, and generalizing to non-

structural images would require either different assumptions

on the data distribution or a much larger dataset.

Nevertheless, modeling in tangent planes with optimal

transport maps produces realistic local variations compared

to using diffeomorphisms or Euclidean geometry. Specif-

ically, although the optimal transport manifold is modeled

as locally linear, variations in tangent planes corresponds to

highly non-linear variations in the image space. We antici-

pate a future study to include generalizing the FA model to

a fully Bayesian model and assuming different distribution

for the data, expanding the method for non structured im-

ages, applying synthetic images to solve inverse estimation

problems [19], generating ground truth data for quantifying

accuracy of image analysis operation, and generating new

samples for simulation based training.
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P. Sköldström, et al. Dreaming more data: Class-dependent

distributions over diffeomorphisms for learned data augmen-

tation. arXiv preprint arXiv: 1510.02795, 2015. 2

[7] S. Huckemann and H. Ziezold. Principal component analysis

for riemannian manifolds, with an application to triangular

shape spaces. Advances in Applied Probability, 38(2):299–

319, 2006. 1

[8] C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson,

G. Alexander, D. Harvey, B. Borowski, P. J. Britson,

J. L Whitwell, C. Ward, et al. The alzheimer’s disease neu-

roimaging initiative (adni): Mri methods. Journal of mag-

netic resonance imaging, 27(4):685–691, 2008. 5

[9] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. NIPS, 2013. 2

[10] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K.

Rohde. Optimal mass transport: Signal processing and

machine-learning applications. IEEE Signal Processing

Magazine, 34(4):43–59, 2017. 1

[11] S. Kolouri and G. K. Rohde. Transport-based single frame

super resolution of very low resolution face images. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4876–4884, 2015. 1

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 8

[13] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database

of handwritten digits, 1998. 5

[14] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss.

The feret evaluation methodology for face-recognition algo-

rithms. IEEE Transactions on pattern analysis and machine

intelligence, 22(10):1090–1104, 2000. 5

[15] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss. The

feret database and evaluation procedure for face-recognition

algorithms. Image and vision computing, 16(5):295–306,

1998. 5

[16] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic

backpropagation and approximate inference in deep genera-

tive models. arXiv preprint arXiv:1401.4082, 2014. 2

[17] S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller.

The manifold tangent classifier. In NIPS, volume 271, page

523, 2011. 1

[18] V. Seguy and M. Cuturi. Principal geodesic analysis for

probability measures under the optimal transport metric. In

Advances in Neural Information Processing Systems, pages

3312–3320, 2015. 1

[19] A. Shariff, R. F. Murphy, and G. K. Rohde. A generative

model of microtubule distributions, and indirect estimation

of its parameters from fluorescence microscopy images. Cy-

tometry Part A, 77(5):457–466, 2010. 8

[20] P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent

prop - a formalism for specifying selected invariances in an

adaptive network. In J. E. Moody, S. J. Hanson, and R. P.

Lippmann, editors, Advances in Neural Information Process-

ing Systems 4, pages 895–903. Morgan-Kaufmann, 1992. 1,

2

[21] R. Sparks and A. Madabhushi. Novel morphometric based

classification via diffeomorphic based shape representation

using manifold learning. Medical Image Computing and

Computer-Assisted Intervention–MICCAI 2010, pages 658–

665, 2010. 1

[22] M. E. Tipping and C. M. Bishop. Probabilistic principal

component analysis. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 61(3):611–622, 1999. 3

[23] M. Vaillant, M. I. Miller, L. Younes, and A. Trouvé. Statis-
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[26] W. Wang, D. Slepčev, S. Basu, J. A. Ozolek, and G. K. Ro-

hde. A linear optimal transportation framework for quantify-

ing and visualizing variations in sets of images. International

journal of computer vision, 101(2):254–269, 2013. 1, 3

[27] M. Zhang and P. T. Fletcher. Bayesian principal geodesic

analysis in diffeomorphic image registration. In Inter-

national Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 121–128. Springer,

2014. 1

7872


