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Figure 1: Left: A reconstruction performed using all pixels from the input. Right: Our method produces a similar reconstruc-

tion using a fraction of the pixels (white regions in the input images are unused).

Abstract

We present an approach to accelerate multi-view stereo

(MVS) by prioritizing computation on image patches that

are likely to produce accurate 3D surface reconstructions.

Our key insight is that the accuracy of the surface recon-

struction from a given image patch can be predicted signif-

icantly faster than performing the actual stereo matching.

The intuition is that non-specular, fronto-parallel, in-focus

patches are more likely to produce accurate surface recon-

structions than highly specular, slanted, blurry patches —

and that these properties can be reliably predicted from the

image itself. By prioritizing stereo matching on a subset of

patches that are highly reconstructable and also cover the

3D surface, we are able to accelerate MVS with minimal

reduction in accuracy and completeness. To predict the re-

constructability score of an image patch from a single view,

we train an image-to-reconstructability neural network: the

I2RNet. This reconstructability score enables us to effi-

ciently identify image patches that are likely to provide the

most accurate surface estimates before performing stereo

matching. We demonstrate that the I2RNet, when trained

on the ScanNet dataset, generalizes to the DTU and Tanks

& Temples MVS datasets. By using our I2RNet with an ex-

isting MVS implementation, we show that our method can

achieve more than a 30⇥ speed-up over the baseline with

only an minimal loss in completeness.

1. Introduction

Using a large number of calibrated high-resolution RGB

images, very high quality surface geometry can be re-

constructed using Multi-View Stereo (MVS) [31, 3, 19].

The high-level pipeline used by many state-of-the-art MVS

methods first estimates the surface, i.e., the depth and nor-

mal, for each pixel in each view and then fuses estimates

from all views together to create the final surface recon-

struction. To estimate the depth and normal of a pixel (the

reference pixel), MVS selects a window around the refer-

ence pixel, which we call the reference patch, and attempts

to find a matching patch in each neighboring image. Once

the reference patch has been matched, the match combined

with the known geometric calibration of the views enables

the MVS algorithm to compute the depth and normal of the

3D point.

Unfortunately, if this matching process is performed for

every pixel in the image against every neighboring image,

the running time scales with O(v2p) where v is the number

of images and p is the number of pixels per image, since ev-

ery pixel in every image (vp) must be matched against every

other image (v). This time complexity means that as we add

more images with higher resolution, the time required can

become prohibitively long. In order to leverage the increas-

ing resolution and proliferation of cameras, it is critical that

we develop scalable MVS algorithms that can still produce

highly accurate surfaces while avoiding performing match-

ing for every pixel against every image.
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Figure 2: Method overview: Given a scan, we first run a neural network (I2RNet) to predict the reconstructability score of

each image patch. Then, using these scores and coarse depth maps, the patch-wise view filtering framework will identify a

mask for each image indicating where stereo matching should be run. Finally, a coarse-to-fine reconstruction pipeline takes

images and their masks as input and generates the final point cloud.

Existing methods have attempted to scale MVS by using

two main techniques: view filtering, which only estimates

depth and normals for a subset of images [7], and neigh-

bor selection, which only looks at a limited set of neigh-

boring views when matching a patch instead of all of them

[15, 33, 28]. The challenge of employing these techniques

is ensuring that they do not significantly impact the accu-

racy or completeness of the reconstruction. For example,

view filtering has been exploited by discarding entire im-

ages which redundantly view the same area and selecting

the smallest set of images that still cover the surface be-

ing reconstructed [7]. However, filtering an entire view

based on redundancy might not be perfectly aligned with

our final goal: high quality 3D reconstructions, which we

have observed are highly dependent on the “reconstructabil-

ity” of local patches of an image. For example, diffuse

and in-focus patches usually produce more accurate sur-

face estimates than specular and blurry patches. Since each

image can contain a mixture of reconstructable and non-

reconstructable patches, coarsely filtering by entire images

may discard image patches which would produce highly ac-

curate surfaces.

Instead of image-wise view filtering, we propose a

method to perform patch-wise view filtering, which selects

patches that are more likely to produce high quality sur-

face reconstructions. Specifically, we first learn to iden-

tify highly reconstructable image patches directly from the

image content. Then, we identify the top N most recon-

structable image patches corresponding to each 3D surface

region we want to reconstruct and only compute surface es-

timates from those patches. Since we choose image patches

which provide highly accurate surface estimates, we pro-

cess only a fraction of the total pixels across a set of images

(on the order of 2-16%) and still produce highly accurate

and complete reconstructions, as shown by Figure 1. There

were several contributions required to make this feasible:

Learning Patch Reconstructability: Our key insight is

that the accuracy of the surface reconstruction from a given

image patch can be predicted significantly faster than per-

forming the actual stereo matching. The prediction is per-

formed by a fully convolutional deep neural network. Then,

when given an unseen multi-view scan, the deep network

takes each image as input and regresses for each region its

reconstructability, which serves as a proxy for the accuracy

of the surface estimate that would be produced by the patch.

For a given patch, its ground truth reconstructability score

is computed as the difference between the depth computed

from a single view and the ground truth depth, which if ab-

sent can be substituted by the result of a high quality MVS

algorithm. In our evaluations, we show that our deep regres-

sor, which is trained on a large database of scans (ScanNet

[5]), can generalize to other MVS datasets, such as DTU

[19, 1] and Tanks and Temples [22]. This demonstrates that

the reconstructability of a patch can be estimated to some

extent based on a single image alone. In terms of run time,

the prediction by the deep network for an entire image takes

on the order of 100 milliseconds, while the actual match-

ing might take tens of seconds, thus demonstrating that the

accuracy of surface reconstruction can be predicted signifi-

cantly faster than actual stereo matching.

Patch Filtering: Given the reconstructability scores for

each patch, only a subset of patches are selected as refer-

ence patches to reduce computation time. Choosing this

subset by simple methods such as thresholding by the re-

constructability score does not take into account coverage

of the imaged 3D surface, and can result in an incomplete

reconstruction. As a solution, we propose a patch selection

framework that ensures coverage of the 3D surface while

maximizing the scores of the selected patches.

Sparse Coarse-to-fine MVS: Unfortunately, sparsely

computing surface estimates in an image may have adverse

effects on MVS algorithms which rely on dense surface es-

timation to regularize and improve the accuracy of individ-

ual pixel estimates [24, 10, 28]. To combat this, we pro-

pose a coarse-to-fine surface estimation strategy which en-

sures that the surface estimates around a selected patch are

coarsely initialized by estimates from the previous scale.

This coarse-to-fine approach mitigates the sparsity issue and
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also further accelerates the MVS algorithm up to 3x by re-

quiring less processing at the finest scale.

Combining these contributions together produces a

pipeline which can drastically accelerate high-quality MVS.

The pipeline is shown in Figure 2. Experiments on the DTU

Robot Image Dataset [19, 1] and Tanks and Temples [22]

show that using our combined method can accelerate the

reconstruction process by 10−30⇥ for a small decrease in

completeness.

2. Related Work

Multi-View Stereo: We provide a high-level review of

MVS techniques here and direct the reader to the MVS

tutorial by Furukawa et al. [8] for a more detailed refer-

ence. Common MVS techniques include region growing

methods, volumetric methods and depth map based meth-

ods. Region growing methods, such as PMVS [9] and

MVE [6, 15], find a set of surface patches around dis-

criminative interest points and progressively grow a re-

gion of depth samples around these points. Volumetric ap-

proaches [30, 23] perform reconstruction directly in a 3D

representation, such as a voxel grid. Depth map based meth-

ods [10, 12] compute individual depth maps for each view

followed by a fusion step to merge the depth maps into a

final 3D representation. In the following paragraphs, we fo-

cus more on depth map based methods as our method falls

into this category.

View Selection for Scalable MVS: As mentioned in the

introduction, the core techniques for achieving scalability

in large-scale MVS are view filtering and neighbor selec-

tion. These techniques can reduce the problem from scal-

ing quadratically to linearly in the number of images. Fu-

rukawa et al. [7] perform simultaneous view filtering and

neighbor selection by structuring their image subsets as

small, potentially overlapping clusters of images where the

images in a cluster are chosen to maximize coverage and

minimize redundancy with other images. Goesele et al. [15]

performs neighbor selection by choosing the best neighbor-

ing views to match against for each image using a two-level

selection scheme: a global selection scheme selects a set of

neighbors with good triangulation angle and similar scale

and then a local selection scheme chooses views from this

set that are both diverse and match well against the refer-

ence image. Zheng et al. [33] also performs neighbor selec-

tion but does so by solving depth estimation and neighbor

selection as a joint problem. Schönberger et al. [28] extends

Zheng et al.’s work by performing neighbor selection at the

per-pixel level.

Learning Patch Fitness: At a more abstract level, learn-

ing the reconstructability of an image patch is an instance

of the more general idea that it is possible to predict the

“fitness” of an image patch for a specific task. This idea

has previously been employed in the context of interest

point matching for Structure-from-Motion by Hartmann et

al. [16]. Hartmann et al. learned to predict which interest

points will have a high chance of a successful match so that

they can discard points with a low probabiliy of matching.

Penate-Sanchez et al. [25] also used this idea in the context

of predicting the matchability of templates.

Learning for MVS: Several works have been proposed

which attempt to integrate learning into an MVS pipeline.

Galliani et al. [11] propose to learn to predict surfaces nor-

mals for “bad” image regions by learning from the image

regions which were well reconstructed. Ji et al. [20] pro-

pose an end-to-end neural network architecture for MVS,

though their performance does not exceed that of traditional

methods. In contrast, we propose to learn which portions of

an image are good for reconstruction. Our learned recon-

structability score could be used as a complementary signal

to these existing approaches since they do not attempt to

explicitly estimate reconstructability.

Faster Stereo Matching: A broad set of techniques

have been explored for accelerating the stereo match-

ing phase of MVS, motivated by the significant com-

pute required for finding precise stereo correspondences.

Geiger et al. [13, 14] propose using interest points to accel-

erate matching by constraining the disparity search space.

Bleyer et al. [24] propose PatchMatch Stereo, which de-

couples the runtime of their method from the disparity range

that must be sampled for locating stereo correspondence via

a randomized, iterative algorithm based on PatchMatch [2].

Galliani et al. [10] extend this approach to a multi-view

setting and propose a highly-parallel plane propagation

scheme which exploits modern parallel hardware. Our pro-

posed coarse-to-fine surface estimation scheme could be ap-

plied to several of these methods to provide further regular-

ization and reduce processing time.

3. Patch-wise View Filtering

In this section, we will first discuss how we define the re-

constructability score, how we can use ground truth data to

train a network that can predict the reconstructability score

from input images, and how we can generate training data

when we do not have the ground truth surface (Section 3.1,

Figure 2 top left). We then discuss how we use the scored

input images, along with a coarse reconstruction, to per-

form patch-wise view filtering, which both chooses highly

reconstructable image patches and ensures that the final re-

construction is complete (Section 3.2, Figure 2 middle).

3.1. Learning a Reconstructability Score

In order to filter image patches before performing stereo

matching with minimal effect on the accuracy of the recon-

struction, we would like to choose image patches that are

likely to produce the most accurate surface estimates. Many

factors reduce image quality and thus accurate normal/depth
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Figure 3: Reconstructability Score Learning Pipeline:

The labels, i.e., score maps, are produced by taking the per-

pixel difference between the computed depth for each view

and the true depth from the ground truth. We then use these

labels to train a CNN to predict score maps directly from

input images.

 - 15% APU Ours - 13% APUE(Ii,p) > 0.9

Figure 4: Comparison of two methods to reduce the aggre-

gate pixels used (APU). Left: A fixed threshold is used to

remove image patches. Notice the uneven distribution of

samples in the point cloud on the left (e.g. the high density

on the ground, the low density on parts of the bird). Right:

Our patch-wise filtering is used to remove patches, which

leads to a significantly more complete reconstruction.

estimation: focus blur from surfaces outside the camera’s

depth of field, imaging the surface at a highly oblique an-

gle to the imaging plane, depth discontinuities, motion blur,

and specular materials. Detecting and quantifying the in-

fluence of these factors on the accuracy of the reconstructed

surface is challenging. Therefore, instead of trying to model

each phenomenon explicitly with handcrafted features, we

train a convolutional neural network (CNN) to predict a

reconstructability score, which measures how accurate the

surface estimates produced by the patch will be. We re-

fer to this CNN as the Image-to-Reconstructability network

(I2RNet). Figure 3 shows the training process, which is

run offline – when reconstructing a new set of images, the

I2RNet does not need additional training.

Training Loss: To train our network, we first need to

define our reconstructability score. Let Ri be the surface

(normals and depth) estimated by an MVS method for view

Ii. Let G be the ground truth surface geometry. Since

MVS is primarily concerned with reconstructing accurate

3D points, we use the difference between the positions of

the surfaces as an error metric. Specifically, we draw in-

spiration from the error metric L2 discussed by Cohen-

Steiner et al. [4], which quantifies the error in position be-

tween two surfaces, to produce the reconstructability score,

E(Ii,p) = 1−min(1,
kd(Ri, p)− d(G, p)k

d(G, p)
) (1)

where Ii,p indicates pixel p in Ii, and d(Ri, p) is the depth

of the surface Ri from the camera of image Ii at pixel p. We

normalize by d(G, p) so that the score does not depend on

the absolute positions of the surfaces and we cap the nor-

malized difference between the two surfaces to 1 since an

error near or larger than 1 suggests the predicted surface is

very inaccurate and it is of minimal utility to differentiate

between two very inaccurate predictions.

Since it is common to not have the ground truth surface

G, we propose to approximate the ground truth when un-

available by the output of a high-quality (expensive) 3D re-

construction pipeline. Since we are able to compute such

a surface without human annotation, this allows us to gen-

erate labeled images patches (Ii,p, E(Ii,p)) for training our

I2RNet from just multi-view input images.

Training Details: The architecture of our I2RNet for

learning E(Ii,p) is a fully-convolutional variant of U-

Net [26] augmented with residual connections [17] and is

pictured in Figure 3. As in U-Net, the architecture consists

of a series of encoding layers followed by a series of de-

coding layers with connections back to the encoding layers.

The final output is the same resolution as the input and rep-

resents the reconstructability score for each pixel. We hy-

pothesize that it is possible to predict the reconstructability

of a patch using a local support window, so we find a rela-

tively small network with 6 encoding and 6 decoding blocks

sufficient.

3.2. Patch-wise View Filtering Framework

Based on the predicted reconstructability scores, the pri-

mary challenge in selecting a subset of image patches for

MVS reconstruction is that the effect of not reconstructing

a single patch is not independent of the other image patches

involved in the reconstruction, since it could potentially

lead to an incomplete reconstruction if all patches viewing

the same surface region are removed. Figure 4 shows two

point clouds and the aggregate pixels used (APU) to pro-

duce them. We define APU as the percentage of pixels used

as reference pixels during stereo matching across all views.

For the point cloud on the left of Figure 4, we filtered im-

age patches by removing any patch with a reconstructabil-

ity score less than 0.9. The resulting point cloud suffers in

3044



Input Image Estimated Normals N = All N = 12 N = 6 N = 3 N = 1

Figure 5: Normal maps produced by our method for a scene from DTU [19] as we vary N , the number of redundant views

of a surface region. N decreases from left to right, with the left most normal map being unmasked.

terms of completeness since some surface regions are chal-

lenging to reconstruct and never receive a score higher than

0.9. Therefore, we propose a new completeness constrained

patch-wise filtering framework, which ensures that the set

of patches we choose spans the surface, ensuring complete-

ness, and that the selected patches are of high quality, im-

proving accuracy. The core idea of the algorithm is to use

coarse depth estimation, which can be acquired quickly, to

group together image patches which observe the same sur-

face region and then select the top N views in each group

based on the reconstructability score. Using this approach,

which we describe next, the point cloud on the right of Fig-

ure 4 achieves a balance of both sparsity in pixels and com-

pleteness.

Coarse Depth Estimation: To compute coarse depth,

we leverage the MVS algorithm of Galliani et al. [10] since

it is very efficient (see Section 4). We downsize all input

images Ii by a scaling factor Sc and then perform depth

estimation to produce coarse depth maps Dc
i . If some of

the depth estimates are unreliable, we may falsely estab-

lish correspondence between patches which do not actually

correspond, so we perform a very conservative geometric

consistency check, as is performed by Galliani et al. [10],

to filter outlier correspondences.

Patch Filtering with a Coarse Voxel Grid: Given

coarse depthmaps Dc
i and score maps E(Ii,p) generated by

our I2RNet, we construct a coarse voxel grid with voxels

of size Wv to facilitate selection of image patches that pro-

vide both completeness and accuracy. The intuition is that

for each occupied voxel, we select the top N most recon-

structable views and run reconstruction only for the patches

from those views to estimate the surface in the voxel. Dc
i

determines which image patch falls into which voxel. If we

aggregate the selected patches for all voxels, we end up with

a mask for each image which indicates the image patches

where surface estimation should be performed. Specifically,

let Mi denote the mask for Ii, where Mi,p = 1 when patch

p is selected and 0 otherwise. Let Vj correspond to the set

of patches (i, p) which falls into voxel j. The loss func-

tion of patch-wise view filtering, which solves for Mi for

all images, is then:

maximize
Mi, ∀i

X

i,p

E(Ii,p)Mi,p

subject to 8j,
X

(i,p)∈Vj

Mi,p = min(N, |Vj |).
(2)

where E(Ii,p) here is the min score over all pixels in the

patch. We observe that different Vj’s can be decoupled, so

we can solve Equation 2 optimally by greedily selecting the

N views with the highest E(Ii,p) for each voxel. Since we

only initialize a voxel if a patch intersects it, the memory re-

quirements are low and the speed is fast because the grid is

sparse. Figure 5 shows an example of masked normal maps

produced by our approach for varying N , from selecting all

patches in a voxel to just one.

4. Sparse Coarse-to-fine Surface Estimation

Sparsely computing surface estimates in an image (Fig-

ure 5) may have adverse effects on MVS algorithms which

rely on dense surface estimation to regularize and improve

the accuracy of individual pixel estimates. For example,

Galliani et al. [10] initialize each pixel p in the input im-

age I with a random plane parameterized in scene space

and these planes are then propagated to neighboring pix-

els based on a fixed, local propagation scheme over several

iterations. This approach performs well despite the large

parameter space of planes in 3D because even if only a sin-

gle pixel attains a roughly correct plane, this plane is then

propagated to neighboring pixels and refined for their posi-

tion on the surface. However, it can easily suffer from local

minima, especially when we apply the masks Mi computed

by our framework since introducing sparsity results in less

random samples for propagation (each pixel provides a sin-

gle random surface estimate).

We address this issue by introducing a Coarse-to-Fine

plane Diffusion strategy (CFD, Figure 6) inspired by Wu et

al. [32] and Hu et al. [18]. We construct an image pyra-

mid with H levels for the input images, normal maps, depth

maps, and masks. We iteratively initialize each level of the

input image pyramid by resampling the image to half the
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Figure 6: Intermediate outputs for a three level hierarchy of

CFD. Notice how the normal map captures finer and finer

detail as we move to higher resolutions.

resolution of the previous finest level. For the mask pyra-

mid, we keep the same patch size at each level and con-

servatively initialize patches by setting Mi,p = 1 whenever

any of the patches that project to the patch from the previous

finer level are also set, e.g. the mask of Level 1 is a subset

of Level 3 in Figure 6. After pyramid construction, we ini-

tialize the plane estimates at the coarsest level and perform

the plane propagation as Galliani et al. did. We then extract

a normal and depth map from the planes at each pixel and

upsample them to the resolution of the next, finer level. We

convert these upsampled depth and normal maps back into

planes and then resume propagation. We iterate this process

up to the finest resolution. At each level, we set the number

of PatchMatch iterations as max(K · 21−h, 2) where K is

a base number of iterations and h, 1  h  H is the cur-

rent level, where h= 1 is the coarsest level. Figure 7 shows

an example of the normal maps produced by our approach

using varying hierarchy levels.

5. Evaluation

Our evaluation focuses on the accuracy of the I2RNet

and its ability to generalize across datasets, the accu-

racy/completeness/speed tradeoff of our patch-wise selec-

tion framework, and the implications of coarse-to-fine sur-

face estimation on the reconstruction results.

Machine Details. In all the following experiments, we

use a machine with a 24-core Intel Xeon E5-2680 CPU, a

M6000 NVIDIA GPU, and 256 GB of DRAM.

5.1. Datasets

To properly evaluate our method against the general

MVS setting, we selected datasets which contain diverse

scenes, objects, camera types, viewing angles, lighting con-

ditions, and view overlap:

ScanNet: ScanNet [5] is a RGB-D dataset with over

1500 scans of 707 indoor locations (2.5 million 1296⇥ 968

Hierarchy Levels: 1 Hierarchy Levels: 2

Hierarchy Levels: 3 Hierarchy Levels: 4

Figure 7: Visualization of final normal maps produced for

increasing hierarchy levels H for CFD. Notice how no hier-

archy (top left) produces noisy normal maps where as sig-

nificant hierarchy (bottom right) produces smooth normals.

Some very small features, such as the lamps near the doors

in the middle, are missed at hierarchy level 4.

images). Camera calibration and ground truth 3D surface

reconstructions are provided. The large collection of im-

ages coupled with 3D surfaces make it an ideal dataset for

pre-training the I2RNet to produce generalizable features.

DTU: The DTU Dataset [19, 1] consists of 124 differ-

ent objects captured from the same 49 to 64 camera angles

under varying lighting conditions. The images are of mod-

erately high resolution, 1600 ⇥ 1200. Ground truth data

is provided via a structured light scanner. Following Gal-

liani et al. [10], we use the images with the most diffuse

lighting. For testing, the dataset uses 80 of the 124 scans.

For training, we use the other 44 scans.

Tanks and Temples (T2): Tanks and Temples [22] is

an end-to-end 3D reconstruction dataset that provides 4K

videos of various indoor and outdoor man-made scenes.

While T2 does provide training and testing datasets, we

use the training dataset as the test set since it provides

the ground truth point clouds, allowing us to evaluate the

performance of our method under various settings without

running into the submission limits of the online evaluation

server. For the training set, we use the test set by generating

ground truth data as described in Section 3.1.

5.2. I2RNet Accuracy and Generalization

We evaluated the I2RNet’s ability to generalize from one

dataset to another by training a model on one dataset and

testing that same model on another dataset. Since we are

interested in picking the top N views for a patch, we eval-

uate the I2RNet based on the ranking of different patches.

For each voxel in our coarse voxel grid (Section 3.2), we
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Test Datasets

DTU T2 Mean

ScanNet 0.17 0.06 0.12

DTU 0.18 0.03 0.11

ScanNet + DTU 0.23 0.06 0.15

T2 0.08 0.09 0.09

ScanNet + T2 0.14 0.12 0.13

Table 1: I2RNet generalization performance on DTU and

Tanks and Temples (T2) when trained on the different

datasets listed in the first column. The score is the Kendall

tau rank correlation coefficient.

compute the ranking of camera views in that voxel based

on the ground truth scores and based on the I2RNet pre-

dicted scores. We then compare these two rankings by using

Kendall’s tau (τ ) ranking correlation coefficient [21] which

produces a value between 1 and −1 indicating the correla-

tion of rankings.

Table 1 shows the accuracy of models trained on Scan-

Net, DTU, or T2, and their performance on the test set of

each dataset. As seen in the first row, the I2RNet gener-

alizes when trained on ScanNet, achieving reasonable per-

formance on both DTU and T2. This shows that the re-

constructability of a patch can be estimated to some extent

directly from the image, and that the I2RNet can rank the re-

constructability of image patches in an unseen image. Note

that there are still cases where reconstructability is not pos-

sible to predict from a single image. For example, if a patch

is not observed by neighboring views, then it will be dif-

ficult to reconstruct the patch even if the patch itself ap-

pears to be highly textured and in-focus. When the ScanNet

model is fine-tuned for a specific dataset (ScanNet + X), the

I2RNet achieves its best performance on that dataset. This

shows that there are still some dataset specific aspects to

reconstructability which were not captured by ScanNet.

5.3. MVS Quantitative Evaluation

In this section, we evaluate our method on DTU and T2.

In each evaluation, the main parameter we vary is the num-

ber of redundant views N selected for each voxel, which is

how we influence the total time to compute a reconstruction

(lower N values result in faster reconstructions). We eval-

uate on several settings for N , including ALL and FULL.

For ALL, we select all patches in every voxel. For FULL,

we disable masking of image patches and process every

pixel for comparison with methods which process all pix-

els. This differs from ALL in that patches can be removed

in ALL if the coarse depth estimation filters them out. Since

we can not perform a geometric consistency check when

N=1, we filter patches with E(Ii,p) < 0.75.

The methods that we compare against in our MVS per-

formance evaluations are: O-N: (Ours-N) Our method,

Acc. Com. F1 APU Time

OF-1 0.375 0.253 0.302 4.2 0.25s 262.6x

OF-2 0.246 0.321 0.278 5.6 0.26s 247.5x

OF-3 0.226 0.306 0.260 8.0 0.29s 221.8x

OF-6 0.213 0.339 0.262 13.8 0.36s 178.7x

OF-12 0.222 0.228 0.225 22.2 0.47s 136.9x

OF-ALL 0.208 0.227 0.227 45.2 0.58s 110.9x

OF-FULL 0.211 0.216 0.213 100.0 1.62s 39.7x

O-1 0.281 0.273 0.277 3.5 1.31s 49.1x

O-2 0.233 0.273 0.252 6.7 1.91s 33.8x

O-3 0.219 0.259 0.238 9.5 2.28s 28.0x

O-6 0.213 0.234 0.223 16.3 3.27s 19.5x

O-12 0.222 0.184 0.201 26.0 4.82s 13.3x

O-ALL 0.221 0.168 0.191 45.2 6.83s 9.4x

O-FULL 0.223 0.166 0.190 100.0 15.76s 4.1x

GIPUMAF 0.212 0.296 0.247 100.0 5.17s 12.4x

GIPUMA 0.253 0.191 0.218 100.0 64.34s 1.0x

Table 2: Results on the DTU Robot Image Dataset [19]

(lower is better). O-N and OF-N (Ours-N and OursFast-

N) are our approach, where N is number of views selected

for each surface region, O uses similar settings to GIPUMA,

and OF uses similar settings to GIPUMAF (GipumaFast).

Acc. and Com. stands for accuracy and completeness.

where N is the number of views selected for each voxel.

OF-N: (OursFast-N) The same as O-N but with simi-

lar modifications as GIPUMAF below. GIPUMA: The

method introduced by Galliani et al. [10] and the one we

reimplement in Section 4 to produce O-N. GIPUMAF:

(GipumaFast) Galliani et al. [10] further propose a faster

but less accurate variant of their method, which we denote

GIPUMAF. COLMAP: A general purpose end-to-end re-

construction pipeline [27, 28] that was state-of-the-art as of

publication on Tanks and Temples.

For each dataset, we include a measure of accuracy (or

precision) and completeness (or recall). We also consider

the F1(a, c) = 2 a·c
a+c

score (harmonic mean) where a is ac-

curacy and c is completeness. This provides a single score

to measure performance when accuracy and completeness

vary. We also provide the average time taken to com-

pute one depth map and the APU (% pixels used across all

views), which indicates how many pixels were used as ref-

erence pixels.

Parameter Settings. Unless otherwise stated, we use

K =8 iterations, H=4 hierarchy levels, and Sc=8 coarse

scale factor.

5.3.1 DTU Evaluation

Following the evaluation protocol described in the DTU

dataset paper [1], we evaluate on two metrics: accuracy, the

distance between points in the MVS point cloud and in the

ground truth point cloud, and completeness, the distance be-

tween points in the ground truth and the MVS point cloud.

For both metrics, a lower score is better since they measure
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Prec. Recall F1 APU Time

O-1 0.216 0.626 0.306 6.5 2.9s

O-2 0.274 0.361 0.289 10.7 4.6s

O-3 0.266 0.523 0.330 14.3 5.0s

O-6 0.295 0.610 0.359 19.3 5.9s

O-ALL 0.277 0.672 0.351 31.0 8.6s

O-FULL 0.276 0.682 0.354 100.0 30.4s

COLMAP 0.494 0.566 0.512 100.0 100.3s

Table 3: Results on the Tanks and Temples Dataset [22]

(higher is better). O-N is our approach, where N is number

of views selected for each surface region. COLMAP [27,

28] is the current state-of-the-art on this dataset.

distance error in millimeters. The median is taken over all

point-wise comparisons and then averaged over all 80 scans

to produce the final score for the dataset. In addition to

the time taken per depth map, we also provide the speedup

compared to GIPUMA [10], which is state-of-the-art on the

dataset. We use Wv=8.0mm coarse voxel size.

Table 2 shows the final scores of the evaluation. As

seen by the time required by the variants of our method,

we are faster by up to two orders of magnitude compared to

GIPUMA while gracefully degrading in completeness. Even

when comparing against the faster baseline of GIPUMAF,

we achieve an 11.0x speedup while matching the accu-

racy and completentess (see OF-12). Our base method,

O-FULL, outperforms GIPUMA and achieves the best com-

pleteness and F1 due to the incorporation of CFD. Our com-

pleteness is not as good at lower N as there are less views to

check against when performing the geometric consistency

check, whereas our accuracy does not decrease much be-

cause our error metric selects high quality patches. We also

note that scans with mostly weakly-textured surfaces tend to

reduce more in accuracy for lower N than those which are

highly textured because weakly-textured regions rely heav-

ily on neighbors for improving their estimates.

The cost of the patch-wise filtering framework is a minor

overhead compared to the time for executing the rest of the

pipeline. For example, the high-resolution depth estimation

stage takes ~13 minutes in total (all images) for O-FULL.

In comparison, the patch filtering stage takes ~20 seconds

in all configurations, with the I2RNet taking only 120 mil-

liseconds per view.

5.3.2 Tanks and Temples Evaluation

For Tanks and Temples, we report the precision, recall,

and F1 metrics as described in the T2 paper [22]. Preci-

sion is defined as the percentage of points in the computed

point cloud that are within some distance threshold from the

points in the ground truth point cloud, measuring accuracy.

Recall is defined similarly with the distances instead be-

ing computed from the ground truth to the computed point

cloud, measuring completeness. Higher scores are better.

H Acc. Com. F1 Time

1 0.220 0.175 0.195 46.4s

2 0.220 0.169 0.191 31.6s

3 0.223 0.166 0.190 25.0s

4 0.223 0.165 0.190 14.7s

Table 4: Comparison of varying levels of Hierarchy H for

our method on the DTU dataset (lower is better).

For this dataset, we set Wv = 0.02. COLMAP is state-of-

the-art on this dataset.

Table 3 shows the results. (We were not able to evaluate

GIPUMA on this dataset since it fails due to GPU memory

limitations.) As we decrease N , we observe a similar accu-

racy/completeness/speed tradeoff as with DTU. That is, we

achieve significantly faster speeds for a minimal decrease

in completeness. Since we base our method on GIPUMA,

which uses a less sophisticated neighbor selection scheme

than COLMAP, our absolute F1 score is expected to be

lower than that of COLMAP (also observed for GIPUMA

by Schöps et al. [29] in their evaluation).

5.4. Analysis of CFD

We analyze CFD (Section 4) by evaluating our method

with varying hierarchy levels H on the DTU dataset. Ta-

ble 4 shows the result of running O-FULL with H =
1,2,3,4. By adding levels of hierarchy, the overall com-

pleteness improves, thanks to the robustness provided by

initializing the finer levels with the coarser levels of the hi-

erarchy. At the same time, since less iterations are needed at

the finer scales, the total time taken decreases significantly,

despite performing more iterations in aggregate over all the

hierarchy levels. We also notice a minor decrease in accu-

racy (3 microns) at H= 3,4 since some very small features

are not visible at the coarsest level (see Figure 7).

6. Conclusion

We have presented a framework for accelerating MVS

pipelines through learning patch reconstructability. Evalua-

tions show that our I2RNet trained on a large collection of

scans is able to predict the reconstructability of patches to

some extent based on the image alone. This enables us to ef-

ficiently identify reconstructable patches, which, combined

with the proposed patch filtering and coarse-to-fine diffu-

sion components, enables us to speed up 3D reconstruction

with minimal loss in accuracy and completeness. In this

work, we used learning from data to improve a targeted as-

pect of a high-quality MVS pipeline. Taking this approach,

we were able to leverage all the existing theory and algo-

rithms developed for MVS. It is exciting to consider how

future data-driven approaches like ours might be used to

remove the other assumptions and limitations of the hand-

engineered heuristics traditionally used in MVS methods.
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