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Abstract

In this paper, we propose novel generative models for

creating adversarial examples, slightly perturbed images

resembling natural images but maliciously crafted to fool

pre-trained models. We present trainable deep neural net-

works for transforming images to adversarial perturba-

tions. Our proposed models can produce image-agnostic

and image-dependent perturbations for targeted and non-

targeted attacks. We also demonstrate that similar archi-

tectures can achieve impressive results in fooling both clas-

sification and semantic segmentation models, obviating the

need for hand-crafting attack methods for each task. Us-

ing extensive experiments on challenging high-resolution

datasets such as ImageNet and Cityscapes, we show that

our perturbations achieve high fooling rates with small per-

turbation norms. Moreover, our attacks are considerably

faster than current iterative methods at inference time.

1. Introduction

In spite of their impressive performance on challenging

tasks in computer vision such as image classification [25,

49, 51, 52, 20]and semantic segmentation [30, 5, 9, 59, 60],

deep neural networks are shown to be highly vulnerable to

adversarial examples, i.e. carefully crafted samples look-

ing similar to natural images but designed to mislead a pre-

trained model. This phenomenon was first studied in [53],

and may hinder the applications of deep networks on visual

tasks, or pose security concerns.

Two types of adversarial perturbations can be consid-

ered: Universal and Image-dependent. Image-dependent

perturbations can vary for different images in the dataset. To

generate these perturbations, we require a function which

takes a natural image, and outputs an adversarial image.

We approximate this function with a deep neural network.

Universal perturbations are fixed perturbations which when

added to natural images can significantly degrade the accu-

racy of the pre-trianed network. In this case, we seek a per-

turbation U with small magnitude such that for most natural

images x, x+ U can fool the pre-trained model. Unlike the

iterative approaches proposed in the literature, we consider

trainable networks for learning the universal perturbation.

From another viewpoint, adversarial attacks can be cat-

egorized as targeted and non-targeted. In targeted adver-

sarial attacks, we seek adversarial images that can change

the prediction of a model to a specific target label. In non-

targeted attacks we want to generate adversarial examples

for which the model’s prediction is any label other than

the ground-truth label. Considering all the possible com-

binations, we can have four types of adversarial examples:

targeted universal, non-targeted universal, targeted image-

dependent and non-targeted image-dependent. We elabo-

rate on each of them in the following sections.

Our main contributions can be summarized as follows:

• We present a unifying framework for creating univer-

sal and image-dependent perturbations for both clas-

sification and semantic segmentation tasks, consider-

ing targeted and non-targeted attacks with L∞ and L2

norms as the metric.

• We improve the state-of-the-art performance in univer-

sal perturbations by leveraging generative models in

lieu of current iterative methods.

• We are the first to present effective targeted universal

perturbations. This is the most challenging task as we

are constrained to have a single perturbation pattern

and the prediction should match a specific target.

• Our attacks are considerably faster than iterative and

optimization-based methods at inference time. We can

generate perturbations in the order of milliseconds.

2. Related Work

2.1. Universal Perturbations

First introduced in [35], universal perturbations are fixed

perturbations which after being added to natural images can

mislead a pre-trained model for most of the images. The

algorithm in [35] iterates over samples in a target set, and

gradually builds the universal perturbation by aggregating

image-dependent perturbations and normalizing the result.
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[38] presents a data independent approach for generating

image-agnostic perturbations. Its objective is to maximize

the product of mean activations at multiple layers of the net-

work when the input is the universal perturbation. While

this method obviates the need for training data, the results

are not as strong as [35]. A method for generating targeted

universal adversarial perturbations for semantic segmenta-

tion models is presented in [34]. Their approach is similar

to [35] in that they also create the universal perturbation

by adding image-dependent perturbations and clipping the

result to limit the norm. [36] proposes a quantitative analy-

sis of the robustness of classifiers to universal perturbations

based on the geometric properties of decision boundaries. A

defense method against universal adversarial perturbations

is proposed in [1]. It learns a Perturbation Rectifying Net-

work (PRN) from real and synthetic universal perturbations,

without needing to modify the target model.

2.2. Imagedependent Perturbations

Various approaches have been proposed for creating

image-dependent perturbations. Optimization-based meth-

ods such as [53] and [8] define a cost function based on the

perturbation norm and the model’s loss. Then they use gra-

dient ascent in pixel space with optimizers such as L-BFGS

or Adam [24] to create the perturbation. While these ap-

proaches yield better results than other methods, they are

slow at inference time as they need to forward the input to

the model several times.

[18] proposes a Fast Gradient Sign Method (FGSM) to

generate adversarial examples. It computes the gradient of

the loss function with respect to pixels, and moves a single

step based on the sign of the gradient. While this method

is fast, using only a single direction based on the linear ap-

proximation of the loss function often leads to sub-optimal

results. Based on this work, [37] presents an iterative al-

gorithm to compute the adversarial perturbation by assum-

ing that the loss function can be linearized around the cur-

rent data point at each iteration. [26] introduces the Itera-

tive Least-Likely Class method, an iterative gradient-based

method choosing the least-likely prediction as the desired

class. This method is applied to ImageNet in [27]. It also

discusses how to effectively include adversarial examples

in training to increase model’s robustness. [11] proposes a

method for directly optimizing performance measures, even

when they are combinatorial and non-decomposable. [39]

generates images unrecognizable to humans but classified

with high confidence as members of a recognizable class.

It uses evolutionary algorithms and gradient ascent to fool

deep neural networks. Our work bears a resemblance to [6]

in that it also considers training a network for generating ad-

versarial examples. However, [6] does not provide a fixed

bound on the perturbation magnitude, which might make

perturbations detectable at inference time. It is also limited

to targeted image-dependent perturbations. [58] extends ad-

versarial examples from the task of image classification to

semantic segmentation and object detection. For each im-

age, it applies gradient ascent in an iterative procedure until

the number of correctly predicted targets becomes zero or a

maximum iteration is reached. Similar to [53] and [8], this

method suffers from being slow at inference time. [2] evalu-

ates the robustness of segmentation models against common

attacks. [31] suggests that adversarial examples are sensi-

tive to the angle and distance at which the perturbed picture

is viewed. [4] presents a method for generating adversarial

examples that are robust across various transformations.

Several methods have been proposed for defending

against adversarial attacks. While our focus is on efficient

attacks, we refer the reader to [33, 57, 19, 47, 32, 50, 48, 54,

3, 13, 44, 16, 55, 45, 42, 56] for recent works on defense.

3. Generative Adversarial Perturbations

Consider a classification network K trained on natu-

ral images from C different classes. It assigns a label

K(x) ∈ {1, . . . , C} to each input image x1. We assume

that images are normalized to [0, 1] range. Let N ⊂ [0, 1]n

represent the space of natural images2. We assume that K
achieves a high accuracy on natural images. Therefore, if

we denote the correct class for image x by cx, K(x) = cx
for most x ∈ N. Let AK stand for the space of adversarial

examples for the network K. Images in AK must resemble

a natural image yet be able to fool the network K. Hence,

for each a ∈ AK there exists x ∈ N such that d(a, x) is

small and K(a) 6= cx, where d(·, ·) is a distance metric.

This framework can be easily extended to the task

of semantic segmentation in which the correct class for

each pixel needs to be determined. In this case, the

segmentation network K assigns a label map K(x) =
(K(x1), . . . , K(xn)) ∈ {1, . . . , C}n to each image

x = (x1, . . . , xn). The ground-truth prediction for image x

is cx = (cx1
, . . . , cxn

), and the set of adversarial examples

is AK = {a ∈ [0, 1]n\N | ∃ x ∈ N : d(a, x) < ǫ , ∀ i ∈
{1, . . . , n} : K(ai) 6= cxi

}, where ǫ is a fixed threshold3.

3.1. Universal Perturbations

Universal Perturbations were first proposed in the sem-

inal work of Dezfooli et al. [35]. The paper proposes an

iterative algorithm to generate the universal perturbation.

It constructs the universal perturbation by adding image-

dependent perturbations obtained from [37] and scaling the

result. Unlike the iterative approach of [35], we seek an

end-to-end trainable model for generating the universal per-

turbation. Let us denote the set of universal perturbations

1Note that x may or may not belong to the space of natural images.
2For images of height h, width w and c channels: n = h× w × c.
3We can also relax the constraint, and require that for most pixels the

prediction is different from the ground-truth.
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Figure 1: Training architecture for generating universal adversarial perturbations. A fixed pattern, sampled from a uniform

distribution, is passed through the generator. The scaled result is the universal perturbation which, when added to natural

images, can mislead the pre-trained model. We consider both U-Net (illustrated here) and ResNet Generator architectures.

for the network K by UK = {U ∈ [0, 1]n | for most x ∈
N : x + U ∈ AK}. We do not want the perturbation to di-

rectly depend on any input image from the dataset. We seek

a function f : [0, 1]n → UK which can transform a random

pattern to the universal perturbation. By changing the input

pattern, we can obtain a diverse set of universal perturba-

tions. In practice, we approximate f(·) with a deep neural

network fΘ(·) with weights Θ. This setting resembles Gen-

erative Adversarial Networks (GANs) [17, 43, 15, 28, 21]

in which a random vector is sampled from a latent space,

and is transformed to a natural-looking image by a genera-

tor. In our case the range of the mapping is UK instead of

N, and the generator is trained with a fooling loss instead of

the discriminative loss used in GANs. We also tried using a

combination of fooling and discriminative losses; however,

it led to sub-optimal results.

There are several options for the architecture of the im-

age transformation network fΘ(·). We consider two ar-

chitectures used in recent image-to-image translation net-

works such as [22] and [61]. The U-Net architecture [46]

is an encoder-decoder network with skip connections be-

tween the encoder and the decoder. The other architecture is

ResNet Generator which was introduced in [23], and is also

used in [61] for transforming images from one domain to

another. It consists of several downsampling layers, residual

blocks and upsampling layers. In most of our experiments,

the ResNet Generator outperforms U-Net.

Figure 1 illustrates the architecture for generating uni-

versal perturbations. A fixed pattern Z ∈ [0, 1]n, sampled

from a uniform distribution U [0, 1]n, is fed to a generator

fΘ to create the perturbation. The output of the generator

fΘ(Z) is then scaled to have a fixed norm. More specifi-

cally, we multiply it by min
(

1, ǫ
‖fΘ(Z)‖p

)

in which ǫ is the

maximum permissible Lp norm. Similar to related works

in the literature, we consider p = 2 and p = ∞ in exper-

iments. The resulting universal perturbation U is added to

natural images to create the perturbed ones. Before feeding

the perturbed image to the generator, we clip it to keep it in

the valid range of images on which the network is trained.

We feed the clipped image x̂ to the network K to obtain

the output probabilities k(x̂)4. Let 1cx denote the one-hot

encoding of the ground-truth for image x. In semantic seg-

mentation, cx ∈ {1, . . . , C}n is the ground-truth label map,

and k(x̂) contains the class probabilities for each pixel in x̂.

For non-targeted attacks we want the prediction k(x̂) to be

different from 1cx , so we define the loss to be a decreasing

function of the cross-entropy H(k(x̂), 1cx). We found that

the following fooling loss gives good results in experiments:

lnon−targeted = lfool = − log(H(k(x̂), 1cx)) (1)

Alternatively, as proposed by [26] and [27], we can consider

the least likely class kll(x) = argmin k(x), and set it as the

target for training the model:

lnon−targeted = lfool = log(H(k(x̂), 1kll(x))) (2)

In practice, the losses in equations 1 and 2 lead to competi-

tive results. We also found that for the Inception model, the

logit-based loss used in [7, 8] yields optimal results.

For targeted perturbations we consider the cross-entropy

with the one-hot encoding of the target:

ltargeted = lfool = log(H(k(x̂), 1t)) (3)

where t represents the target. Note that for the classification

task, t ∈ {1, . . . , C} is the target class while in semantic

segmentation, t ∈ {1, . . . , C}n is the target label map.

3.2. Imagedependent Perturbations

We consider the task of perturbing images as a transfor-

mation from the domain of natural images to the domain

of adversarial images. In other words, we require a map-

ping f : N → AK which generates a perturbed image

f(x) ∈ AK for each natural image x ∈ N. A desirable

function f(·) must result in a low accuracy and a high fool-

ing ratio. Accuracy denotes the proportion of samples x

4Note that K(x̂) = argmax k(x̂).
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Figure 2: Architecture for generating image-dependent perturbations. The generator outputs a perturbation, which is scaled

to satisfy a norm constraint. It is then added to the original image, and clipped to produce the perturbed image. We use the

ResNet Generator architecture for most of the image-dependent tasks.

Figure 3: Architecture for training a model to fool multiple target networks. The fooling loss for training the generator is a

linear combination of fooling losses of target models.

for which K(f(x)) = cx, while fooling ratio represents the

ratio of images x for which K(f(x)) 6= K(x). Since we

assume that the model achieves a high accuracy on natural

images, these two metrics are highly correlated.

We consider two slightly different approaches for ap-

proximating f(·). The first approach is to parametrize it di-

rectly using a neural network fΘ(·). Hence, we seek Θ such

that for most x ∈ N: K(fΘ(x)) 6= K(x). We also require

that the perturbed image fΘ(x) look similar to the original

image x. Hence, d(x, fΘ(x)) needs to be small for most

x ∈ N, where d(·, ·) is a proper distance function. The sec-

ond approach is to approximate the difference of natural and

adversarial images with a neural network fΘ(·). We require

that for most x ∈ N : K(x+ fΘ(x)) 6= K(x) ≈ cx, and the

Lp norm of the additive perturbation ‖fΘ(x)‖p needs to be

small in order for it to be quasi-imperceptible. The second

approach gives us better control over the perturbation mag-

nitude. Hence, we will focus on this approach hereafter.

Figure 2 shows the architecture for generating image-

dependent perturbations. Input image x is passed through

the generator to create the perturbation fΘ(x). The pertur-

bation is then scaled to constrain its norm. The result is

the image-dependent perturbation which is added to the in-

put image. We feed the clipped image x̂ to the network to

obtain the output probabilities k(x̂). We use loss functions

similar to the universal case as defined in equations 1–3.

At inference time, we can discard the pre-trained model,

and use only the generator to produce adversarial examples.

This obviates the need for iterative gradient computations,

and allows us to generate perturbations fast.

3.3. Fooling Multiple Networks

Using generative models for creating adversarial pertur-

bations enables us to train sophisticated models. For in-

stance, we can consider training a single model for mislead-

ing multiple networks simultaneously. Suppose we have

models K1, K2, . . . , Km trained on natural images. Let

AK denote the space of adversarial examples for these tar-

get models, i.e. AK = {a ∈ [0, 1]n\N | ∃ x ∈ N :
d(x, a) < ǫ , ∀i ∈ {1, . . . , m} : Ki(a) 6= Ki(x) ≈ cx},

in which d(·, ·) is a distance function, ǫ is a pre-specified

threshold and cx is the ground-truth for x. We can con-

sider both universal and image-dependent perturbations. In

the case of universal perturbations, we seek a mapping

F : [0, 1]n → AK generating adversarial examples from in-

put patterns. In practice, the function is approximated with

a deep neural network FΘ. Figure 3 depicts the correspond-

ing architecture. It is similar to figure 1 other than that the

resulting perturbed image x̂ is fed to each of the pre-trained

models. The loss function for training the generator is a lin-

ear combination of fooling losses of pre-trained models as

defined in equations 1–3. Hence, we have:

lmulti−fool = λ1 · lfool
1
+ · · ·+ λm · lfoolm (4)

in which {λ1, . . . , λm} ⊂ IR is a set of weights cho-

sen based on the difficulty of deceiving each target model.
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(a) Perturbation norm: L2 = 2000, target model: VGG-16

(b) Perturbation norm: L∞ = 10, target model: VGG-19

Figure 4: Non-targeted universal perturbations. Enhanced

universal pattern is shown on the left, and two samples of

perturbed images are given on the right.

VGG16 VGG19 ResNet152

L2 = 2000
GAP

UAP

93.9%

90.3%

94.9%

84.5%

79.5%

88.5%

Table 1: Fooling rates of non-targeted universal perturba-

tions for various classifiers pre-trained on ImageNet. Our

method (GAP) is compared with Universal Adversarial Per-

turbations (UAP) [35] using L2 norm as the metric.

VGG16 VGG19 Inception5

L∞ = 10
GAP

UAP

83.7%

78.8%

80.1%

77.8%

82.7%6

78.9%

Table 2: Fooling rates of non-targeted universal perturba-

tions using L∞ norm as the metric.

The architecture for image-dependent perturbations is sim-

ilar except that inputs to the generator are natural images.

4. Experiments on Classification

We generate adversarial examples for fooling classifiers

pre-trained on the ImageNet dataset [14]. For the Euclidean

distance as the metric, we scale the output of the generator

to have a fixed L2 norm. We can also scale the generator’s

output to constrain its maximum value when dealing with

the L∞ norm. All results are reported on the 50,000 images

of the ImageNet [14] validation set. Note that the contrast of

displayed perturbations is enhanced for better visualization.

4.1. Universal Perturbations

Non-targeted Universal Perturbations. This setting cor-

responds to the architecture in figure 1 with the loss func-

tions defined in equations 1 and 2. Results are given in Ta-

bles 1 and 2 for L2 and L∞ norms respectively. For most

cases our approach outperforms that of [35]. Similar to [35],

a value of 2000 is set as the L2-norm threshold of the uni-

versal perturbation, and a value of 10 is set for the L∞-norm

when images are considered in [0, 255] range7. We use U-

Net and ResNet Generator for L2 and L∞ norms respec-

tively. We visualize the results in figure 4. Notice that the

L2 perturbation consists of a bird-like pattern in the top left.

Intuitively, the network has learned that in this constrained

problem it can successfully fool the classifier for the largest

number of images by converging to a bird perturbation. On

the other hand, when we optimize the model based on L∞

norm, it distributes the perturbation to make use of the max-

imum permissible magnitude at each pixel.

Targeted Universal Perturbations. In this case we seek

a single pattern which can be added to any image in the

dataset to mislead the model into predicting a specified tar-

get label. We perform experiments with fixed L∞ norm of

10, and use the ResNet generator for fooling the Inception-

v3 model. We use the loss function defined in equation 3

to train the generator. Figure 5 depicts the perturbations for

various targets. It also shows the top-1 target accuracy on

the validation set, i.e. the ratio of perturbed samples clas-

sified as the desired target. We observe the the universal

perturbation contains patterns resembling the target class.

While this task is more difficult than the non-targeted one,

our model achieves high target accuracies. To the best of

our knowledge, we are the first to present effective targeted

universal perturbations on the ImageNet dataset. To make

sure that the model performs well for any target, we train

it on 10 randomly sampled classes. The resulting average

target accuracy for L∞ = 10 is 52.0%, demonstrating gen-

eralizability of the model across different targets.

4.2. Imagedependent Perturbations

[8] proposes a strong method for creating targeted

image-dependent perturbations. However, its iterative al-

gorithm is very slow at inference time. It reports attacks

that take several minutes to run for each image, making it

infeasible in real-time scenarios in which the input image

changes constantly. FGSM [18] is a fast attack method but

is not very accurate. In this work, we present adversarial

6Since [35] does not report results on Inception-v3, we compare with

their results on Inception-v1 (GoogLeNet).
6This result uses the logit-based loss [7, 8] as opposed to the least-likely

class loss (equation 2), which is used for other results in the table.
7The average L2 and L∞ norm of images in our validation set are

consistent with those reported in [35].
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(a) Target: Soccer Ball, Top-1 target accuracy: 74.1%

(b) Target: Knot, Top-1 target accuracy: 63.6%

(c) Target: Finch, Top-1 target accuracy: 61.8%

Figure 5: Targeted universal perturbations. Three differ-

ent targets and the corresponding average target accuracy of

perturbed images on Inception-v3 are given. Universal pat-

tern is shown on the left and two sample perturbed images

are depicted on the right. Perturbation norm is L∞ = 10.

attacks that are both fast and accurate.

Non-targeted Image-dependent Perturbations. The cor-

responding architecture is given in figure 2 with the loss

function defined in equations 1 and 2. We use ResNet gen-

erator with 6 blocks for generating the perturbations. Sim-

ilar to related works on image-dependent perturbations, we

focus on L∞ norm as the metric. Results are shown for var-

ious perturbation norms and pre-trained classifiers in Table

3. Figure 6 illustrates the perturbed images. In this case the

model converges to simple patterns which can change the

prediction for most images. As we observe, the perturba-

tions contain features from the corresponding input images.

Targeted Image-dependent Perturbations. For this task

we use the training scheme shown in figure 2 with the loss

function in equation 3. Figure 7 shows samples of perturbed

images for fooling the Inception-v3 model. The perturba-

tions are barely perceptible, yet they can obtain high target

accuracies. Moreover, the perturbation itself has features

L∞ = 7 L∞ = 10 L∞ = 13

VGG16
66.9%

(30.0%)

80.8%

(17.7%)

88.5%

(10.6%)

VGG19
68.4%

(28.8%)

84.1%

(14.6%)

90.7%

(8.6%)

Inception-v3
85.3%

(13.7%)

98.3%

(1.7%)

99.5%

(0.5%)

Table 3: Fooling ratios (pre-trained models’ accuracies) for

non-targeted image-dependent perturbations.

(a) L∞ = 7

(b) L∞ = 10

(c) L∞ = 13

Figure 6: Non-targeted image-dependent perturbations.

From left to right: original image, enhanced perturbation

and perturbed image. Three different thresholds are consid-

ered with Inception-v3 as the target model.

resembling the target class and the input image. See figure

7 for more examples. We also evaluate performance of the

model on 10 randomly sampled classes. The average target

accuracy for L∞ = 10 is 89.1%, indicating generalizability

of the proposed model across different target classes. The

average inference time for generating a perturbation to fool

the Inception-v3 model is 0.28ms per image, showing that

our method is considerably faster than [8]8.

8The time is measured on Titan Xp GPUs.
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(a) Target: Soccer Ball, Top-1 target accuracy: 91.3%

(b) Target: Hamster, Top-1 target accuracy: 87.4%

Figure 7: Targeted image-dependent perturbations. Two

different targets and the corresponding average target accu-

racy of perturbed images on Inception-v3 are shown. From

left to right: original image, enhanced perturbation and per-

turbed image. Perturbation magnitude is set to L∞ = 10.

4.3. Transferability and Fooling Multiple Networks

Several works have demonstrated that adversarial exam-

ples generated for one model may also be misclassified

by other models. This property is referred to as transfer-

ability, and can be leveraged to perform black-box attacks

[53, 18, 40, 41, 29, 10, 7]. We show that our generated per-

turbations can be transferred across different models. Table

4 shows the fooling ratio of a non-targeted universal attack

trained on one network and evaluated on others. Each row

corresponds to the pre-trained model based on which the at-

tack model is learned. The last row of the table corresponds

to a model trained to jointly mislead VGG-16 and VGG-19

models based on the architecture depicted in figure 3. We

see that joint optimization results in better transferability

VGG16 VGG19 ResNet152

VGG16 93.9% 89.6% 52.2%

VGG19 88.0% 94.9% 49.0%

ResNet152 31.9% 30.6% 79.5%

VGG16 + VGG19 90.5% 90.1% 54.1%

Table 4: Transferability of non-targeted universal perturba-

tions. The network is trained to fool the pre-trained model

shown in each row, and is tested on the model shown in each

column. Perturbation magnitude is set to L2 = 2000. The

last row indicates joint training on VGG-16 and VGG-19.

than training on a single target network. This is expected

as the network has seen more models during training, so it

generalizes better to unseen models.

5. Experiments on Semantic Segmentation

Current methods for fooling semantic segmentation

models such as [58] and [34] use iterative algorithms, which

are hand-engineered for the specific task, and are slow at in-

ference. We demonstrate that our proposed architectures are

generalizable across different tasks. More specifically, we

show that architectures similar to those used in the classi-

fication task yield strong results on fooling segmentation

models. We leave extension to tasks other than classifi-

cation and segmentation as future work. Experiments are

performed on the Cityscapes dataset [12]. It contains 2975

training and 500 validation images with a resolution of

2048 × 1024 pixels. Similar to [34], we downsample im-

ages and label maps to 1024×512 pixels using bilinear and

nearest-neighbor interpolation respectively.

5.1. Universal Perturbations

We first consider the more challenging case of targeted

attacks in which a desired target label map is given. We

use the same setting as in the classification task, i.e. the

training architecture in figure 1 with the fooling loss defined

in equation 3. In order for our results to be comparable with

[34], we consider FCN-8s [30] as our segmentation model,

and use L∞ norm as the metric. Our setting corresponds

to the static target segmentation in [34]. We use the same

target as the paper, and consider our performance metric to

be success rate, i.e. the categorical accuracy between the

prediction k(x̂) and the target t. Table 5 demonstrates our

results. Our method outperforms the algorithm proposed in

[34] for most of the perturbation norms. We also visualize

the results in figure 8. We observe that the generator fools

the segmentation model by creating a universal perturbation

which resembles the target label map. We also demonstrates

the resulting mean IoU for non-targeted attacks in Table 6.
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(a) Perturbation (b) Perturbed image (c) Prediction for perturbed image (d) Target

Figure 8: Targeted universal perturbations with L∞ = 10 for fooling the FCN-8s semantic segmentation model.

(a) Perturbation (b) Perturbed image (c) Prediction for perturbed image (d) Target

Figure 9: Targeted image-dependent perturbations with L∞ = 10 for fooling the FCN-8s model.

L∞ = 5 L∞ = 10 L∞ = 20
GAP (Ours) 79.5% 92.1% 97.2%

UAP-Seg [34] 80.3% 91.0% 96.3%

Table 5: Success rate of targeted universal perturbations for

fooling the FCN-8s segmentation model. Results are ob-

tained on the validation set of the Cityscapes dataset.

Task L∞ = 5 L∞ = 10 L∞ = 20
Universal 12.8% 4.0% 2.1%

Image-dependent 6.9% 2.1% 0.4%

Table 6: Mean IoU of non-targeted perturbations for fooling

the FCN-8s segmentation model on the Cityscapes dataset.

5.2. Imagedependent Perturbations

The targeted image-dependent task corresponds to the

architecture in figure 2 with the loss function in equation

3. We use the same target as the universal case. Results

for various norms are given in Table 7. As we expect, re-

laxing the constraint of universality leads to higher success

rates. Figure 9 illustrates the perturbations for L∞ = 10.

By closely inspecting the perturbations, we can observe pat-

terns from both the target and the input image. As shown

in Table 6, image-dependent perturbations achieve smaller

mean IoU by not having the universality constraint. The av-

erage inference time per image is 132.82ms for the U-Net

architecture and 335.73ms for the ResNet generator9.

9The time is measured on Titan Xp GPUs.

L∞ = 5 L∞ = 10 L∞ = 20
GAP 87.0% 96.3% 98.2%

Table 7: Success rate of targeted image-dependent pertur-

bations for fooling FCN-8s on the Cityscapes dataset.

6. Discussion and Future Work

In this paper, we demonstrate the efficacy of genera-

tive models for creating adversarial examples. Four types

of adversarial attacks are considered: targeted universal,

non-targeted universal, targeted image-dependent and non-

targeted image-dependent. We achieve high fooling rates

on all tasks in the small perturbation norm regime. The

perturbations can successfully transfer across different tar-

get models. Moreover, we demonstrate that similar archi-

tectures can be effectively used for fooling both classifica-

tion and semantic segmentation models. This eliminates the

need for designing task-specific attack methods, and paves

the way for extending adversarial examples to other tasks.

Future avenues of research include incorporating various

properties such as transformation-invariance into the per-

turbations and extending the proposed framework to tasks

other than classification and semantic segmentation.

Acknowledgments

We would like to thank Seyed Ali Osia, Zekun Hao and Xun

Huang for helpful discussions. This work is supported in

part by a Google Focused Research Award and a Facebook

equipment donation.

4429



References

[1] N. Akhtar, J. Liu, and A. Mian. Defense against universal

adversarial perturbations. arXiv preprint arXiv:1711.05929,

2017. 2

[2] A. Arnab, O. Miksik, and P. H. Torr. On the robustness of

semantic segmentation models to adversarial attacks. arXiv

preprint arXiv:1711.09856, 2017. 2

[3] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to ad-

versarial examples. arXiv preprint arXiv:1802.00420, 2018.

2

[4] A. Athalye and I. Sutskever. Synthesizing robust adversarial

examples. arXiv preprint arXiv:1707.07397, 2017. 2

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv preprint arXiv:1511.00561, 2015. 1

[6] S. Baluja and I. Fischer. Adversarial transformation net-

works: Learning to generate adversarial examples. arXiv

preprint arXiv:1703.09387, 2017. 2

[7] A. N. Bhagoji, W. He, B. Li, and D. Song. Exploring the

space of black-box attacks on deep neural networks. arXiv

preprint arXiv:1712.09491, 2017. 3, 5, 7

[8] N. Carlini and D. Wagner. Towards evaluating the robustness

of neural networks. In Security and Privacy (SP), 2017 IEEE

Symposium on, pages 39–57. IEEE, 2017. 2, 3, 5, 6

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016. 1

[10] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo:

Zeroth order optimization based black-box attacks to deep

neural networks without training substitute models. In Pro-

ceedings of the 10th ACM Workshop on Artificial Intelligence

and Security, pages 15–26. ACM, 2017. 7

[11] M. Cisse, Y. Adi, N. Neverova, and J. Keshet. Houdini:

Fooling deep structured prediction models. arXiv preprint

arXiv:1707.05373, 2017. 2

[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3213–3223, 2016. 7

[13] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li,

L. Chen, M. E. Kounavis, and D. H. Chau. Shield: Fast, prac-

tical defense and vaccination for deep learning using jpeg

compression. arXiv preprint arXiv:1802.06816, 2018. 2

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009. 5

[15] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a laplacian pyramid of adversarial

networks. In Advances in neural information processing sys-

tems, pages 1486–1494, 2015. 3

[16] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein,

J. Kossaifi, A. Khanna, and A. Anandkumar. Stochastic acti-

vation pruning for robust adversarial defense. arXiv preprint

arXiv:1803.01442, 2018. 2

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 3

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014. 2, 5, 7

[19] C. Guo, M. Rana, M. Cissé, and L. van der Maaten. Coun-
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