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Abstract

CNNs are poised to become integral parts of many criti-

cal systems. Despite their robustness to natural variations,

image pixel values can be manipulated, via small, carefully

crafted, imperceptible perturbations, to cause a model to

misclassify images. We present an algorithm to process an

image so that classification accuracy is significantly pre-

served in the presence of such adversarial manipulations.

Image classifiers tend to be robust to natural noise, and

adversarial attacks tend to be agnostic to object location.

These observations motivate our strategy, which leverages

model robustness to defend against adversarial perturba-

tions by forcing the image to match natural image statistics.

Our algorithm locally corrupts the image by redistributing

pixel values via a process we term pixel deflection. A subse-

quent wavelet-based denoising operation softens this cor-

ruption, as well as some of the adversarial changes. We

demonstrate experimentally that the combination of these

techniques enables the effective recovery of the true class,

against a variety of robust attacks. Our results compare

favorably with current state-of-the-art defenses, without re-

quiring retraining or modifying the CNN.

Code: github.com/iamaaditya/pixel-deflection

1. Introduction

Image classification convolutional neural networks

(CNNs) have become a part of many critical real-world sys-

tems. For example, CNNs can be used by banks to read

the dollar amount of a check [4], or by self-driving cars to

identify stop signs [32].

The critical nature of these systems makes them targets

for adversarial attacks. Recent work has shown that clas-

sifiers can be tricked by small, carefully-crafted, impercep-

tible perturbations to a natural image. These perturbations

can cause a CNN to misclassify an image into a different

class (e.g. a “1” into a “9” or a stop sign into a yield sign).

Thus, defending against these vulnerabilities will be crit-

ical to the further adoption of advanced computer vision

systems. Here, we consider white-box attacks, in which an
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Figure 1: Impact of Pixel Deflection on a natural image and

subsequent denoising using wavelet transform. Left: Im-

age with given number of pixels deflected. Middle: Dif-

ference between clean image and deflected image. Right:

Difference between clean image and deflected image after

denoising. Enlarge to see details.

adversary can see the weights of the classification model.

Most of these attacks work by taking advantage of the dif-

ferentiable nature of the classification model, i.e. taking the

gradient of the output class probabilities with respect to a

particular pixel. Several previous works propose defense

mechanisms that are differentiable transformations applied

to an image before classification. These differentiable de-

fenses appear to work well at first, but attackers can eas-

ily circumvent these defenses by “differentiating through

them”, i.e. by taking the gradient of a class probability with

respect to an input pixel through both the CNN and the

transformation.

In this work, we present a defense method which com-
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bines two novel techniques for defending against adversar-

ial attacks, which together modify input images in such a

way that is (1) non-differentiable, and (2) frequently re-

stores the original classification. The first component, pixel

deflection, takes advantage of a CNN’s resistance to the

noise that occurs in natural images by randomly replac-

ing some pixels with randomly selected pixels from a small

neighborhood. We show how to weight the initial random

pixel selection using a robust activation map. The second

approach, adaptive soft-thresholding in the wavelet domain,

which has been shown to effectively capture the distribu-

tion of natural images. This thresholding process smooths

adversarially-perturbed images in such a way so as to re-

duce the effects of the attacks.

Experimentally, we show that the combination of these

approaches can effectively defend against state-of-the-art

attacks [39, 14, 5, 27, 31, 20] Additionally, we show that

these transformations do not significantly decrease the clas-

sifier’s accuracy on non-adversarial images.

In Section 2, we discuss the various attack techniques

against which we will test our defense. In Sections 3 and 4

we discuss the established defense techniques against which

we will compare our technique. In Sections 5, 6 and 7 we

lay out the components of our defense and provide the intu-

ition behind them. In Sections 9 and 10, we provide experi-

mental results on a subset of ImageNet.

2. Adversarial Attacks

It has been established that most image classification

models can easily be fooled [39, 14]. Several techniques

have been proposed which can generate an image that is per-

ceptually indistinguishable from another image but is clas-

sified differently. This can be done robustly when model

parameters are known, a paradigm called white-box at-

tacks [14, 20, 23, 5]. In the scenario where access to the

model is not available, called black-box attacks, a secondary

model can be trained using the model to be attacked as a

guide. It has been shown that the adversarial examples gen-

erated using these substitute models are transferable to the

original classifiers [32, 21].

Consider a given image x and a classifier Fθ(·) with pa-

rameters θ. Then an adversarial example for Fθ(·) is an

image x̂ which is close to x (i.e. ||x − x̂|| is small, where

the norm used differs between attacks), but the classifier’s

prediction for each of them is different, i.e. F (x) 6= F (x̂).
Untargeted attacks are methods to produce such an image,

given x and Fθ(·). Targeted attacks, however, seek a x̂ such

that F (x̂) = ŷ for some specific choice of ŷ 6= F (x), i.e.

targeted attacks try to induce a specific class label, whereas

untargeted attacks simply try to destroy the original class

label.

Next, we present a brief overview of several well-known

attacks, which form the basis for our experiments.

Fast Gradient Sign Method (FGSM) [14] is a single

step attack process. It uses the sign of the gradient of the

loss function, ℓ, w.r.t. to the image to find the adversarial

perturbation. For a given value ǫ, FGSM is defined as:

x̂ = x+ ǫsign(∇ℓ(F (x), x)) (1)

Iterative Gradient Sign Method (IGSM) [20] is an iter-

ative version of FGSM. After each iteration the generated

image is clipped to be within a ǫL∞ neighborhood of the

original and this process stops when an adversarial image

has been discovered. Both FGSM and IGSM minimize the

L∞ norm w.r.t. to the original image. Let x′

0 = x, then after

m iterations, the adversarial image is obtained by:

x′

m+1 = Clipx,ǫ

{
x′

m + α× sign(∇ℓ(F (x′

m), x′

m))
}

(2)

L-BFGS [39] tries to find the adversarial input as a box-

constraint minimization problem. L-BFGS optimization is

used to minimize L2 distance between the image and the

adversarial example while keeping a constraint on the class

label for the generated image.

Jacobian-based Saliency Map Attack (JSMA) [31] es-

timates the saliency of each image pixel w.r.t. to the clas-

sification output, and modifies those pixels which are most

salient. This is a targeted attack, and saliency is designed to

find the pixel which increases the classifier’s output for the

target class while tending to decrease the output for other

classes.

Deep Fool (DFool) [27] is an untargeted iterative attack.

This method approximates the classifier as a linear decision

boundary and then finds the smallest perturbation needed to

cross that boundary. This attack minimizes L2 norm w.r.t.

to the original image.

Carlini & Wagner (C&W) [5] is a recently proposed ad-

versarial attack, and one of the strongest. C&W updates the

loss function, such that it jointly minimizes Lp and a cus-

tom differentiable loss function that uses the unnormalized

outputs of the classifier (logits). Let Zk denote the logits of

a model for a given class k, and κ a margin parameter. Then

C&W tries to minimize:

||x− x̂||p + c ∗max (Z(x̂y)−max{Z(x̂)k : k 6= y},−κ)
(3)

For our experiments, we use L2 for the first term, as this

makes the entire loss function differentiable and therefore

easier to train. Limited success has been observed with L0

and L∞ for images beyond CIFAR and MNIST.
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We have not included recently proposed attacks like

‘Projected Gradient Descent’ [23] and ‘One Pixel At-

tack’ [38] because although they have been shown to be ro-

bust on datasets of small images like CIFAR10 and MNIST,

they do not scale well to large images. Our method is tar-

geted towards large natural images where object localiza-

tion is meaningful, i.e. that there are many pixels outside

the region of the image where the object is located.

3. Defenses

Given a classification model F and an image x̃, which

may either be an original image x, or an adversarial image

x̂, the goal of a defense method is to either augment either

F as F ′ such that F ′(x̃) = F (x), or transform x̃ by a trans-

formation T such that F (T (x̃)) = F (x).

One method for augmenting F is called Ensemble Ad-

versarial training [41], which augments the training of deep

convolutional networks to include various potential adver-

sarial perturbations. This expands the decision boundaries

around training examples to include some nearby adversar-

ial examples, thereby making the task of finding an adver-

sary within a certain ǫ harder than conventional models. An-

other popular technique uses distillation from a larger net-

work by learning to match the softmax [33]. This provides

smoother decision boundaries and thus makes is harder to

find an adversarial example which is imperceptible. There

are methods that proposes to detect the adversarial images

as it passes through the classifier model [26, 2].

Most transformation-based defense strategies suffer

from accuracy loss with clean images [11, 20], i.e. they pro-

duce F (T (x)) 6= F (x). This is an undesirable side effect

of the transformation process, and we propose a transforma-

tion which tries to minimize this loss while also recovering

the classification of an adversarial image. Detailed discus-

sion on various kinds of transformation based defenses is

provided in section 4.

4. Related Work

Transformation-based defenses are a relatively recent

and unexplored development in adversarial defense. The

biggest obstacle facing most transformation-based defenses

is that the transformation degrades the quality of non-

adversarial images, leading to a loss of accuracy. This has

limited the success of transformations as a practical de-

fense, as even those which are effective at removing ad-

versarial transformations struggle to maintain the model’s

accuracy on clean images. Our work is most similar to

Guo et al.’s [15] recently proposed transformation of im-

age by quilting and Total Variance Minimization (TVM).

Image quilting is performed by replacing patches of the in-

put image with similar patches drawn from a bank of im-

ages. They collect one million image patches from clean

images and use a k-nearest neighbor algorithm to find the

best match. Image quilting in itself does not yield satisfac-

tory results, so it is augmented with TVM. In Total Vari-

ance Minimization, a substitute image is constructed by op-

timization such that total variance is minimized. Total vari-

ation minimization has been widely used [13] as an image

denoising technique. Our method uses semantic maps to

obtain a better pixel to update and our update mechanism

does not require any optimization and thus is significantly

faster.

Another closely related work is from Luo et al. [22].

They propose a foveation-based mechanism. Using ground-

truth data about object coordinates, they crop the image

around the object, and then scale it back to the original size.

Yet another similar work is from Xie et al. [43], in which

they pad the image and take multiple random crops and

evaluate ensemble classification. This method utilizes the

randomness property that our model also exploits. How-

ever, our model tries to spatially define the probability of a

presence of a perturbation and subsequently uses wavelet-

based transform to denoise the perturbations.

5. Pixel Deflection

Much has been written about the lack of robustness of

deep convolutional networks in the presence of adversarial

inputs [28, 40]. However, most deep classifiers are robust to

the presence of natural noise, such as sensor noise [10]. We

Algorithm 1: Pixel deflection transform

Input : Image I , neighborhood size r

Output: Image I ′ of the same dimensions as I

1 for i← 0 to K do

2 Let pi ∼ U(I)
3 Let ni ∼ U(Rr

p ∩ I)

4 I ′[pi] = I[ni]

5 end

introduce a form of artificial noise and show that most mod-

els are similarly robust to this noise. We randomly sample a

pixel from an image, and replace it with another randomly

selected pixel from within a small square neighborhood. We

also experimented with other neighborhood types, includ-

ing sampling from a Gaussian centered on the pixel, but

these alternatives were less effective.

We term this process pixel deflection, and give a formal

definition in Algorithm 1. Let Rr
p be a square neighborhood

with apothem r centered at a pixel p. Let U(R) be the uni-

form distribution over all pixels within R. Let Ip indicate

the value of pixel p in image I .

As shown in Figure 2, even changing as much as 1%
(i.e. 10 times the amount changed in our experiments) of

the original pixels does not alter the classification of a clean
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Figure 2: Average classification probabilities for an adver-

sarial image (top) and clean image (bottom) after pixel de-

flection (Image size: 299x299)

Figure 3: Visualization showing average location in the im-

age where perturbation is added by an attacker. Clockwise

from top left: Localization of most salient object in the im-

age, FGSM, IGSM, FGSM-2 (higher ǫ), Deep Fool, JSMA,

LBFGS and Carlini-Wagner attack.

image. However, application of pixel deflection enables the

recovery of a significant portion of correct classifications.

5.1. Distribution of Attacks

Most attacks search the entire image plane for adversar-

ial perturbations, without regard for the location of the im-

age content. This is in contrast with the classification mod-

els, which show high activation in regions where an object is

present [45, 7]. This is especially true for attacks which aim

to minimize the Lp norm of their changes for large values

of p, as this gives little to no constraint on the total number

of pixels perturbed. In fact, Lou et al. [22] use the object

coordinates to mask out the background region and show

that this defends against some of the known attacks.

In Figure 3 we show the average spatial distribution of

perturbations for several attacks, as compared to the distri-

bution of object locations (top left). Based on these ideas,

we explore the possibility of updating the pixels in the im-

age such that the probability of that pixel being updated is

inversely proportional to the likelihood of that pixel con-

taining an object.

6. Targeted Pixel Deflection

As we have shown in section 5, image classification is

robust against the loss of a certain number of pixels.

In natural images, many pixels do not correspond to a

relevant semantic object and are therefore not salient to clas-

sification. Classifiers should then be more robust to pixel

deflection if more pixels corresponding to the background

are dropped as compared to the salient objects. Luo et al.

[22] used this idea to mask the regions which did not con-

tain the object, however, their method has two limitations

which we will seek to overcome.

First, it requires ground-truth object coordinates and it

is, therefore, difficult to apply to unlabeled inputs at infer-

ence time. We solve this by using a variant of class activa-

tion maps to obtain an approximate localization for salient

objects. Class activation maps [46] are a weakly-supervised

localization [30] technique in which the last layer of a CNN,

often a fully connected layer, is replaced with a global av-

erage pooling layer. This results in a heat map which lacks

pixel-level precision but is able to approximately localize

objects by their class. We prefer to use weakly supervised

localization over saliency maps [17], as saliency maps are

trained on human eye fixations and thus do not always cap-

ture object classes [25]. Other weakly supervised local-

ization techniques, such as regions-of-interest [34], capture

more than a single object and thus are not suitable for im-

proving single-class classification.

Second, completely masking out the background dete-

riorates classification of classes for which the model has

come to rely on the co-occurrence of non-class objects.

For instance, airplanes are often accompanied by a sky-

colored background, and most classifiers will have lower

confidence when trying to classify an airplane outside of

this context. We take a Bayesian approach to this problem

and use stochastic re-sampling of the background. This pre-

serves enough of the background to protect classification

and drops enough pixels to weaken the impact of adversar-

ial input.

6.1. Robust Activation Map

Class activation maps [46] are a valuable tool for ap-

proximate semantic object localization. Consider a convo-

lutional network with k output channels on the final con-

volution layer (f ) with spatial dimensions of x and y, and

let w be a vector of size k which is the result of applying a

global max pool on each channel. This reduces channel to a

single value, wk. The class activation map, Mc for a class
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CAM on clean Image
Top Class: Warplane (0.91)

CAM on adversarial Image
Top Class: Flatworm (0.99)

Robust CAM on adversarial Image
Top Class: Flatworm (0.99)

Figure 4: Difference between standard activation maps and

robust maps under the presence of an adversary.

c is given by:

Mc(x, y) =
∑

k

w
c
k fk(x, y) (4)

Generally, one is interested in the map for the class for

which the model assigns the highest probability. However,

in the presence of adversarial perturbations to the input, the

highest-probability class is likely to be incorrect. Fortu-

nately, our experiments show that an adversary which suc-

cessfully changes the most likely class tends to leave the rest

of the top-k classes unchanged. Our experiments show that

38% of the time the predicted class of adversarial images is

the second highest class of the model for the clean image.

Figure 6 shows how the class of adversarial image relates

to predictions on clean images. ImageNet has one thou-

sand classes, many of which are fine-grained. Frequently,

the second most likely class is a synonym or close relative

of the main class (e.g. “Indian Elephant” and “African Ele-

phant”). To obtain a map which is robust to fluctuations

of the most likely class, we take an exponentially weighted

average of the maps of the top-k classes.

M̂(x, y) =

k∑

i

Mci(x, y)

2i
(5)

We normalize the map by diving it by its max so that values

are in the range of [0, 1]. Even if the top-1 class is incorrect,

this averaging reduces the impact of mis-localization of the

object in the image.

The appropriate number of classes k to average over de-

pends on the total number of classes. For ImageNet-1000,

we used a fixed k = 5. While each possible class has its

own class activation map (CAM), only a single robust acti-

vation map is generated for a particular image, combining

information about all classes. ImageNet covers wide variety

of object classes and most structures found in other datasets

are represented in ImageNet even if class names are not bi-

jectional. Therefore, Robust Activation Map (R-CAM) is

trained once on ImageNet but can also localize objects from

Pascal-VOC or Traffic Signs.

7. Wavelet Denoising

Because both pixel deflection and adversarial attacks add

noise to the image, it is desirable to apply a denoising trans-

form to lessen these effects. Since adversarial attacks do

not take into account the frequency content of the perturbed

image, they are likely to pull the input away from the class

of likely natural images in a way which can be detected and

corrected using a multi-resolution analysis.

Works such as [6, 37, 12] have shown that natural im-

ages exhibit regularities in their wavelet responses which

can be learned from data and used to denoise images. These

regularities can also be exploited to achieve better lossy im-

age compression, the basis of JPEG2000. Many vision and

neuroscience researchers [24, 36, 18] have suggested that

the visual systems of many animals take advantage of these

priors, as the simple cells in the primary visual cortex have

been shown to have Gabor-like receptive fields.

Swapping pixels within a window will tend to add noise

with unlikely frequency content to the image, particularly

if the window is large. This kind of noise can be removed

by image compression techniques like JPEG, however, the

quantization process in JPEG uses fixed tables that are ag-

nostic to image content, and it quantizes responses at all am-

plitudes while the important image features generally cor-

respond to large frequency responses. This quantization re-

duces noise but also gets rid of some of the signal.

Therefore, it is unsurprising that JPEG compression re-

covers correct classification on some of the adversarial im-

ages but also reduces the classification accuracy on clean

images [20, 8, 11, 15]. Dziugaite et al. [11] reported loss of

8% accuracy on clean images after undergoing JPEG com-

pression.

We, therefore, seek filters with frequency response bet-

ter suited to joint space-frequency analysis than the DCT

blocks (and more closely matching representations in the

early ventral stream, so that features which have a small

filter response are less perceptible) and quantization tech-

niques more suited to denoising. Wavelet denoising uses

wavelet coefficients obtained using Discrete Wavelet Trans-

form [3]. The wavelet transform represents the signal

as a linear combination of orthonormal wavelets. These

wavelets form a basis for the space of images and are sepa-

rated in space, orientation, and scale. The Discrete Wavelet

Transform is widely used in image compression [1] and im-

age denoising [6, 35, 37].

7.1. Hard & Soft Thresholding

The process of performing a wavelet transform and its

inverse is lossless and thus does not provide any noise re-

duction. In order to reduce adversarial noise, we need to

apply thresholding to the wavelet coefficients before in-

verting the transform. Most compression techniques use

a hard thresholding process, in which all coefficients with
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magnitude below the threshold are set to zero: Q(X̂) =
X̂ ∀ |X̂| > Th, where X̂ is the wavelet transform of

X , and Th is the threshold value. The alternative is soft

thresholding, in which we additionally subtract the thresh-

old from the magnitude of coefficients above the threshold:

Q(X̂) = sign(X̂) × max(0, |X̂| − Th). Jansen et al. [19]

observed that hard thresholding results in over-blurring of

the input image, while soft thresholding maintains better

PSNR. By reducing all coefficients, rather than just those

below the threshold, soft thresholding avoids introducing

extraneous noise. This allows our method to preserve clas-

sification accuracy on non-adversarial images.

7.2. Adaptive Thresholding

Determining the proper threshold is very important, and

the efficacy of our method relies on the ability to pick a

threshold in an adaptive, image specific manner. The stan-

dard technique for determining the threshold for wavelet de-

noising is to use a universal threshold formula called Vi-

suShrink. For an image X with N pixels, this is given

by σ
√
2 logN , where σ is the variance of the noise to

be removed and is a hyper-parameter. However, we used

BayesShrink [6], which models the threshold for each

wavelet coefficient as a Generalized Gaussian Distribution

(GGD). The optimal threshold is then assumed to be the

value which minimizes the expected mean square error i.e.

Th ∗ (σx, β) = argmin
Th

E(X̂ −X)2 ≈ σ2

σx

(6)

where σx and β are parameters of the GGD for each wavelet

sub-band. In practice, an approximation, as shown on right

side of equation 6, is used. This ratio, also called TBayes,

adapts to the amount of noise in the given image. Within

a certain range of β values, BayesShrink has been shown

to effectively remove artificial noise while preserving the

perceptual features of natural images [6, 35]. As our exper-

iments are carried out with images from ImageNet, which

is a collection of natural images, we believe this is an ap-

propriate thresholding technique to use. Yet another pop-

ular thresholding technique is Stein’s Unbiased Risk Esti-

mator (SUREShrink), which computes unbiased estimate of

E(X̂−X)2. SUREShrink requires optimization to learn Th

for a given coefficient. We empirically evaluated results and

SUREShrink did not perform as well as BayesShrink.

8. Method

The first step of our method is to corrupt the adversarial

noise by applying targeted pixel deflection as follows:

(a) Generate a robust activation map M̂ , as described in

section 6.1.

(b) Uniformly sample a pixel location (x, y) from the

image, and obtain the normalized activation map value for

that location, vx,y = M̂(x, y).

(c) Sample a random value from a uniform distribution

U(0, 1). If vx,y is lower than the random value, we deflect

the pixel using the algorithm shown in Algorithm 1.

(d) Iterate this process K times.

The following steps are used to soften the impact of pixel

deflection:

(a) Convert the image to Y CbCr space to decorrelate

the channels. Y CbCr space is perceptually meaningful and

thus has similar denoising advantages to the wavelets.

(b) Project the image into the wavelet domain using the

discrete wavelet transform. We use the db1 wavelet, but

similar results were obtained with db2 and haar wavelets.

(c) Soft threshold the wavelets using BayesShrink.

(d) Compute the inverse wavelet transform on the

shrunken wavelet coefficients.

(e) Convert the image back to RGB.

9. Experimental Design

We tested our method on 1000 randomly selected im-

ages from the ImageNet [9] Validation set. We use

ResNet-50 [16] as our classifier. We obtain the pre-trained

weights from TensorFlow’s GitHub repository. These mod-

els achieved a Top-1 accuracy of 76% on our selected im-

ages. This is in agreement with the accuracy numbers re-

ported in [16] for a single-model single-crop inference.

By the definition set by adversarial attacks, an attack

is considered successful by default if the original image

is already mis-classified. In this case, the adversary sim-

ply returns the original image unmodified. However, these

cases are not useful for measuring the effectiveness of an

attack or a defense as there is no pixel level difference be-

tween the images. As such, we restrict our experiments to

those images which are correctly classified in the absence

of adversarial noise. Our attack models are based on the

Cleverhans [29] library1 with model parameters that aim to

achieve the highest possible misclassification score with a

normalized RMSE (|L2|) budget of 0.02− 0.04.

9.1. Training

Our defense model has three hyper-parameters, which is

significantly fewer than the classification models it seeks to

protect, making it preferable over defenses which require

retraining of the classifier such as [42, 26]. These three

hyper-parameters are: σ, a coefficient for BayesShrink, r,

the window size for pixel deflection, and K, the number of

pixel deflections to perform. Using a reduced set of 300
images from ImageNet Validation set, We perform a linear

search over a small range of these hyper-parameters. These

images are not part of the set used to show the results of our

model. A particular set of hyper-parameters may be optimal

1https://github.com/tensorflow/cleverhans
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Figure 5: Linear search for model parameters

for one attack model, but not for another. This is primarily

because attacks seek to minimize different Lp norms, and

therefore generate different types of noise. To demonstrate

the robustness of our defense, we select a single setting

of the hyper-parameters to be used against all attack mod-

els. Figure 5 shows a visual indication of the variations in

performance of each model across various hyper-parameter

settings. In general, as the K and r increase, the variance

of the resulting classification accuracy increases. This is

primarily due to the stochastic nature of pixel deflection -

as more deflections are performed over a wider window, a

greater variety of transformed images can result.

10. Results & Discussion

Attack |L2| No Defense With Defense

Window=10, Deflections=100 Single Ens-10

Clean 0.00 100 98.1 98.9

FGSM 0.04 19.2 79.7 81.2

IGSM 0.03 11.8 81.7 82.4

DFool 0.02 18.0 87.7 92.4

JSMA 0.02 24.9 93.0 98.1

LBFGS 0.02 11.6 90.3 93.6

C&W 0.04 05.2 93.1 98.3

Table 1: Top-1 accuracy on various attack models.

We randomly sampled 10K images from ILSVRC2012

validation set; this contained all 1000 classes with minimum

of 3 images per class. In Table 1 we present results obtained

by applying our transformation against various untargeted

white-box attacks on these images. Our method is agnos-

tic to classifier architecture, and thus shows similar results

across various classifiers. For brevity, we report only results

on ResNet-50. The accuracy on clean images without any

defense is 100% because we didn’t test our defense on im-

ages which were misclassified before any attack. We do not

report results for targeted attacks as they are harder to gen-

erate [5] and easier to defend. Due to the stochastic nature

of our model, we benefit from taking the majority prediction

over ten runs; this is reported in Table 1 as Ens-10.

10.1. Comparison of results

There are two main challenges when seeking to compare

defense models. First, many attack and defense techniques

primarily work on smaller images, such as those from CI-

FAR and MNIST. The few proposed transformation based

defense techniques which work on larger-scale images are

extremely recent, and currently under review [43, 15]. Sec-

ond, because different authors target both different |LP |
norms and different perturbation magnitudes, it is difficult

to balance the strength of various attacks. We achieved

98% recovery on C&W with |L2| of 0.04 on ResNet-50,

where Xie et al. [43] reports 97.1% on ResNet-101 and

98.8% on ens-adv-Inception-ResNet-v2. ResNet-101 is as

stronger classifier than ResNet-50 and ens-adv-Inception-

Resnet-v2 [41] is an ensemble of classifiers specifically

trained with adversarial augmentation. They do not report

the |L2| norm of the adversarial perturbations, and predic-

tions are made on an ensemble of 21 crops. Guo et al. [15]

have reported (normalized) accuracy of 92.1% on C&W

with |L2| of 0.06, and their predictions are on an ensemble

of 10 crops.

To present a fair comparison across various defenses we

only measure the fraction of images which are no longer

misclassified after the transformation. This ratio is known

as Destruction Rate and was originally proposed in [24].

Value of 1 means all the misclassified images due to the

adversary are correctly classified after the transformation.
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Figure 6: Left: Rank of adversarial class within the top-

5 predictions for original images. Right: Rank of original

class within the top-5 predictions for adversarial images. In

both cases, 0 means the class was not in the top-5.

As seen in Figure 6, the predicted class of the perturbed

image is very frequently among the classifier’s top-5 predic-

tions for the original image. In fact, nearly 40% of the time,

the adversarial class was the second most-probable class of
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Defense FGSM IGSM DFool C&W

Feature Squeezing (Xu et al [44])

(a) Bit Depth (2 bit) 0.132 0.511 0.286 0.170

(b) Bit Depth (5 bit) 0.057 0.022 0.310 0.957

(c) Median Smoothing (2x2) 0.358 0.422 0.714 0.894

(d) Median Smoothing (3x3) 0.264 0.444 0.500 0.723

(e) Non-local Mean (11-3-2) 0.113 0.156 0.357 0.936

(f) Non-local Mean (13-3-4) 0.226 0.444 0.548 0.936

Best model (b) + (c) + (f) 0.434 0.644 0.786 0.915

Random resizing + padding (Xie et al. [43] )

Pixel padding 0.050 - 0.972 0.698

Pixel resizing 0.360 - 0.974 0.971

Padding + Resizing 0.478 - 0.983 0.969

Quilting + TVM (Guo et al. [15] )

Quilting 0.611 0.862 0.858 0.843

TVM + Quilting 0.619 0.866 0.866 0.841

Cropping + TVM + Quilting 0.629 0.882 0.883 0.859

Our work: PD - Pixel Deflection, R-CAM: Robust CAM

PD 0.735 0.880 0.914 0.931

PD + R-CAM 0.746 0.912 0.911 0.952

PD + R-CAM + DCT 0.737 0.906 0.874 0.930

PD + R-CAM + DWT 0.769 0.927 0.948 0.981

Table 2: Destruction Rate of various defense techniques.

|L2| lies between 0.02−0.06 and classifier accuracy is 76%.

We only include the Black-box attacks, where the attack

model is not aware of the defense techniques. Single Pattern

Attack and Ensemble pattern attack as reported in Xie et al

[43] are not reported.

the original image. Similarly, the original classification will

often remain in the top-5 predictions for the adversarial im-

age. Unlike Kurakin et al. [20], our results are in terms of

top-1 accuracy, as this matches the objective of the attacker.

While top-1 accuracy is a more lenient metric for an attack

method (due to the availability of nearly-synonymous al-

ternatives to most classes in ImageNet-1000), it is a more

difficult metric for a defense, as we must exactly recover

the correct classification. These facts render top-5 accuracy

an unsuitable metric for measuring the efficacy of a defense.

Results reported for Carlini & Wagner [5] attacks are only

for L2 loss, even though they can be applied for L0 and

L∞. Carlini & Wagner attack has been shown to be effec-

tive with MNIST and CIFAR but their efficacy against large

images is limited due to expensive computation.

Previous work [20, 11] has demonstrated the efficacy of

JPEG compression as a defense against adversarial attacks

due to its denoising properties. Das et al. [8] demonstrate

that increasing the severity of JPEG compression defeats a

larger percentage of attacks, but at the cost of accuracy on

clean image. As our method employs a conceptually simi-

lar method to reduce adversarial noise via thresholding in a

wavelet domain, we use JPEG as a baseline for comparison.

In Table 3, we report accuracy with and without wavelet de-

noising with soft thresholding. While JPEG alone is effec-

tive against only a few attacks, the combination of JPEG

and pixel deflection performs better than pixel deflection

alone. The best results are obtained from pixel deflection

and wavelet denoising. Adding JPEG on top of these leads

to a drop in performance.

Model JPG WD PD
PD

JPG

WD

PD

JPG

WD

PD

Clean 96.1 98.7 97.4 96.1 96.1 98.9

FGSM 49.1 40.6 79.7 81.1 78.8 81.5

IGSM 49.1 31.2 82.4 82.4 79.7 83.7

DFool 67.8 61.1 86.3 86.3 86.3 90.3

JSMA 91.6 89.1 95.7 93.0 93.0 97.0

LBFGS 71.8 67.2 90.3 89.1 88.9 91.6

C&W 85.5 95.4 95.4 94.1 93.4 98.0

Table 3: Params: σ = 0.04, Window=10, Deflections=100

Ablation study of pixel deflection (PD) in combination with

wavelet denoising (WD) and JPEG compression.

Sampling technique (Random Pixel)

Window −→ 5 10 50 100

Uniform 86.7 87.5 86.1 84.6

Gaussian 80.0 81.4 79.0 76.4

Replacement technique (Uniform Sampling)

Window −→ 5 10 50 100

Min 73.0 64.4 49.1 44.3

Max 69.7 63.8 51.9 45.4

Mean 83.6 72.3 57.2 49.1

Random 86.7 87.5 86.1 84.6

Various Denoising Techniques

Bilateral Anisotropic TVM Deconv Wavelet

78.1 84.1 77.26 85.12 87.5

Table 4: Top-1 accuracy averaged across all six attacks.

11. Conclusion

Motivated by the robustness of CNNs and the fragility

of adversarial attacks, we have presented a technique

which combines a computationally-efficient image trans-

form, pixel deflection, with soft wavelet denoising. This

combination provides an effective defense against state-

of-the-art adversarial attacks. We show that most attacks

are agnostic to semantic content, and using pixel deflection

with probability inversely proportionate to robust activation

maps (R-CAM) protects regions of interest. In ongoing

work, we seek to improve our technique by adapting hyper-

parameters based on the features of individual images. Ad-

ditionally, we seek to integrate our robust activation maps

with wavelet denoising.
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