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Figure 1: Given an original image of a person (left) and a desired body pose defined by a 2D skeleton (bottom-row), our

model generates new photo-realistic images of the person under that pose (top-row). The main contribution of our work is to

train this generative model with unlabeled data.

Abstract

We present a novel approach for synthesizing photo-

realistic images of people in arbitrary poses using gener-

ative adversarial learning. Given an input image of a per-

son and a desired pose represented by a 2D skeleton, our

model renders the image of the same person under the new

pose, synthesizing novel views of the parts visible in the in-

put image and hallucinating those that are not seen. This

problem has recently been addressed in a supervised man-

ner [16, 35], i.e., during training the ground truth images

under the new poses are given to the network. We go be-

yond these approaches by proposing a fully unsupervised

strategy. We tackle this challenging scenario by splitting

the problem into two principal subtasks. First, we consider

a pose conditioned bidirectional generator that maps back

the initially rendered image to the original pose, hence be-

ing directly comparable to the input image without the need

to resort to any training image. Second, we devise a novel

loss function that incorporates content and style terms, and

aims at producing images of high perceptual quality. Ex-

tensive experiments conducted on the DeepFashion dataset

demonstrate that the images rendered by our model are very

close in appearance to those obtained by fully supervised

approaches.

1. Introduction

Being able to generate novel photo-realistic views of a

person in an arbitrary pose from a single image would open

the door to many new exciting applications in different ar-

eas, including fashion and e-commerce business, photogra-

phy technologies to automatically edit and animate still im-

ages, and the movie industry to name a few. Addressing

this task without explicitly capturing the underlying pro-

cesses involved in the image formation such as estimating

the 3D geometry of the body, hair and clothes, and the ap-

pearance and reflectance models of the visible and occluded

parts seems an extremely complex endeavor. Nevertheless,

Generative Adversarial Networks (GANs) [3] have shown

impressive results in rendering new realistic images, e.g.,

faces [8, 22], indoor scenes [32] and clothes [39], by di-

rectly learning a generative model from data. Very recently,

they have been used for the particular problem we consider

in this paper of multi-view person image generation from

single-view images [16, 35]. While the results shown by

both these approaches are very promising, they suffer from

the same fundamental limitation in that are methods trained

in a fully supervised manner, that is, they need to be trained

with pairs of images of the same person dressing exactly

the same clothes and under two different poses. This re-

quires from specific datasets, typically in the fashion do-
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main [15, 36]. Tackling the problem in an unsupervised

manner, one could leverage to an unlimited amount of im-

ages and use other datasets for which no multi-view images

of people are available.

In this paper we therefore move a step forward by

proposing a fully unsupervised GAN framework that, given

a photo of a person, automatically generates images of that

person under new camera views and distinct body postures.

The generative model we build is able to synthesize novel

views of the body parts and clothes that are visible in the

original image and also hallucinating those that are not seen.

As shown in Fig. 1, the generated images retain the body

shape, and the new textures are consistent with the origi-

nal image, even when input and desired poses are radically

different. In order to learn this model using unlabeled data

(i.e., our training data consists of single images of people

plus the input and desired poses), we propose a GAN ar-

chitecture that combines ingredients of the pose conditional

adversarial networks [24], Cycle-GANs [38] and the loss

functions used in image style transfer that aim at producing

new images of high perceptual quality [2].

More specifically, to circumvent the need for pairs of

training images of the same person under different poses,

we split the problem in two main stages. First, we con-

sider a pose conditioned bidirectional adversarial architec-

ture which, given a single training photo, initially renders a

new image under the desired pose. This synthesized image

is then rendered-back to the original pose, hence being di-

rectly comparable to the input image. Second, in order to

assess the quality of the rendered images we devise a novel

loss function computed over the 3-tuple of images –original,

rendered in the desired pose, and back-rendered to the orig-

inal pose– that incorporates content and style terms. This

function is conditioned on the pose parameters and enforces

the rendered image to retain the global semantic content of

the original image as well as its style at the joints location.

Extensive evaluation on the DeepFashion dataset [15] us-

ing unlabeled data shows very promising results, even com-

parable with recent approaches trained in a fully supervised

manner [16, 35].

2. Related Work

Rendering a person in an arbitrary pose from a single

image is a severely ill-posed problem as there are many

cloth and body shape ambiguities caused by the new cam-

era view and the changing body pose, as well as large ar-

eas of missing data due to body self-occlusions. Solving

such a rendering problem requires thus introducing several

sources of prior knowledge including, among others, the

body shape, kinematic constraints, hair dynamics, cloth tex-

ture, reflectance models and fashion patterns.

Initial solutions to tackle this problem first built a 3D

model of the object and then synthesized the target images

under the desired views [1, 9, 37]. These methods, however,

were constrained to rigid objects defined by either CAD

models or relatively simple geometric primitives.

More recently, with the advent of deep learning, there

has been a growing interest in learning generative im-

age models from data. Several advanced models have

been proposed for this purpose. These include the varia-

tional autoencoders [11, 12, 25], the autoregressive mod-

els [30, 31], and, most importantly the Generative Adver-

sarial Networks [3].

GANs are very powerful generative models based on

game theory. They simultaneously train a generator net-

work that produces synthetic samples (rendered images in

our context) and a discriminator network that is trained to

distinguish between the generator’s output and the true data.

This idea is embedded by the so-called adversarial loss,

which we shall use in this paper to train our model. GANs

have been shown to produce very realistic images with a

high level of detail. They have been successfully used to

render faces [8, 22], indoor scenes [8, 32] and clothes [39].

Particularly interesting for this work are those ap-

proaches that incorporate conditions to train GANs and

constrain the generation process. Several conditions have

been explored so far, such as discrete labels [19, 20], and

text [23]. Images have also been used as a condition, for in-

stance in the problem of image-to-image translation [6], for

future frame prediction [18], image inpainting [21] and face

alignment [5]. Very recently [39] used both textual descrip-

tions and images as a condition to generate new clothing

outfits. The works that are most related to ours are [16, 35].

They both propose GANs models for the muti-view person

image generation problem. However, the two approaches

use ground-truth supervision during train, i.e., pairs of im-

ages of the same person in two different poses dressed the

same. Tackling the problem in a fully unsupervised man-

ner, as we do in this paper, becomes a much harder task that

requires more elaborate network designs, specially when es-

timating the loss of the rendered images.

The unsupervised strategy we propose is somewhat re-

lated to that used in the Cycle-GANs [13, 14, 38] for image-

to-image translation, also trained in the absence of paired

examples. However, these approaches aim at estimating a

mapping between two distributions of images and no spatial

transformation of the pixels in the input image are consid-

ered. This makes that the overall strategies and network

architectures to address the two problems (image-to-image

translation and multi-view generation) are essentially dif-

ferent.

3. Problem Formulation

Given a single-view image of a person, our goal is

to train a GAN model in an unsupervised manner, al-

lowing to generate photo-realistic pose transformations of
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Figure 2: Overview of our unsupervised approach to generate multi-view images of persons. The proposed architecture

consists of four main components: a generator G, a discriminator D, a 2D pose regressor Φ and the pre-trained feature

extractor Ψ. Neither ground truth image nor any type of label is considered.

the input image while retaining the person identity and

clothes appearance. Formally, we seek to learn the map-

ping (Ipo
,pf ) → Ipf

between an image Ipo
∈ R

3×H×W

of a person with pose po and the image Ipf
∈ R

3×H×W

of the same person with the desired position pf . Poses

are represented by 2D skeletons with N = 18 joints p =
(u1, . . . ,uN ), where ui = (ui, vi) is the i-th joint pixel lo-

cation in the image. The model is trained in an unsupervised

manner with training samples {Iipo
,pi

o,p
i
f}

N
i=1 that do not

contain the ground-truth output image Ipf
.

4. Method

Figure 2 shows an overview of our model. It is composed

of four main modules: (1) A generator G(I|p) that acts as

a differentiable render mapping one input image of a given

person under a specific pose to an output image of the same

person under a different pose. Note that G is used twice

in our network, first to map the input image Ipo
→ Ipf

and then to render the latter back to the original pose Ipf
→

Îpo
; (2) A regressor Φ responsible of estimating the 2D joint

locations of a given image; (3) A discriminator DI(I) that

seeks to discriminate between generated and real samples;

(4) A loss function, computed without ground truth, that

aims to preserve the person identity. For this purpose, we

devise a novel loss function that enforces semantic content

similarity of Ipo
and Îpo

, and style similarity between Ipo

and Ipf
.

In the following subsections we describe in detail each

of these components as well as the 2D pose embedding we

consider.

4.1. Pose Embedding

Drawing inspiration on [34], the 2D location of each

skeleton joint ui in an image I ∈ R
3×H×W is represented

as a probability density map Bi ∈ R
H×W computed over

the entire image domain as:

Bi[u, v] = P (ui = (u, v)) ∀ (u, v) ∈ U (1)

being U the set of all (u, v) pixel locations in the input im-

age I . For each vertex ui we introduce a Gaussian peak

with variance 0.03 in the position (ui, vi) of the belief map

Bi. The full person pose p is represented as the concatena-

tion of all belief maps p = (B1, . . . ,BN ) ∈ R
N×H×W .

4.2. Network Architecture

Generator. Given an input image I of a person, the gen-

erator G(I|p) aims to render a photo-realistic image of that

person in a desired pose p. In order to condition the gener-

ator with the pose we consider the concatenation (I,p) ∈
R

(N+3)×H×W and feed this into a feed forward network

that produces an output image with the same dimensions as

I . The generator is implemented as the variation of the net-

work from Johnson et al. [7] proposed by [38] as it achieved

impressive results for the image-to-image translation prob-

lem.

Image Discriminator. We implement the discriminator

DI(I) as a PatchGan [6] network mapping from the input

image I to a matrix YI ∈ R
26×26, where YI[i, j] represents

the probability of the overlapping patch ij to be real. This

discriminator contains less parameters than other conven-

tional discriminators typically used for GANs and enforces
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high frequency correctness to reduce the blurriness of the

generated images.

Pose Detector. Given an image I of a person, Φ(I) is a 2D

detection network responsible for estimating the skeleton

joint locations p ∈ R
N×H×W in the image plane. Φ(I) is

implemented with the ResNet [4] based network by Zhu et

al. [38].

4.3. Learning the Model

The loss function we define contains three terms, namely

an image adversarial loss [3] that pushes the distribution

of the generated images to the distribution of the training

images, the conditional pose loss that enforces the pose of

the generated images to be similar to the desired ones, and

the identity loss that favors to preserve the person identity.

We next describe each of these terms.

Image Adversarial Loss. In order to optimize the gen-

erator G parameters and learn the distribution of the train-

ing data, we perform a standard min-max strategy game be-

tween the generator and the image discriminator DI. The

generator and discriminator are jointly trained with the ob-

jective function LI(G,DI, I,p) where DI tries to maximize

the probability of correctly classifying real and rendered im-

ages while G tries to foul the discriminator. Formally, this

loss is defined as:

LI(G,DI, I,p) = EI∼pdata(I)[logDI(I)]

+ EI∼pdata(I)[log(1−DI(G(I|p)))]
(2)

Conditional Pose Loss. While reducing the image adver-

sial loss, the generator must also reduce the error produced

by the 2D pose regressor Φ. In this way, the generator not

only learns to produce realistic samples but also learns how

to generate samples consistent with the desired pose p. This

loss is defined by:

LP(G,Φ, I,p) = ‖Φ(G(I|p))− p‖22 (3)

Identity Loss. With the two previously defined losses LI

and LP the generator is enforced to generate realistic images

of people in a desired position. However, without ground-

truth supervision there is no constraint to guarantee that the

person identity –e.g., body shape, hair style – in the original

and rendered images is the same. In order to preserve per-

son identity, we draw inspiration on the content-style loss

that was previously introduced in [2] to maintain high per-

ceptual quality in the problem of image style transfer. This

loss consists of two main components, one to retain seman-

tic similarity (‘content’) and the other to retain texture simi-

larity (‘style’). Based on this idea we define two sub-losses

that aim at retaining the identity between the input image

Ipo
and the rendered image Ipf

.

For the content term, we argue that the generator should

be able to render-back the original image Ipo
given the gen-

erated image Ipf
and the original pose po, that is, Îo ≈ Ipo

,

where Îo = G(G(Ipo
|pf )|po). Nevertheless, even when

using PatchGan based discriminators, directly comparing

Ipo
and Îpo

at a pixel level would struggle to handle high-

frequency details leading to overly-smoothed images. In-

stead, we compare them based on their semantic content.

Formally, we define the content loss to be:

LContent = ‖Ψz(Ipo
)−Ψz(Îpo

)‖22 (4)

where Ψz(·) represents the activations at the z-th layer of a

pretrained network.

In order to retain the style of the original image into

the rendered ones we enforce the texture around the visi-

ble joints of Ipo
and Ipf

to be similar. This involves a first

step of extracting – in a differential manner – patches of

features around the joints of Ipo
and Ipf

. More specifically,

let Ψz(Ipo
) ∈ R

C×H′
×W ′

be the semantic features of Ipo
,

and Bpo
∈ R

N×H′
×W ′

the down-sampled (using average

pooling) probability maps associated to the pose po. The

pose-conditioned patches are computed as:

Xpo,i = Bpo,i ·Ψz(Ipo
) ∀i ∈ {1, . . . , N} (5)

The representation of a patch style is then captured by

the correlation between the different channels of its hidden

representations Xpo,i using the spatial extend of the fea-

ture maps as the expectation. As previously done in [2]

this can be implemented by computing the Gram matrix

Gpo,i ∈ R
C×C for each patch i, defined as the inner product

between the vectorized feature maps of Xpo,i. The Patch-

Style loss is then computed as the mean square error be-

tween visible pairs of Gram matrices of the same joint in

both images Ipo
and Ipf

:

LPatch-Style =
1

N

N
∑

i

(

Gpo,i − Gpf ,i

H ′W ′

)2

(6)

Finally, we define the identity loss as the weighted sum

of the content and style losses:

LId = LContent(Ψ, Ipo
, Îpo

)

+ λLPatch-Style(Ψ, Ipo
, Ipf

,po,pf )
(7)

where he parameter λ controls the relative importance or

the two components.
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Full Loss. We take the full loss as a linear combination of

all previous loss terms:

L = LI(G,DI, Ipo
,pf ) + λPLP(G,DP, Ipf

,pf ,po)

+ LI(G,DI, Ipf
) + λPLP(G,DP, Îpo

,po)

+ λIdLId + λPLΦ(I,po)

(8)

where LΦ(I,po) = ‖Φ(Ipo
)−po‖

2
2 is used to train the pose

regressor Φ. Our ultimate goal is to solve:

G⋆ = argmin
G

max
DI,DP

L (9)

Some could argue that the terms LI and LP for the re-

covered image Îpo
are not required because the same infor-

mation is expressed by LContent. However, we experienced

that these two terms improved robustness and convergence

properties during training.

5. Implementation Details

In order to reduce the model oscillation and obtain more

photo-realistic results we use the learning trick introduced

in [17] and replace the negative log likelihood of the adver-

sarial loss by a least square loss. The image features Ψz(I)
are obtained from a pretrained VGG16 [28] with z = 7.

We use Adam solver [10] with learning rate of 0.0002 for

the generator, 0.0001 for the discriminators and a batch size

12. We train for 300 epochs with a linear decreasing rate

after epoch 100. The weights for the loss terms are set to

λP = 700 and λId = 0.3. As in [27], to improve training

stability, we update the discriminators using a buffer with

the previous rendered images rather than those generated

in the current iteration. During training, the pf poses are

randomly sampled from those in the training set.

6. Experimental Evaluation

We verify the effectiveness of our unsupervised GAN

model through quantitative and qualitative evaluations.

We next describe the dataset we used for evaluation and

the results we obtained. Supplementary material can

be found on http://www.albertpumarola.com/

research/person-synthesis/.

Benchmark. We have evaluated our approach on the pub-

licly available In-shop Clothes Retrieval Benchmark of the

DeepFashion dataset [15], that contains a large number of

clothing images with diverse person poses. Images of the

dataset were initially resized to a fixed size of 256×256. We

then applied data augmentation with all three possible flips

per each image. After that, 2D pose was computed in all

images using the Convolutional Pose Machine (CPM) [34],

and images for which CPM failed were removed from the

dataset. From the remaining images, we randomly selected

24,145 for training and 5,000 for test. Test samples are also

Method SSIM IS

Our Approach 0.747 2.97

Ma et al. NIPS’2017 [16] 0.762 3.09

Zhao et al. ArXiv’2017 [35] 0.620 3.03

Sohn et al. NIPS’2015 [29]* 0.580 2.35

Mirza et al. ArXiv’2014 [19]* 0.590 2.45

Table 1: Quantitative Evaluation on the DeepFashion

dataset. SSIM and IS for our unsupervised approach and

four supervised state-of-the-art methods. For all measures,

the higher is better. ‘*’ indicates that these results were

taken from [35]. Note: These results are just indicative, as

the test splits in previous approaches are not available and

may differ between the different methods of the table. Nev-

ertheless, note that the quantitative results put our unsuper-

vised approach on a par with other supervised approaches.

associated to a desired pose and its corresponding ground

truth image, that will be used for quantitative evaluation

purposes. Training images are only associated to a desired

2D pose. No ground truth warped image is considered dur-

ing training.

6.1. Quantitative results

Since test samples are annotated with ground truth im-

ages under the desired pose, we can quantitatively evalu-

ate the quality of the synthesis. Specifically, we use the

metrics considered by previous approaches on multi-view

person generation [16, 35], namely the Structural Similar-

ity (SSIM) [33] and the Inception Score (IS) [26]. These are

fairly standard metrics that focus more on the overall quality

of the generated image rather than on the pixel-level simi-

larity between the generated image and the ground truth.

Concretely, SSIM models the changes in the structural in-

formation and IS give high scores for images with a large

semantic content.

In Table 1 we report these scores for our approach and

the two fully supervised methods [16] and [35], when eval-

uated on the DeepFashion [15] dataset. Two additional im-

plementations of a Variational AutoEncoder (VAE) [29] and

a Conditional GAN (CGAN) model [19], reported in [35],

are included. It is worth to point that while all methods are

evaluated on the same dataset, the test splits in each case are

not the same. Therefore, the results on this table should be

considered only as indicative. In any event, note that the two

metrics indicate that the quality of the synthesis obtained by

our unsupervised approach are very similar to the most re-

cent supervised approaches and even outperform previous

VAE and CGAN implementations.

6.2. Qualitative results

We next present and discuss a series of qualitative results

that will highlight the main characteristics of the proposed
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Input 2D Pose Our Estimation Ground truth Input 2D Pose Our Estimation Ground truth

Figure 3: Test results on the DeepFashion [15] dataset. Each test sample is represented by 4 images: input image, 2D

desired pose, synthesized image and ground truth.
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Input 2D Pose Our Estimation Ground truth Input 2D Pose Our Estimation Ground truth

Figure 4: Test failures on the DeepFashion [15] dataset. We represent four different types of errors that typically occur in

the failure cases (see text for details).

approach, including its ability to generalize to novel poses,

to hallucinate image patches not observed in the original

image and to render textures with high-frequency details.

In the Teaser image 1 we observe all these characteris-

tics. First, note the ability of our GAN model to generalize

to desired poses very different from that in the original im-

age. In this case given a frontal image of the upper body of

a woman, we show some of the generated images in which

her pose is rotated by 180 deg. In the right-most image of

this example, the network is also able to hallucinate the two

legs, not seen in the original image (despite not rendering

the skirt). For this particular example, the network con-

vincingly renders the high frequency details of the blouse.

This is a very important characteristic of our model, and is

a direct consequence of the loss function we have designed,

and in particular of the term LPatch-Style in Eq. (6) that aims

at retaining the texture details of the original image into the

generated one. This is in contrast to most of the renders gen-

erated by other GAN models [16, 35, 39], which typically

wash out texture details.

Figure 3 presents another series of results obtained with

our model. In this case, each synthetically generated image

is accompanied by the ground truth. Note again, the num-

ber of complex examples that are successfully addressed.

Several cases show the hallucination of frontal poses from

original poses facing back (or vice versa). Also are worth

to mention those examples where the original image is in

a side position with only one arm being observed, and the

desired pose is either frontal of backwards, having to hal-

lucinate both arms. Some of the textures of the t-shirts

have very high frequency patterns and textures (example 4-

th row/2-nd column, examples 6-th row) that are convinc-

ingly rendered under new poses.

Failure cases. Tackling such an unconstrained problem in

a fully unsupervised manner causes a number of errors. We

have roughly split them into four categories which we sum-

marize in Figure 4. The first type of error (top-left) is pro-

duced when textures in the original image are not correctly

mapped onto the generated image. In this case, the par-

tially observed dark trousers are transferred to a lower leg,

resembling boots. In the top-right example, the face of the

original image is not fully wash out in the new generated

image. In the bottom-left we show a type of error which we

denote as ‘geometric error’, where the pose of the original

image is not properly transferred to the target image. The

bottom-right image shows an example in which a part of the

body in the original image (hand) is mapped as a texture in

the synthesized one.

Ablation study. Each component is crucial for the proper

performance of the system. DI and LI constrain the system

to generate realistic images; Φ and LP ensure the genera-

tor conditions the image generation to the given pose; and

Ψ and LId force the generator to preserve the input image

texture. Removing any of these elements would damage

our network. For instance, Figure 5 shows the results when

replacing LId by the standard L1 loss used by most state-of-

the-art GAN works. As it can observed in the last column of

the figure, although Îpo
is preserving the low frequency tex-

ture of the original image, the person identity in Ipf
is lost

and all results tend to converge to a mean brunette woman

with white t-shirt and blue jeans.

Images with background. To further test the limits of our

model Figure 6 presents an evaluation of the model perfor-

mance when the input image contains background. Surpris-

ingly, although the model has no loss on background con-

sistency nor was trained with images with background, the

results are still very consistent. The person is quite cor-

rectly rendered, while the background is over-smoothed. To

become robust to background would require more complex

datasets and specialized loss functions.
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Figure 5: L1 vs Identity Loss. Synthetic samples obtained

by our model when it is trained with L1 loss and condi-

tioned with the same inputs as in Figure 1. The first five

columns correspond to Îpf
, and the last column is the cycle

image Îpo
. Comparing these results with those of Figure 1

it becomes clear that the L1 loss is not able to capture the

person identity.

7. Conclusion

We have presented a novel approach for generating new

images of a person under arbitrary poses using a GAN

model that can be trained in a fully unsupervised manner.

This advances state-of-the-art, which so far, had only ad-

dressed the problem using supervision. To tackle this chal-

lenge, we have proposed an new framework that circum-

vents the need of training data by optimizing a loss function

that only depends on the input image and the rendered one,

and aims at retaining the style and semantic content of the

original image. Quantitative and qualitative evaluation on

the DeepFashion [15] dataset shows very promising results,

even for new body poses that highly differ from the input

one and require hallucinating large portions of the image. In

the future, we plan to further exploit our approach in other

datasets (not only of humans) in the wild for which super-

vision is not possible. An important issue that will need to

be addressed in this case, is the influence of complex back-

grounds, and how they interfere in the generation process.

Finally, in order to improve the failure cases we have dis-

cussed, we will explore novel object- and geometry-aware

loss functions.
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Figure 6: Testing on images with background. Given the

original image of a person with background on the left and

a desired body pose defined by a 2D skeleton (bottom-row),

the model generates the person under that pose shown in

the top-row. Albeit our model is trained with images with

no background it does generalize fairly well to this situation

(compare with the results of Figure 1).
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