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Abstract

In this paper, we propose Geometric Neural Network

(GeoNet) to jointly predict depth and surface normal maps

from a single image. Building on top of two-stream CNNs,

our GeoNet incorporates geometric relation between depth

and surface normal via the new depth-to-normal and normal-

to-depth networks. Depth-to-normal network exploits the

least square solution of surface normal from depth and im-

proves its quality with a residual module. Normal-to-depth

network, contrarily, refines the depth map based on the con-

straints from the surface normal through a kernel regression

module, which has no parameter to learn. These two net-

works enforce the underlying model to efficiently predict

depth and surface normal for high consistency and corre-

sponding accuracy. Our experiments on NYU v2 dataset

verify that our GeoNet is able to predict geometrically con-

sistent depth and normal maps. It achieves top performance

on surface normal estimation and is on par with state-of-the-

art depth estimation methods.

1. Introduction

We tackle the important problem of joint estimation of

depth and surface normal from a single RGB image. The

2.5D geometric information is beneficial to various computer

vision tasks, including structure from motion (SfM), 3D re-

construction, pose estimation, object recognition, and scene

classification.

There exist a large amount of methods on depth estima-

tion [25, 19, 8, 7, 21, 31, 24, 16, 20, 34, 18] and surface

normal estimation [7, 33, 3, 2, 18] from a single image.

Among them, deep-neural-network-based methods achieve

very promising results.

Challenges Albeit the great advancement in this field, we

notice that most previous methods deal with depth and nor-

mal estimation independently, which possibly make their

prediction inconsistent without considering the close under-

lying geometry relationship. For example, as demonstrated

Figure 1: Geometric relationship of depth and surface nor-

mal. Surface normal can be estimated from 3D point cloud;

depth is inferred from surface normal by solving linear equa-

tions.

in [32], the predicted depth map could be distorted in planar

regions. It is thus intriguing to ask what if one considers

the fact that surface normal does not change much in planar

regions. This thought motivates us to design new models,

which are exactly based on above simple fact and yet po-

tentially show a vital direction in this field, to exploit the

inevitable geometric relationship between depth and surface

normal for more accurate estimation.

We use the example in Fig. 1 to illustrate the common-

knowledge relation. On the one hand, surface normal is de-

termined by local surface tangent plane of 3D points, which

can be estimated from depth; on the other hand, depth is

constrained by the local surface tangent plane determined

by surface normal. Although it looks straightforward, it is

not trivial to design neural networks to properly make use of

these geometric conditions.

We note incorporating geometric relationship into tradi-

tional models via hand-crafted feature is already feasible, as

explained in [25, 4]. However, there is no much research to

make it happen in neural networks. One possible design is

to build a convolutional neural network (CNN) to directly

learn such geometric relationship from data. However, our
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experiments in section 4.2 demonstrate that even with the

common successful CNN architectures, e.g., VGG-16, we

cannot obtain any reasonable normal results from depth, not

even close. It is found that training always converges to very

poor local minima given carefully tuned architectures and

hyper-parameters.

These extensive experiments manifest that current classi-

fication CNN architectures do not have the necessary ability

to learn such geometric relationship from data. This finding

motivates us to design specialized architecture to explicitly

incorporate and enforce geometric conditions.

Our Contributions We in this paper propose the Geomet-

ric Neural Networks (GeoNet) to infer depth and surface

normal in one unified system. The architecture of GeoNet in-

volves a two-stream CNN, which predicts depth and surface

normal from a single image respectively. The two networks

manage the two streams to model the depth-to-normal and

normal-to-depth mapping.

In particular, relying on least-square and residual mod-

ules, the depth-to-normal network effectively captures the

geometric relationship. Normal-to-depth network updates

estimates of depth via a kernel regression module; it does not

require any parameters that should be learned. With these

coupled networks, our GeoNet enforces the final prediction

of depth and surface normal to follow the underlying con-

ditions. Further, these two networks are computationally

efficient since they do not have many parameters to learn.

Experimental results on NYU v2 dataset show that our

GeoNet achieves state-of-the-art performance in terms of

most of the evaluation metrics and is more efficient than

other alternatives.

2. Related Work

2.5D geometry estimation from a single image has been

intensively studied in past years. Previous work can be

roughly divided into two categories.

Traditional methods did not use deep neural networks,

and mainly focused on exploiting low-level image cues and

geometric constraints. For example, the method of [30] esti-

mates mean depth of the scene by recognizing the structures

presented in the image, and inferring the scale of the scene.

Based on Markov random fields (MRF), Saxena et al. [25]

predicts a depth map given the hand-crafted features of a

single image. Vanishing points and lines are utilized in [12]

for recovering the surface layout.

Besides, Liu et al. [19] leveraged predicted labels of se-

mantic segmentation to incorporate geometry constraints. A

scale-dependent classifier was proposed in [15] to jointly

learn semantic segmentation and depth estimation. Shi et al.

[27] showed that estimating the defocus blur is beneficial for

recovering the depth map. In [4], a unified optimization prob-

lem was formed, which aims at recovering the intrinsic scene

property, e.g., shape, illumination, and reflectance from shad-

ing. Relying on specially designed features, above methods

directly incorporate geometric constraints. However, their

model capacity and generality may be unsatisfactory to deal

with different types of images.

With deep learning, many methods were recently pro-

posed for single-image depth or/and surface normal predic-

tion. Eigen et al. [8] directly predicted the depth map by

feeding the image to CNNs. Shelhamer et al. [26] proposed

a fully convolutional network (FCN) based solution to learn

the full intrinsic decomposition of a single image, which

involves inferring the depth map as the first intermediate

step. In [7], a unified coarse-to-fine hierarchical network

was adopted for depth/normal prediction.

For predicting single-image surface normal, Wang et al.

[33] incorporated local, global, and vanishing point infor-

mation in designing the network architecture. In [20], a

continuous conditional random field (CRF) was built on

top of CNN to smooth super-pixel-based depth prediction.

There is also a skip-connected architecture [3] to fuse hid-

den representations of different layers for surface normal

estimation.

All these methods regard depth and surface normal predic-

tion as independent tasks, thus ignoring their basic geometric

relationship. The most related work to ours is that of [32],

which designed a CRF with a 4-stream CNN, considering

the consistency of predicted depth and surface normal in

planar regions. Nevertheless, it may fail when planar regions

are uncommon in images. In comparison, our GeoNet ex-

ploits the geometric relationship between depth and surface

normal for general situations without making any planar or

curvature assumptions. It is not limited to particular types of

regions, and is computationally efficient.

3. Geometric Neural Networks

In this section, we first introduce the depth-to-normal

network, which refines the surface normal from the given

depth map. Then we explain the normal-to-depth network

to update depth from the given surface normal map. It is

followed by the overall architecture of our GeoNet, which

utilizes these new modules.

3.1. DepthtoNormal Network

As aforementioned, learning geometrically consistent sur-

face normal from depth via directly applying neural networks

is surprisingly hard. Inspired from the geometry-based so-

lution [9], we propose a novel neural network architecture,

which takes initial surface normal and depth maps as input

and predicts a better surface normal. We start with intro-

ducing the geometric model, which can be viewed as a fix-

weight neural network. Then we explain the residual module

that aims at smoothing and combining the predictions of

surface normal.
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Figure 2: Upper row: normal-to-depth network. Bottom row: depth-to-normal network.

Pinhole Camera Model As a common practice, the pin-

hole camera model is adopted. We denote (ui, vi) as the

location of pixel i in the 2D image. Its corresponding loca-

tion in 3D space is (xi, yi, zi), where zi is the depth. Based

on the geometry of perspective projection, we obtain

xi = (ui − cx) ∗ zi/fx,

yi = (vi − cy) ∗ zi/fy, (1)

where fx and fy are the focal length along the x and y
directions respectively. cx and cy are coordinates of the

principal points.

Least Square Module Following [9], we formulate infer-

ence of surface normal from the depth map as a least square

problem. Specifically, for any pixel i, given its depth zi,
we first compute its 3D coordinates (xi, yi, zi) from its 2D

coordinates (ui, vi) relying on the pinhole camera model. In

order to compute the surface normal of pixel i, we need to de-

termine the tangent plane, which crosses pixel i in 3D space.

We follow traditional assumption that pixels within a local

neighborhood of pixel i lie on the same tangent plane. In

particular, we define the set of neighboring pixels, including

pixel i itself, as

Ni = {(xj , yj , zj) ||ui − uj | < β, (2)

|vi − vj | < β, |zi − zj | < γzi},

where β and γ are hyper-parameters controlling the size of

neighborhood along x-y and depth axes respectively. With

these pixels on the tangent plane, the surface normal estimate

n =
[

nx, ny, nz

]

should satisfy the over-determined linear

system of

An = b, subject to ‖n‖2
2
= 1. (3)

where

A =











x1 y1 z1
x2 y2 z2
...

...
...

xK yK zK











∈ RK×3, (4)

and b ∈ RK×1 is a constant vector. K is the size of Ni.

The least square solution of this problem, which minimizes

‖An− b‖2 has the closed form of

n =
(A⊤

A)−1
A

⊤
1

‖(A⊤A)−1A⊤1‖
2

, (5)

where 1 ∈ Rk is a vector with all 1 elements. It is not

surprising that Eq. (5) can be regarded as a fix-weight neural

network, which predicts surface normal given the depth map.

Residual Module This least square module occasionally

produces noisy estimate of surface normal due to noise and

other image issues. A rough normal map is shown in Fig. 2.

To improve accuracy, we propose a residual module, which

consists of a 3-layer CNN with skip-connection and 1 × 1
convolutional layer, as shown in Fig. 2. The goal is to smooth

out noise and combine the initial guess of surface normal to

further enhance the quality. In particular, before fed to the

1× 1 convolution, the output of this CNN is concatenated

with initial estimation of surface normal, which could be

output of another network.

The architecture of this depth-to-normal network is illus-

trated in the bottom row of Fig. 2. By explicitly leveraging

the geometric relationship between depth and surface nor-

mal, our network circumvents the aforementioned difficulty

in learning geometrically consistent surface normal. It is

computationally efficient since the least-square module is
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just a fix-weight layer. The extra important benefit stems

from using ground-truth depth as the input to pre-train the

network. It permits concatenation and joint fine-tuning with

other networks, which predict depth maps from raw images.

3.2. NormaltoDepth Network

Now we turn to the normal-to-depth network. For any

pixel i, given its surface normal (nix, niy, niz) and an initial

estimate of depth zi, the goal is to refine depth.

First, note that given the 3D point (xi, yi, zi) and its sur-

face normal (nix, niy, niz), we can uniquely determine the

tangent plane Pi, which satisfies the equation of

nix(x− xi) + niy(y − yi) + niz(z − zi) = 0. (6)

As explained in section 3.1, we can still assume that pixels
within a small neighborhood of pixel i lie on this tangent
plane Pi, as shown in Fig. 2 (bottom row). This neighbor-
hood Mi is defined as

Mi = {(xj , yj , zj)|n
⊤

j ni > α, |ui − uj | < β, |vi − vj | < β},

where β is the hyper-parameter to control the size of neigh-

borhood along x − y axes. α is a threshold to rule out

spatially close points, which are not approximately coplanar.

(ui, vi) are the coordinates of pixel i in the 2D image.

For any pixel j ∈ Mi, if we assume its depth zj is

accurate, we can compute the depth estimate of pixel i as z′ji
relying on Eqs. (1) and (6). It is expressed as

z′ji =
nixxj + nixyj + nizzj

(ui − cx)nix/fx + (vi − cy)niy/fy + niz

. (7)

After getting it, to refine depth of pixel i, we use kernel

regression to aggregate estimation from all pixels in the

neighborhood as

ẑi =

∑

j∈Mi
K(nj ,ni)z

′
ji

∑

j∈Mi
K(nj ,ni)

, (8)

where ẑi is the refined depth, ni =
[

nix, niy, niz

]

and K

is the kernel function. We use linear kernel due to its sim-

plicity, i.e., K(nj ,ni) = n
⊤
j ni. In this case, the smaller the

angle between normals ni and nj is, which means higher

probability that pixels i and j are in the same tangent plane,

the more accurate and important the estimate z′ji is.

The above process is illustrated in the upper row of Fig. 2.

It can be viewed as a voting process where every pixel

j ∈ Mi gives a “vote” to determine the depth of pixel i.
By utilizing the geometric relationship between surface nor-

mal and depth, we efficiently improve the quality of depth

estimate without the need to learn any weights.

3.3. GeoNet

Full Architecture With above two networks, we now ex-

plain our full model illustrated in Fig. 3. We first use two-

stream CNNs to predict the initial depth and surface normal

maps, as shown in Fig. 3(a) and (b) respectively. The funda-

mental structures we adopted are (1) VGG-16 [29] and (2)

ResNet-50 [11].

Based on the initial depth map predicted by one CNN, we

apply the depth-to-normal network explained in Section 3.1

to refine normal as shown in Fig. 3(c). Similarly, as shown in

Fig. 3(d), given the surface normal estimate, we refine depth

using the normal-to-depth network described in Section 3.2.

We pre-train the depth-to-normal network taking ground-

truth depth as input. For the normal-to-depth network, we

do not need to learn any weights.

Loss Functions We now explain the loss functions asso-

ciated with our GeoNet. For pixel i, we denote the initial,

refined and ground-truth depth as zi, ẑi and zgt
i respectively.

Similarly, we have these classes of surface normal as ni, n̂i

and n
gt
i respectively. The total number of pixels is M .

The overall loss function is the summation of two terms,

i.e., L = ldepth + lnormal. The depth loss ldepth is expressed as

ldepth =
1

M

(

∑

i

∥

∥zi − zgt
i

∥

∥

2

2
+ η

∑

i

∥

∥ẑi − zgt
i

∥

∥

2

2

)

.

The surface normal loss lnormal is

lnormal =
1

M

(

∑

i

∥

∥ni − n
gt
i

∥

∥

2

2
+ λ

∑

i

∥

∥n̂i − n
gt
i

∥

∥

2

2

)

.

Here λ and η are hyper-parameters to balance contribution

of different terms. The final predictions of our GeoNet are

the optimized depth and surface normal estimates. GeoNet

is trained by back-propagation in an end-to-end manner.

4. Experiments

We evaluate the effectiveness of our method on the NYU

v2 dataset [28]. It contains 464 video sequences of indoor

scenes, which are further divided into 249 sequences for

training and 215 for testing. We sample 30, 816 frames from

the training video sequences as the training data. Note that

the methods of [7], [34] and [16] used 120K, 90K and 95K
data for training, which are all significantly more than ours.

For the training set, we use the inpainting method of [17]

to fill in invalid or missing pixels in the ground-truth depth

maps. Then we generate ground-truth surface normal maps

following the procedure of [9]. Our GeoNet is implemented

in TensorFlow.

We initialize the two-stream CNNs with networks pre-

trained on ImageNet. In particular, we try two different

choices. The first is a modified VGG-16 network based

on FCN [23] with dilated convolutions [6, 35] and global

pooling [22]. The second is a ResNet-50 following the model

of [16]. We use Adam [14] to optimize the network and clip

the norm of gradients so that they are no larger than 5. The
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Depth FCN

Normal FCN

Depth-to-Normal

Normal-to-Depth

(b) Initial Normal

(a) Initial Depth

(d) Refined Depth

(c) Refined Normal

Figure 3: Overall framework of our Geometric Neural Networks.

(a) Image (b) GT (depth) (c) VGG (d) GeoNet (e) GT (surface norm) (f) VGG (g) GeoNet

Figure 4: Visual comparison on joint prediction with VGG-16 as backbone architecture. GT stands for “ground truth".

initial learning rate is 1e−4 and is adjusted following the

polynomial decay strategy with the power parameter 0.9.

Random horizontal flip is utilized to augment training data.

While flipping images, we multiply the corresponding x-

direction of surface normal maps with −1.

The whole system is trained with batch-size 4 for 40, 000
iterations. Hyper-parameters {α, β, γ, λ, η} are set to

{0.95, 9, 0.05, 0.01, 0.5} according to validation on a 5%
randomly split training data. λ is set to a small value due to

numerical instability when computing the matrix inverse in

the least square module – gradient of Eq. (5) needs inverse

of matrix ATA, which might be erroneous if the condition

number is small. Setting λ = 0.01 mitigates this effect.

Following [8, 16, 34], we adopt four metrics to evalu-

ate resulting depth map quantitatively. They are root mean

square error (rmse), mean log 10 error (log 10), mean relative

error (rel), and pixel accuracy as percentage of pixels with

max(zi/z
gt
i , zgti /zi) < δ for δ ∈ [1.25, 1.252, 1.253]. The

evaluation metrics for surface normal prediction [33, 3, 7]

are mean of angle error (mean), medians of the angle error

(median), root mean square error (rmse), and pixel accuracy

as percentage of pixels with angle error below threshold t
where t ∈ [11.25◦, 22.5◦, 30◦].

4.1. Comparison with StateoftheArt

In this section, we compare our GeoNet with existing

methods in terms of depth and/or surface normal prediction.

Surface Normal Prediction For surface normal predic-

tion, the results are listed in Table 1. Our GeoNet consis-

tently outperforms previous approaches regarding all dif-

ferent metrics. Note that since we use the same backbone

network architecture VGG-16, the improvement stems from

our depth-to-normal network, which effectively correct er-

rors during estimation.

Depth Prediction In the task of depth prediction, since

most state-of-the-art methods adopt either backbone network

between VGG-16 and ResNet-50, we thus conduct experi-

ments under both settings. The complete results are shown
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(a) Image (b) GT (c) FCRN [16] (d) Ours (depth) (e) Ours (surface normal)

Figure 5: Visual comparison on depth prediction with ResNet-50 as backbone architecture. GT stands for “ground truth”.

(a) Image (b) Deep3D [33] (c) Multi-scale CNN [7] (d) SkipNet [3] (e) Ours (f) GT

Figure 6: Visual comparison on surface normal prediction with VGG-16 being the backbone architecture. GT stands for

“ground truth”.

in Table 2. Our GeoNet performs again better than state-

of-the-art methods on 4 out of total 6 evaluation metrics.

It performs comparably on the remaining two. Among all

these methods, SURGE [32] is the only one, which shares

the same objective – that is, jointly predicting depth and

surface normal. It builds CRFs on top of a VGG-16 network.

Using the same backbone network, as summarized in the

table, our GeoNet significantly outperforms it. It is because

our model does not impose special assumptions on surface

shape and underlying geometry.

Visual Comparisons We show visual examples of pre-

dicted depth and surface normal maps. First, in Fig. 5,

we show visual comparisons with state-of-the-art method

FCRN [16] on depth prediction. Our GeoNet generates more

accurate depth maps with regard to the washbasin and small

288



Error Accuracy

mean median rmse 11.25◦ 22.5◦ 30◦

3DP [9] 35.3 31.2 - 16.4 36.6 48.2

3DP (MW) [9] 36.3 19.2 - 39.2 52.9 57.8

UNFOLD [10] 35.2 17.9 - 40.5 54.1 58.9

Discr. [36] 33.5 23.1 - 27.7 49.0 58.7

Multi-scale CNN [7] 23.7 15.5 - 39.2 62.0 71.1

Deep3D [33] 26.9 14.8 - 42.0 61.2 68.2

SkipNet [3] 19.8 12.0 28.2 47.9 70.0 77.8

SURGE [32] 20.6 12.2 - 47.3 68.9 76.6

Baseline 19.4 12.5 27.0 46.0 70.3 78.9

SkipNet [3]+GeoNet 19.7 11.7 28.4 48.8 70.5 78.2

GeoNet 19.0 11.8 26.9 48.4 71.5 79.5

Table 1: Performance of surface normal prediction on NYU

v2 test set. “Baseline” refers to using VGG-16 network with

global pooling to directly predict surface normal from raw

images. “SkipNet [3]+GeoNet” means building GeoNet on

top of the normal result of [3].

Error Accuracy

rmse log 10 rel δ < 1.25 δ < 1.252 δ < 1.253

DepthTransfer [13] 1.214 - 0.349 0.447 0.745 0.897

SemanticDepth [15] - - - 0.542 0.829 0.941

DC-depth [21] 1.06 0.127 0.335 - - -

Global-Depth [37] 1.04 0.122 0.305 0.525).829 0.941

CNN + HCRF [31] 0.907 - 0.215 0.605 0.890 0.970

Multi-scale CNN [7] 0.641 - 0.158 0.769 0.950 0.988

NRF [24] 0.744 0.078 0.187 0.801 0.950 0.986

Local Network [5] 0.620 - 0.149 0.806 0.958 0.987

SURGE [32] 0.643 - 0.156 0.768 0.951 0.989

GCL/RCL [1] 0.802 - - 0.605 0.890 0.970

FCRN [16] 0.790 0.083 0.194 0.629 0.889 0.971

FCRN-ResNet [16] 0.584 0.059 0.136 0.822 0.955 0.971

VGG+Multi-scale CRF [34] 0.655 0.069 0.163 0.706 0.925 0.981

ResNet+Multi-scale CRF [34] 0.586 0.052 0.121 0.811 0.954 0.988

Baseline 0.626 0.068 0.155 0.768 0.951 0.988

GeoNet-VGG 0.608 0.065 0.149 0.786 0.956 0.990

GeoNet-ResNet 0.569 0.057 0.128 0.834 0.960 0.990

Table 2: Performance of depth prediction on NYU v2 test set.

“Baseline” means using VGG-16 to directly predict depth

from raw images. VGG and ResNet are short for VGG-16

and ResNet-50 respectively.

objects on the table in the 2nd and 3rd rows respectively.

We also show the corresponding predictions of surface

normal to verify that our GeoNet takes the advantage of sur-

face normal to improve depth. The usefulness is illustrated

regarding the whiteboard in the 1st row. 3D visualization of

our depth prediction is shown in Fig. 7. The wall region of

our prediction is much smoother than previous state-of-the-

art FRCN [16], manifesting the necessity of incorporating

geometric consistency.

Moreover, we compare results with those of other meth-

ods, including Deep3D [33], Multi-scale CNN [7] and Skip-

Net [3] on surface normal prediction in Fig. 6. GeoNet

actually can produce results with better details on, for ex-

(a) FCRN [16] (b) Our (c) GT

Figure 7: 3D visulization of point cloud with depth from

FCRN [16], our prediction and ground truth. Each row

shows the point cloud observed from one viewpoint.

ample, the chair, washbasin and wall from the 1st, 2nd, 3rd

rows respectively. More results of joint prediction are shown

in Fig. 4. From these figures, it is clear that our GeoNet does

a much better job in terms of geometry estimation compared

with the baseline VGG-16 network, which was not designed

for this task in the first place.

Running-time Comparison We test our GeoNet on a PC

with Intel i7-6950 CPU and a single TitanX GPU. When

taking VGG-16 as the backbone network, our GeoNet ob-

tains both surface normal and depth using 0.87s for an image

with size 480×640. In comparison, Local Network [5] takes

around 24s to predict the depth map of the same-sized image;

SURGE [32]1 also takes a lot of time due to the fact that

it has to go through the forward-pass 10 times on the same

VGG-16 network and it needs the inference of CRFs.

4.2. CNNs and Geometric Conditions

In this section, we verify our motivation through exper-

iments and evaluate if previous CNNs can directly learn a

mapping from depth to surface normal, implicitly following

the geometric relationship.

To this end, we train CNNs, which take ground-truth

depth and surface normal maps as input and supervision

respectively. We tried different architectures, which include

1We do not have exact time without available public code.
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Error Accuracy

mean median rmse 11.25◦ 22.5◦ 30◦

4-layer 39.5 37.6 44.0 6.1 21.4 35.5

7-layer 39.8 38.2 44.3 6.5 21.0 34.2

VGG 47.8 47.3 52.1 2.8 11.8 20.7

LS 11.5 6.4 18.8 70.0 86.7 91.3

D-N 8.2 3.0 15.5 80.0 90.3 93.5

Table 3: Performance evaluation of depth-to-normal on NYU

v2 test set. VGG stands for VGG-16 network. LS means our

least square module. D-N is our depth-to-normal network

without the last 1× 1 convolution layer. Ground-truth depth

maps are used as input.

the first 4 layers of VGG-16, the first 7 layers of VGG-16,

and full VGG-16 network. Before fed it to networks, the

depth map is transformed into a 3-channel image encoding

{x, y, z} coordinates respectively.

We provide the test performance on NYU v2 dataset in

Table 3. All alternatives converge to very poor local minima.

For fair comparison and clear illustration, we provide the test

performance of surface normal predicted by our depth-to-

normal network without combining the initial surface normal

estimation. In particular, since the depth-to-normal network

contains least-square and residual modules, we also show

the surface normal map predicted by the least square module

only, denoting as “LS”. The table reveals that LS module is

already significantly better than the vanilla CNN baselines in

all aspects. Moreover, with the residual module, our depth-

to-normal network accomplishes superior results compared

to using the least-square module alone.

These experiments preliminarily lead us to the following

important findings.

1. Learning a mapping from depth to normal directly via

vanilla CNNs hardly respects the underlying geometric

relationship.

2. Despite its simplicity, the least square module is very

effective in incorporating geometric conditions into neu-

ral networks, thus leading to better performance.

3. Our overall depth-to-normal network further improves

the quality of normal prediction compared to the single

least-square module.

4.3. Geometric Consistency

In this section, we verify if the predictions of depth and

surface normal maps made by our GeoNet are consistent. To

this end, we first pre-trained our depth-to-normal network

without the last 1× 1 convolution layer using ground-truth

depth and surface normal maps and regard it as an accurate

Error Accuracy

mean median rmse 11.25◦ 22.5◦ 30◦

Pred-Baseline 42.2 39.8 48.9 9.8 25.2 35.9

Pred-GeoNet 34.9 31.4 41.4 15.3 35.0 47.7

GT-Baseline 47.8 47.3 52.1 2.8 11.8 20.7

GT-GeoNet 36.8 32.1 44.5 15.0 34.5 46.7

Table 4: Depth-to-normal consistency evaluation on the

NYU v2 test set. “Pred” means that we transform predicted

depth to surface normal and compare it with the predicted

surface normal. “GT” means that we transform predicted

depth to surface normal and compare it with the ground-truth

surface normal. “Baseline” and “GeoNet” indicate that pre-

dictions are from baseline and our model respectively. The

backbone network of baseline is VGG-16.

transformation. Given the predicted depth map, we compute

the transformed surface normal map using the pre-trained

network.

With these preparations, we compare error and accuracy

under the following 4 settings. (1) Metrics between trans-

formed and predicted normal (depth and surface normals

generated by baseline CNNs). (2) Metrics between trans-

formed and predicted normal (depth and surface normals gen-

erated by our GeoNet). (3) Metrics between transformed and

ground-truth normal (depth generated by baseline CNNs).

(4) Metrics between transformed and ground-truth normal

(depth generated by our GeoNet). Here we also use the

VGG-16 network as the baseline CNN.

The results are shown in Table 4. The “Pred” columns

of the table show that our GeoNet can generate predictions

of depth and surface normal more consistent than those of

the baseline CNNs. From the “GT” columns of the table,

it is also obvious that, compared to the baseline CNN, the

predictions yielded from our GeoNet are consistently closer

to the ground truth.

5. Conclusion

In this paper, we propose Geometric Neural Networks

(GeoNet) to jointly predict depth and surface normal from

a single image. Our GeoNet involves depth-to-normal and

normal-to-depth networks. It effectively enforces the geo-

metric conditions that computation should obey regarding

depth and surface normal. They make the final prediction

geometrically consistent and more accurate. Our extensive

experiments show that GeoNet achieves state-of-the-art per-

formance.

In the future, we would like to apply our GeoNet to tasks

with inherent lighting and color constraints, such as intrinsic

image decomposition and 3D reconstruction.
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