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Abstract

We present a semi-parametric approach to photographic

image synthesis from semantic layouts. The approach com-

bines the complementary strengths of parametric and non-

parametric techniques. The nonparametric component is a

memory bank of image segments constructed from a train-

ing set of images. Given a novel semantic layout at test

time, the memory bank is used to retrieve photographic ref-

erences that are provided as source material to a deep net-

work. The synthesis is performed by a deep network that

draws on the provided photographic material. Experiments

on multiple semantic segmentation datasets show that the

presented approach yields considerably more realistic im-

ages than recent purely parametric techniques.

1. Introduction

Zeuxis having painted a child carrying grapes,

the birds came to peck at them; upon which [...]

he expressed himself vexed with his work, and ex-

claimed – “I have surely painted the grapes better

than the child, for if I had fully succeeded in the

last, the birds would have been in fear of it.”

– Pliny the Elder, The Natural History, 79 AD

Photographic image synthesis by deep networks can

open a new route to photorealism: a problem that has tra-

ditionally been approached via explicit manual modeling of

three-dimensional surface layout and reflectance distribu-

tions [24]. A deep network that is capable of synthesizing

photorealistic images given a rough specification could be-

come a new tool in the arsenal of digital artists. It could

also prove useful in the creation of AI systems, by endow-

ing them with a form of visual imagination [19].

Recent progress in photographic image synthesis has

been driven by parametric models – deep networks that rep-

resent all data concerning photographic appearance in their

weights [11, 2]. This is in contrast to the practices of human

photorealistic painters, who do not draw purely on memory

but use external references as source material for reproduc-

ing detailed object appearance [17]. It is also in contrast to

earlier work on image synthesis, which was based on non-

parametric techniques that could draw on large datasets of

images at test time [7, 15, 3, 13, 10]. In switching from

nonparametric approaches to parametric ones, the research

community gained the advantages of end-to-end training of

highly expressive models. But it relinquished the ability to

draw on large databases of original photographic content at

test time: a strength of earlier nonparametric techniques.

In this paper, we present a semi-parametric approach to

photographic image synthesis from semantic layouts. The

presented approach exemplifies a general family of meth-

ods that we call semi-parametric image synthesis (SIMS).

Semi-parametric synthesis combines the complementary

strengths of parametric and nonparametric techniques. In

the presented approach, the nonparametric component is

a database of segments drawn from a training set of pho-

tographs with corresponding semantic layouts. At test time,

given a novel semantic layout, the system retrieves compat-

ible segments from the database. These segments are used

as raw material for synthesis. They are composited onto a

canvas with the aid of deep networks that align the segments

to the input layout and resolve occlusion relationships. The

canvas is then processed by a deep network that produces a

photographic image as output.

We conduct experiments on the Cityscapes, NYU, and

ADE20K datasets. The experimental results indicate that

images produced by SIMS are considerably more realis-

tic than the output of purely parametric models for photo-

graphic image synthesis from semantic layouts.

2. Related Work

Recent work on conditional image synthesis is predom-

inantly based on parametric models [26, 34, 32, 25, 6, 21,

22, 8, 11, 2, 37]. Most related to ours are the works of Isola

et al. [11] and Chen and Koltun [2]. Isola et al. propose

a general framework for image-to-image translation based

on adversarial training. This approach can be applied to

synthesize images from semantic layouts. Chen and Koltun

propose a direct approach to synthesizing high-resolution

images conditioned on semantic layouts. Their method does

not rely on adversarial training, but rather trains a convolu-

tional network directly with a perceptual loss. Our approach
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Figure 1. Comparison to the approach of Chen and Koltun [2] on coarse semantic layouts from the Cityscapes dataset. Zoom in for details.

differs from all of these in that a memory bank of object seg-

ments is utilized at test time as source material for synthesis.

Synthesis is performed by a deep network, but is based on

exemplars of object appearance retrieved from the memory

bank. Figure 1 provides a qualitative comparison.

Nonparametric methods for image synthesis have a long

history and were dominant before the ascendance of purely

parametric techniques. Hays and Efros [7] used a collection

of images as source material for image completion. At test

time, similar images are retrieved via descriptor matching

and are used to inpaint missing regions. Lalonde et al. [15]

developed an interactive system that retrieves object seg-

ments from a large library of images. The retrieved seg-

ments are interactively composited onto an image. Chen

et al. [3] described a system that synthesized an image

from a freehand sketch with associated text labels. Given

a sketch and associated text, their system retrieves relevant

images from the Web, segments them, and composes an out-

put image with interactive assistance by the user. Johnson

et al. [13] described a related system for post-processing

computer-generated images. Isola and Liu [10] presented

an analysis-by-synthesis approach that retrieves object seg-

ments that match a query image and combines these seg-

ments to form a “scene collage” that explains the query. Our

research is inspired by this line of work and aims to rein-

troduce these earlier ideas into the current stream of image

synthesis research. Unlike the earlier work, our approach

combines nonparametric use of a database of image seg-

ments with deep parametric models that assist composition

and perform synthesis based on the retrieved material.

Zhu et al. [40] train a convolutional network to predict

the realism of image composites. (See also the earlier work

of Lalonde and Efros [14] and Xue et al. [33].) Tsai et

al. [31] train a convolutional network to harmonize the ap-

pearance of image composites. In these works, the com-

posites were assumed to be given, typically generated inter-

actively by a human user. In contrast, our work develops

a complete automatic pipeline for semi-parametric image

synthesis from semantic layouts.
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Figure 2. First stage of the image synthesis pipeline. (a) Given a semantic layout L, the external memory M is queried to retrieve compatible

segments (b), which are aligned to the input layout by a spatial transformer network (c,d). An ordering network (e) assists the composition

of the canvas C (f). The synthesis process continues as illustrated in Figure 3.

3. Overview

Our goal is to synthesize a photorealistic image based

on a semantic layout L ∈ {0, 1}h×w×c, where h×w is the

image size and c is the number of semantic classes. Our

model is trained on a set of paired color images and corre-

sponding semantic layouts. This set is used to generate a

memory bank M of image segments from different seman-

tic categories. Segments are extracted from training images

by taking connected components in corresponding semantic

layouts. Each segment Pi in M is a segment from a training

color image, associated with a semantic class. A number of

segments are shown in Figure 2(a,b).

At test time, we are given a semantic label map L that

was not seen during training. This label map is decom-

posed into connected components {Li}. For each con-

nected component, we retrieve a compatible segment from

M based on shape, location, and context (Figure 2(b)).

This retrieved segment is aligned to Li by a spatial trans-

former network trained for this purpose [12] (Figure 2(c,d)).

The transformed segments are composited onto a canvas

C ∈ R
w×h×3 (Figure 2(f)). Since the segments may not

align perfectly with the masks {Li}, they may overlap. Rel-

ative front-back order is determined by an ordering network

(Figure 2(e)). Boundaries of retrieved segments are deliber-

ately elided. The composition of the canvas C is described

in detail in Section 4.

The canvas C and the input layout L are used as input to

a synthesis network f . This network synthesizes the final

output image and is illustrated in Figure 3. It inpaints miss-

ing regions, harmonizes retrieved segments, blends bound-

aries, synthesizes shadows, and otherwise adjusts and syn-

thesizes photographic appearance based on the raw material

in the canvas C and the target layout L. The architecture

and training of the network f are described in Section 5.

To apply the presented approach to coarse input layouts,

such as ones shown in Figure 1, we train a cascaded re-

finement network to convert coarse incomplete layouts to

dense pixelwise layouts [2]. The network is trained on pairs

of coarse and fine semantic layouts. At test time, given a

coarse incomplete layout, the trained network synthesizes a

dense semantic layout, which is then provided to the pre-

sented image synthesis pipeline.

4. External Memory

4.1. Representation

The memory bank M is a set of image segments {Pi}
extracted from the training data. Each segment corresponds

to a maximal connected component in the semantic la-

bel map of one of the training images. A segment Pi

is associated with a tuple (P color
i , Pmask

i , P cont
i ), where

P color
i ∈ R

h×w×3 is a color image that contains the seg-

ment (other pixels are zeroed out), Pmask
i ∈ {0, 1}

h×w×c

is a binary mask that specifies the segment’s footprint, and

P cont
i ∈ {0, 1}

h×w×c
is a semantic map representing the

semantic context around Pi within a bounding box, ob-

tained from the semantic label map that originally contained

the segment. The bounding box that encloses the context re-

gion is obtained by computing the bounding box of P color
i

and enlarging it by 25% in each dimension.

4.2. Retrieval

Given a novel semantic layout L at test time, we com-

pute Lmask
j and Lcont

j for each semantic segment Lj , by

analogy with the definitions provided in Section 4.1. Then

for each segment Lj in the test image L, we select the most

compatible segment Pσ(j) in M based on a similarity score:

σ(j) = argmax
i

IoU(Pmask
i , Lmask

j ) + IoU(P cont
i , Lcont

j ),
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Figure 3. The target semantic layout L and the canvas C are given to a network f , which synthesizes the output image.

where IoU is the intersection-over-union score, and i iter-

ates over segments in M that have the same semantic class

as Lj . The first term (mask IoU) measures the overlap of

the segment shapes. The second term (context IoU) mea-

sures the similarity of the surrounding semantic layout. The

use of semantic context helps retrieve compatible segments

when surrounding context affects appearance.

4.3. Transformation

The transformation network T is designed to transform

the selected object segment Pσ(j) to match Lj via trans-

lation, rotation, scaling, and clipping. The transformation

aims to align Pσ(j) to Lj while preserving the integrity

of the object’s appearance. T (L,Lmask
j , P color

σ(j) ) takes L,

Lmask
j , and P color

σ(j) as input and produces a transformed

image P̃σ(j) by applying a 2D affine transformation to

P color
σ(j) [12]. We use a deep network rather than an analyti-

cal approach because a network can learn to preserve prop-

erties such as symmetry and upright orientation as needed,

without hard-coding such properties as rules.

To train the network T , we need to generate segment

pairs that will simulate the inconsistencies in shape, scale,

and location that T encounters at test time. For this rea-

son, simply training T to transform P color
i to match Pmask

i ,

for segments Pi ∈ M, does not work: the requisite trans-

formation is trivial. We therefore simulate misalignments

by applying random affine transformations and cropping to

P color
i . Let P̂ color

i be the image produced by such trans-

formation. The network T is trained to align P̂ color
i with

Pmask
i . The training loss for T is

LT (θ
T ) =

∑

Pi∈M

∥

∥P color
i − T (P, Pmask

i , P̂ color
i ; θT )

∥

∥

1
.

This loss is defined over the color images rather than the

mask because information in the color image is more spe-

cific and better constrains the transformation.

4.4. Canvas

After selecting and transforming object segments for the

semantic layout L, we composite these segments onto a sin-

gle canvas image. Let P̃σ(j) be the transformed segment for

Lj . If all pairs (P̃σ(i), P̃σ(j)) are disjoint, the canvas com-

position is trivial. If P̃σ(i) and P̃σ(j) overlap, we need to

determine their order, since one of them will occlude the

other. For example, when a building segment overlaps a

sky segment, the sky segment should be occluded.

We train an ordering network to determine the front-back

ordering of adjacent object segments. The architecture of

the ordering network is based on VGG-19 [30]. Its output

is a c-dimensional one-hot vector that indicates the semantic

label of the segment that should be in front. When two seg-

ments overlap, we query the ordering network to determine

their front-back order on the canvas C.

To train the network, we use the relative depth of ad-

jacent semantic segments in the training set. This relative

depth can be estimated from depth or stereo data provided

with some datasets, such as Cityscapes and NYU [5, 29].

For datasets without such auxiliary information, such as

ADE20K [39], we generate approximate depth maps using

a network trained for this purpose [4]. The approximate

depth maps are used to determine the relative depth order

of adjacent segments in the training data, which are in turn

used to train the ordering network. The ordering network is

trained with a cross-entropy loss.

The boundaries of segments in the canvas are elided as

described in Section 5.2.

5. Image Synthesis

The image synthesis network f takes as input the seman-

tic layout L, the canvas C, and a binary mask that indicates

missing pixels in the canvas. The canvas C provides raw

material for synthesis, but is inadequate in itself: regions
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(a) Training image I (b) Object segment Pj (c) Retrieved segment (d) Mask of (c)

(e) Segment Pj after stenciling (f) Color transfer (g) Boundary elision (h) Training canvas C′

Figure 4. Generation of a simulated canvas during training. (a) Training image I . (b) Object segment Pj extracted from the training image.

(c) A corresponding segment retrieved from a different image in the training set. (d) Mask of the retrieved segment, used to stencil Pj .

(e) The segment Pj is stenciled with the mask of the retrieved segment. (f) Color transfer is applied to further modify the appearance of

Pj . (g) Boundaries are elided to force the synthesis network to learn to synthesize content near boundaries. (h) A complete canvas C′

generated from image I for training the synthesis network.

are typically missing, different segments are inconsistently

illuminated and color-balanced, and a variety of boundary

artifacts are apparent. Missing regions could be filled using

an inpainting network [23, 35, 9], but this does not address

other artifacts that are present in the canvas. We therefore

design and train a dedicated network that takes both the can-

vas and the target semantic layout into account.

5.1. Network architecture

The architecture of the synthesis network f is shown

in Figure 3. The network has an encoder-decoder struc-

ture with skip connections. The encoder constructs a multi-

scale representation of the input (C,L). The decoder uses

this representation to synthesize progressively finer feature

maps, culminating in full-resolution output.

Encoder. Our encoder is based on VGG-19 [30]. The input

is a tensor that collates L and C. The network consists of

five modules. Each module contains a number of convolu-

tional layers [16] with layer normalization [1], ReLU [20],

and average pooling. The first module has two convolu-

tional layers, while each of the other modules have three.

Each element in the encoder’s output tensor has a recep-

tive field of approximately 276×276. The encoder can thus

capture long-range correlations that can help the decoder

harmonize color, lighting, and texture.

Decoder. Our decoder is based on the cascaded refinement

network (CRN) [2]. The network is a cascade of refinement

modules. The input to each module is a concatenation of

feature maps produced at the corresponding resolution by

the encoder, feature maps produced by the preceding refine-

ment module (if any), the canvas C (appropriately resized),

and the semantic layout L (resized). Each refinement mod-

ule contains two convolutional layers with layer normaliza-

tion and Leaky ReLU [18].

5.2. Training

The image synthesis network f is trained using simu-

lated canvases that are generated to mimic artifacts that are

encountered at test time. Given a semantic layout L and a

corresponding color image I from the training set, we gen-

erate a simulated canvas C ′ by applying stenciling, color

transfer, and boundary elision to segments in (I, L). The

network f is trained to take the pair (C ′, L) and recover

the original image I . Following [2], the network is trained

using a perceptual loss based on feature activations in a pre-

trained VGG-19 network [30]. The loss is

Lf (θ
f ) =

∑

(I,L)∈D

∑

l

λl‖Φl(I)− Φl(f(C
′, L); θf )‖1,

where Φl is the feature tensor in layer l, and the weights

{λl} balance the terms. We use ‘conv1 2’, ‘conv2 2’,

‘conv3 2’, ‘conv4 2’, and ‘conv5 2’ layers in the loss.

We now review the generation of the simulated canvas

C ′, organized into a number of steps.

Stenciling. It is inevitable that the test-time canvas C

will contain missing regions. Thus the network f must

be trained on simulated canvases with realistic missing re-

gions. We simulate missing regions by stenciling each seg-

ment in (I, L) using a mask obtained from a different seg-

ment in the dataset. Specifically, for each segment Pj , we

use the retrieval procedure described in Section 4.2 to re-

trieve a segment from a different image in the training set.

The mask of that segment is then used to stencil Pj . This is

illustrated in Figure 4 (b-e).

Color transfer. At test time, different segments compos-

ited onto the canvas will generally have inconsistent tone

and illumination. To simulate these artifacts in the training

canvas C ′, we select 20% of the segments at random and
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Cityscapes-coarse Cityscapes-fine Cityscapes→GTA5 NYU ADE20K Mean

SIMS > Pix2pix [11] 94.2% 98.1% 95.7% 94.9% 87.6% 94.1%

SIMS > CRN [2] 93.9% 74.1% 84.5% 89.1% 88.9% 86.1%

Table 1. Results of blind randomized A/B tests. Each entry reports the percentage of comparisons in which an image synthesized by our

approach (SIMS) was judged more realistic than a corresponding image synthesized by Pix2pix [11] or the CRN [2]. Chance is at 50%.

apply color transfer [27]. Specifically, to modify the color

distribution of a segment Pj in C ′, we randomly retrieve a

segment Pi with the same semantic class from M and trans-

fer the color distribution from Pi to Pj . This is illustrated

in Figure 4(f).

Boundary elision. The network f should also be trained

to naturally blend object boundaries. To encourage this, we

randomly mask out 80% of pixels within a distance of 0.05h
from a segment boundary. These are replaced by white pix-

els. The network is thus forced to learn to synthesize con-

tent near boundaries. This masking of interior boundary

regions is illustrated in Figure 4(g).

Furthermore, inconsistencies along boundaries arise not

only inside segments, but also outside. Consider a car com-

posited onto a road. A typical salient artifact is the absence

of shadow beneath the car. To encourage the network to

learn to synthesize such shadows and other near-range inter-

object effects, we also mask out pixels in C ′ that lie out-

side an object segment within a distance of 0.05h from its

boundary. These are replaced by black pixels. The network

f is forced to inpaint these exterior regions.

The same interior and exterior boundary elision steps are

also applied at test time.

6. Experiments

Datasets. We conduct experiments on three semantic

segmentation datasets: Cityscapes [5], NYU [29], and

ADE20K [39]. The Cityscapes dataset contains images of

urban street scenes. It provides 3K images with fine pixel-

wise annotations and 20K images with coarse incomplete

annotations for training. We train models separately for

the fine and coarse regimes, and test on the 500 images

in the validation set, which have both fine and coarse la-

bel maps. For the NYU dataset, we train on the first 1200

images and test on the remaining 249 images in the dataset.

For ADE20K, we use outdoor images from the dataset; this

yields 10K images for training and 1K images for testing.

Perceptual experiments. We adopt the experimental pro-

tocol of Chen and Koltun [2]. The protocol is based on

large batches of blind randomized A/B tests deployed on

the Amazon Mechanical Turk platform. We compare the

presented approach to Pix2pix [11] and the CRN [2].

Table 1 reports the results. Each entry in the ta-

ble reports the percentage of comparisons in which an

image synthesized by our approach (SIMS) was judged

more realistic than a corresponding image synthesized by

Pix2pix or the CRN. Models trained on Cityscapes are

tested in three conditions: ‘Cityscapes-coarse’ for models

trained and tested on coarse input layouts, ‘Cityscapes-fine’

for models trained and tested on fine input layouts, and

Cityscapes→GTA5 for models trained on fine Cityscapes

layouts and then applied to semantic label maps from the

GTA5 dataset [28]. (We use the 6K semantic layouts in the

GTA5 validation set.) Note that chance is at 50%.

In all conditions, the presented approach outperforms the

baselines. Across the five datasets, images synthesized by

our approach were rated more realistic than images synthe-

sized by Pix2pix and the CRN in 94% and 86% of compar-

isons, respectively.

We have also conducted time-limited pairwise compar-

isons, again following the protocol of Chen and Koltun [2].

The results are reported in Figure 6. Here each compari-

son pairs an image synthesized by one of the approaches

versus the real reference image for the same semantic lay-

out. In this case 50% is the equivalent of passing the vi-

sual Turing test. While none of the approaches achieves

this, images synthesized by SIMS are more frequently mis-

taken for real ones. For example, after 1 second, the pref-

erence rate for SIMS>Real in the Cityscapes-coarse con-

dition is 25.2%, versus 4.0% for CRN>Real and 3.8% for

Pix2pix>Real. After 1 second in the Cityscapes-fine con-

dition, the preference rate for SIMS>Real is 27.8%, versus

15.2% for CRN>Real and 1.9% for Pix2pix>Real.

Semantic segmentation accuracy. Next we analyze the

realism of synthesized images using a different protocol.

Given a semantic layout L, we use one of the evaluated

approaches to synthesize an image I . This image is then

given as input to a pretrained semantic segmentation net-

work. (We use the PSPNet [38].) This network produces a

semantic layout L̂ as output. We then compare L̂ to the orig-

inal layout L. In principle, the closer these are, the more re-

alistic the intermediate synthesized image I can be assumed

to be [11]. We evaluate the similarity of L and L̂ using two

measures: intersection over union (IoU) and overall pixel

accuracy. These measures are averaged over all images in

the test set of each dataset.

The results are reported in Table 2. Images synthe-

sized by our approach can be more accurately parsed by the

PSPNet than images synthesized by Pix2pix or the CRN.

The differences on Cityscapes-coarse and ADE20K are dra-

8813



Cityscapes-coarse Cityscapes-fine ADE20K

IoU Accuracy IoU Accuracy IoU Accuracy

Reference 84.0% 90.1% 71.7 % 81.6% 37.9% 48.5%

Pix2pix [11] 30.1% 34.2% 31.0% 37.9% 16.1% 26.6%

CRN [2] 28.5% 36.2% 51.3% 61.4% 23.1% 30.7%

SIMS 56.3% 65.6% 51.4% 65.5% 38.4% 50.1%

Table 2. Images synthesized by different approaches are given to a pretrained semantic segmentation network (PSPNet [38]). Its output

is compared to the semantic layout that was used as input for image synthesis. IoU and pixel accuracy are averaged across each dataset.

Higher is better. ‘Reference’ is the value achieved by using the real images as input to the PSPNet.
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Figure 5. Mean power spectra over the ADE20K dataset. Magnitude is on a logarithmic scale. We compare the mean power spectra of

images synthesized by Pix2pix, CRN, and SIMS to the mean power spectrum of real images from the ADE20K test set. The mean power

spectrum of images synthesized by SIMS is virtually indistinguishable from the mean power spectrum of real images, while the mean

power spectra of images synthesized by Pix2pix and the CRN are characterized by spurious spikes. Zoom in for details.
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Figure 6. Time-limited pairwise comparisons versus real images.

50% is the equivalent of passing the visual Turing test.

matic. Note that this experimental procedure also evaluates

conformance with the input semantic layout: if the image

synthesized by an approach is realistic but does not conform

to the input layout, it will be penalized by this protocol.

Image statistics. We now analyze the realism of synthe-

sized images in terms of low-level image statistics. We

consider the mean power spectrum of synthesized images

across a given dataset, versus corresponding real images

from the dataset [36]. Figure 5 shows the mean power spec-

tra of images synthesized by Pix2pix, CRN, and SIMS, av-

eraged across the ADE20K dataset. The mean power spec-

trum of real ADE20K images is shown for reference. As

can be seen in the figure, the mean power spectrum of im-

ages synthesized by our approach is virtually indistinguish-

able from the mean power spectrum of real images. In

contrast, the mean power spectra of images synthesized by

Pix2pix and CRN are clearly spiky, with many spurious lo-

cal maxima that are not present in real images.

Qualitative results. Figure 7 shows a number of images

synthesized by Pix2pix, CRN, and SIMS, trained on the

Cityscapes dataset. Results are shown in the three condi-

tions summarized earlier: Cityscapes-coarse, Cityscapes-

fine, and Cityscapes→GTA5. Figure 8 shows examples

of synthesized images for the NYU and ADE20K datasets.

Additional results are provided in the supplement.

Diversity. The presented approach can be easily extended

to synthesize a diverse collection of images. To this end, the

retrieval stage described in Section 4.2 can be modified to

retrieve not a single segment that maximizes the presented

score, but a random segment among the top k segments that

maximize the score across the dataset. The retrieved seg-

ment for each semantic region Lj can be randomized in this

fashion. Given an input layout, the synthesis process can be

repeated to synthesize as many corresponding images as de-

sired. Results of this process are shown in the supplement.

7. Conclusion

We have presented a semi-parametric approach to pho-

tographic image synthesis from semantic layouts. Experi-

ments demonstrate that the presented approach (SIMS) pro-

duces considerably more realistic images than recent purely

parametric techniques. Note that the quality of SIMS is in
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Figure 7. Images synthesized by Pix2pix, CRN, and SIMS. This figure shows results produced by models trained on the Cityscapes dataset.
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Figure 8. Images synthesized by models trained on the NYU and ADE20K datasets.

a sense lower-bounded by the performance of parametric

methods: if the memory bank is not useful, the network f

can simply ignore the canvas and perform parametric syn-

thesis based on the input semantic layout.

Many interesting problems are left open for future work.

First, our implementation is significantly slower than purely

parametric methods; more efficient data structures and algo-

rithms should be explored. Second, other forms of input can

be used, such as semantic instance segmentation or textual

descriptions. Third, the presented pipeline is not trained

end-to-end. Lastly, applying semi-parametric techniques to

video synthesis is an exciting frontier.
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