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Abstract

In this paper, we are interested in the few-shot learning

problem. In particular, we focus on a challenging scenario

where the number of categories is large and the number of

examples per novel category is very limited, e.g. 1, 2, or 3.

Motivated by the close relationship between the parameters

and the activations in a neural network associated with the

same category, we propose a novel method that can adapt

a pre-trained neural network to novel categories by directly

predicting the parameters from the activations. Zero train-

ing is required in adaptation to novel categories, and fast

inference is realized by a single forward pass. We evaluate

our method by doing few-shot image recognition on the Im-

ageNet dataset, which achieves the state-of-the-art classifi-

cation accuracy on novel categories by a significant margin

while keeping comparable performance on the large-scale

categories. We also test our method on the MiniImageNet

dataset and it strongly outperforms the previous state-of-

the-art methods.

1. Introduction

Recent years have witnessed rapid advances in deep

learning [20], with a particular example being visual recog-

nition [11, 16, 28] on large-scale image datasets, e.g., Im-

ageNet [27]. Despite their great performances on bench-

mark datasets, the machines exhibit clear difference with

people in the way they learn concepts. Deep learning meth-

ods typically require huge amounts of supervised training

data per concept, and the learning process could take days

using specialized hardware, i.e. GPUs. In contrast, children

are known to be able to learn novel visual concepts almost

effortlessly with a few examples after they have accumu-

lated enough past knowledge [2]. This phenomenon moti-

vates computer vision research on the problem of few-shot

learning, i.e., the task to learn novel concepts from only a

few examples for each category [7, 18].

Formally, in the few-shot learning problem [14, 24, 29],

we are provided with a large-scale set Dlarge with categories

Clarge and a few-shot set Dfew with categories Cfew that do not

overlap with Clarge. Dlarge has sufficient training samples for

each category whereas Dfew has only a few examples (< 6
in this paper). The goal is to achieve good classification

performances, either on Dfew or on both Dfew and Dlarge.

We argue that a good classifier should have the following

properties: (1) It achieves reasonable performance on Cfew.

(2) Adapting to Cfew does not degrade the performance on

Clarge significantly (if any). (3) It is fast in inference and

adapts to few-shot categories with little or zero training, i.e.,

an efficient lifelong learning system [3, 4].

Both parametric and non-parametric methods have been

proposed for the few-shot learning problem. However, due

to the limited number of samples in Dfew and the imbal-

ance between Dlarge and Dfew, parametric models usually

fail to learn well from the training samples [24]. On the

other hand, many non-parametric approaches such as near-

est neighbors can adapt to the novel concepts easily without

severely forgetting the original classes. But this requires

careful designs of the distance metrics [1], which can be

difficult and sometimes empirical. To remedy this, some

previous work instead adapts feature representation to the

metrics by using siamese networks [14, 22]. As we will

show later through experiments, these methods do not fully

satisfy the properties mentioned above.
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Figure 1: Illustration of pre-training on Dlarge (black) and

few-shot novel category adaptation to Dfew (green). The

green circles are the novel categories, and the green lines

represent the unknown parameters for categories in Cfew.

In this paper, we present an approach that meets the de-

sired properties well. Our method starts with a pre-trained

deep neural network on Dlarge. The final classification layers
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Figure 2: Our motivation: t-SNE [23] results on the average activations āy of each category before the fully connected layer

of a 50-layer ResNet [11] pre-trained on Dlarge from ImageNet [27] (left) and the parameters wy of each category in the last

fully connected layer (right). Each point represents a category. Highlighted points with the same color and shape correspond

to the same category. Circles are mammals, triangles are birds, diamonds are buses, and squares are home appliances.

(the fully connected layer and the softmax layer) are shown

in Figure 1. We use wy ∈ R
n to denote the parameters for

category y in the fully connected layer, and use a(x) ∈ R
n

to denote the activations before the fully connected layer

of an image x. Training on Dlarge is standard; the real

challenge is how to re-parameterize the last fully connected

layer to include the novel categories under the few-shot con-

straints, i.e., for each category in Cfew we have only a few

examples. Our proposed method addresses this challenge

by directly predicting the parameters wy (in the fully con-

nected layer) using the activations belonging to that cate-

gory, i.e. Ay = {a(x)|x ∈ Dlarge ∪Dfew, Y (x) = y}, where

Y (·) denotes the category of the image.

This parameter predictor stems from the tight relation-

ship between the parameters and activations. Intuitively in

the last fully connected layer, we want wy · ay to be large,

for all ay ∈ Ay . Let āy ∈ R
n be the mean of the activa-

tions in Ay . Since it is known that the activations of images

in the same category are spatially clustered together [5], a

reasonable choice of wy is to align with āy in order to max-

imize the inner product, and this argument holds true for all

y. To verify this intuition, we use t-SNE [23] to visualize

the neighbor embeddings of the activation statistic āy and

the parameters wy for each category of a pre-trained deep

neural network, as shown in Figure 2. Comparing them and

we observe a high similarity in both the local and the global

structures. More importantly, the semantic structures [13]

are also preserved in both activations and parameters, indi-

cating a promising generalizability to unseen categories.

These results suggest the existence of a category-

agnostic mapping from the activations to the parameters

given a good feature extractor a(·). In our work, we pa-

rameterize this mapping with a feedforward network that is

learned by back-propagation. This mapping, once learned,

is used to predict parameters for both Cfew and Clarge.

We evaluate our method on two datasets. The first one

is MiniImageNet [29], a simplified subset of ImageNet

ILSVRC 2015 [27], in which Clarge has 80 categories and

Cfew has 20 categories. Each category has 600 images of

size 84× 84. This small dataset is the benchmark for natu-

ral images that the previous few-shot learning methods are

evaluated on. However, this benchmark only reports the

performances on Dfew, and the accuracy is evaluated un-

der 5-way test, i.e., to predict the correct category from

only 5 category candidates. In this paper, we will take a

step forward by evaluating our method on the full ILSVRC

2015 [27], which has 1000 categories. We split the cate-

gories into two sets where Clarge has 900 and Cfew has the rest

100. The methods will be evaluated under 1000-way test

on both Dlarge and Dfew. This is a setting that is consider-

ably larger than what has been experimented in the few-shot

learning before. We compare our method with the previous

work and show state-of-the-art performances.

The rest of the paper is organized as follows: §2 defines

and explains our model, §3 presents the related work, §4

shows the experimental results, and §5 concludes the paper.

2. Model

The key component of our approach is the category-

agnostic parameter predictor φ : āy → wy (Figure 3). More

generally, we could allow the input to φ to be a statistic rep-

resenting the activations of category y. Note that we use

the same mapping function for all categories y ∈ Clarge, be-

cause we believe the activations and the parameters have

similar local and global structure in their respective space.

Once this mapping has been learned on Dlarge, because of

this structure-preserving property, we expect it to general-

ize to categories in Cfew.
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Figure 3: Building the fully connected layer by parameter prediction from activation statistics.

2.1. Learning Parameter Predictor

Since our final goal is to do classification, we learn φ

from the classification supervision. Specifically, we can

learn φ from Dlarge by minimizing the classification loss

(with a regularizer ||φ||) defined by

L(φ) =
∑

(y,x)∈Dlarge






−φ (āy)a(x) + log

∑

y′
∈Clarge

e
φ
(

āy′

)

a(x)






+ λ||φ||

(1)

Eq. 1 models the parameter prediction for categories

y ∈ Clarge. However, for the few-shot set Cfew, each cate-

gory only has a few activations, whose mean value is the

activation itself when each category has only one sample.

To model this few-shot setting in the large-scale training

on Dlarge, we allow both the individual activations and the

mean activation to represent a category. Concretely, let

sy ∈ Ay ∪ āy be a statistic for category y. Let Slarge denote

a statistic set {s1, ..., s|Clarge|} with one for each category in

Clarge. We sample activations sy for each category y from

Ay ∪ āy with a probability pmean to use āy and 1− pmean to

sample uniformly from Ay . Now, we learn φ to minimize

the loss defined by

L(φ) =
∑

(y,x)∈Dlarge

ESlarge






−φ (sy)a(x) + log

∑

y′
∈Clarge

e
φ
(

sy′

)

a(x)






+ λ||φ||

(2)

2.2. Inference

During inference we include Cfew, which calls for a

statistic set for all categories S = {s1, ..., s|C|}, where

C = Clarge ∪ Cfew. Each statistic set S can generate a set of

parameters {φ(s1), ..., φ(s|C|)} that can be used for build-

ing a classifier on C. Since we have more than one possible

set S from the dataset D = Dlarge ∪ Dfew, we can do classi-

fication based on all the possible S. Formally, we compute

the probability of x being in category y by

P (y|x) = eES [φ(sy)a(x)]/





∑

y′∈C

e
ES

[

φ(sy′ )a(x)
]



 (3)

However, classifying images with the above equation is

time-consuming since it computes the expectations over the

entire space of S which is exponentially large. We show in

the following that if we assume φ to be a linear mapping,

then this expectation can be computed efficiently.

In the linear case φ is a matrix Φ. The predicted param-

eter for category y is

ŵy = Φ · sy (4)

The inner product of x before the softmax function for cat-

egory y is

h(sy ,a(x)) = ŵy · a(x) = Φ · sy · a(x) (5)

If a(x) and sy are normalized, then by setting Φ as the iden-

tity matrix, h(sy,a(x)) is equivalent to the cosine similar-

ity between sy and a(x). Essentially, by learning Φ, we

are learning a more general similarity metric on the activa-

tions a(x) by capturing correlations between different di-

mensions of the activations. We will show more compar-

isons between the learned Φ and identity matrix in §4.1.

Because of the linearity of φ, the probability of x being

in category y simplifies to

P (y|x) = ea(x)·φ(ES [sy])/





∑

y′∈C

e
a(x)·φ(ES

[

sy′

]

)





= ea(x)·Φ·ES [sy ]/





∑

y′∈C

e
a(x)·Φ·ES

[

sy′

]





(6)

Now ES [sy] can be pre-computed which is efficient. Adapt-

ing to novel categories only requires updating the corre-

sponding ES [sy]. Although it is ideal to keep the linearity

of φ to reduce the amount of computation, introducing non-

linearity could potentially improve the performance. To

keep the efficiency, we still push in the expectation and ap-

proximate Eq. 3 as in Eq. 6.

When adding categories y ∈ Cfew, the estimate of ES [sy]
may not be reliable since the number of samples is small.

Besides, Eq. 2 models the sampling from one-shot and

mean activations. Therefore, we take a mixed strategy for
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Figure 4: Illustration of the novel category adaption (a) and the training strategies for parameter predictor φ (b). (b): red and

solid arrows show the feedforward data flow, while blue and dashed arrow shows the backward gradient flow.

parameter prediction, i.e., we use ES [sy] to predict parame-

ters for category y ∈ Clarge, but for Cfew we treat each sam-

ple as a newly added category, as shown in Figure 4a. For

each novel category in Cfew, we compute the maximal re-

sponse of the activation of the test image to the parameter

set predicted from each activation in the statistic set of the

corresponding novel category in Cfew. We use them as the

inputs to the SoftMax layer to compute the probabilities.

2.3. Training Strategy

The objective of training is to find φ that minimizes

Eq. 2. There are many methods to do this. We approach

this by using stochastic gradient decent with weight decay

and momentum. Figure 4b demonstrates the training strat-

egy of the parameter predictor φ. We train φ on Dlarge with

categories Clarge. For each batch of the training data, we

sample |Clarge| statistics sy from Ay ∪ āy to build a statistic

set S with one for each category y in Clarge. Next, we sam-

ple a training activation set T from Dlarge with one for each

category in Clarge. In total, we sample 2|Clarge| activations.

The activations in the statistic sets are fed to φ to generate

parameters for the fully connected layer. With the predicted

parameters for each category in Clarge, the training activation

set then is used to evaluate their effectiveness by classifying

the training activations. At last, we compute the classifica-

tion loss with respect to the ground truth, based on which

we calculate the gradients and back-propagate them in the

path shown in Figure 4b. After the gradient flow passes

through φ, we update φ according to the gradients.

2.4. Implementation Details

Full ImageNet Dataset Our major experiments are con-

ducted on ILSVRC 2015 [27]. ILSVRC 2015 is a large-

scale image dataset with 1000 categories, each of which

has about 1300 images for training, and 50 images for val-

idation. For the purpose of studying both the large-scale

and the few-shot settings at the same time, ILSVRC 2015

is split to two sets by the categories. The training data from

900 categories are collected into Dlarge, while the rest 100
categories are gathered as set Dfew.

We first train a 50-layer ResNet [11] on Dlarge. We use

the outputs of the global average pooling layer as the ac-

tivation a(x) of an image x. For efficiency, we compute

the activation a(x) for each image x before the experiments

as well as the mean activations āy . Following the training

strategy shown in §2.3, for each batch, we sample 900 acti-

vations as the statistic set and 900 activations as the training

activation set. We compute the parameters using the statistic

set, and copy the parameters into the fully connected layer.

Then, we feed the training activations into the fully con-

nected layer, calculate the loss and back-propagate the gra-

dients. Next, we redirect the gradient flow into φ. Finally,

we update φ using stochastic gradient descent. The learning

rate is set to 0.001. The weight decay is set to 0.0005 and

the momentum is set to 0.9. We train φ on Dlarge for 300
epochs, each of which has 250 batches. pmean is set to 0.9.

For the parameter predictor, we implement three differ-

ent φ: φ1, φ2 and φ2∗. φ1 is a one-layer fully connected

model. φ2 is defined as a sequential network with two fully

connected layers in which each maps from 2048 dimen-

sional features to 2048 dimensional features and the first

one is followed by a ReLU non-linearity layer [25]. The

final outputs are normalized to unity in order to speed up

training and ensure generalizability. By introducing non-

linearity, we observe slight improvements on the accuracies

for both Clarge and Cfew. To demonstrate the effect of mini-

mizing Eq. 2 instead of Eq. 1, we train another φ2∗ which

has the same architecture with φ2 but minimizes Eq. 1. As

we will show later through experiments, φ2∗ has strong bias

towards Clarge.

MiniImageNet Dataset For comparison purposes, we

also test our method on MiniImageNet dataset [29], a sim-

plified subset of ILSVRC 2015. This dataset has 80 cate-

gories for Dlarge and 20 categories for Dfew. Each category

has 600 images. Each image is of size 84 × 84. For the
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fairness of comparisons, we train two convolutional neural

networks to get the activation functions a(·). The first one

is the same as that of Matching Network [29], and the sec-

ond one is a wide residual network [33]. We train the wide

residual network WRN-28-10 [33] on Dlarge, following its

configuration for CIFAR-100 dataset [15]. There are some

minor modifications to the network architecture as the input

size is different. To follow the architecture, the input size is

set to 80×80. The images will be rescaled to this size before

training and evaluation. There will be 3 times of downsam-

pling rather than 2 times as for CIFAR dataset. The training

process follows WRN-28-10 [33]. We also use the output

of the global average pooling layer as the activation a(x) of

an image x. For the parameter predictor φ, we train it by

following the settings of φ2 for the full ImageNet dataset

except that now the dimension corresponds to the output of

the activations of the convolutional neural networks. The

two architectures will be detailed in the appendix.

3. Related Work

3.1. Large­Scale Image Recognition

We have witnessed an evolution of image datasets over

the last few decades. The sizes of the early datasets are

relatively small. Each dataset usually collects images on

the order of tens of thousands. Representative datasets in-

clude Caltech-101 [7], Caltech-256 [9], Pascal VOC [6],

and CIFAR-10/100 [15]. Nowadays, large-scale datasets

are available with millions of detailed image annotations,

e.g. ImageNet [27] and MS COCO [21]. With datasets of

this scale, machine learning methods that have large capac-

ity start to prosper, and the most successful ones are convo-

lutional neural network based [11, 12, 16, 28, 32].

3.2. Few­Shot Image Recognition

Unlike large-scale image recognition, the research on

few-shot learning has received limited attention from the

community due to its inherent difficulty, thus is still at an

early stage of development. As an early attempt, Fei-Fei

et al. proposed a variational Bayesian framework for one-

shot image classification [7]. A method called Hierarchi-

cal Bayesian Program Learning [19] was later proposed

to specifically approach the one-shot problem on character

recognition by a generative model. On the same character

recognition task, Koch et al. developed a siamese convo-

lutional network [14] to learn the representation from the

dataset and modeled the few-shot learning as a verification

task. Later, Matching Network [29] was proposed to ap-

proach the few-shot learning task by modeling the prob-

lem as a k-way m-shot image retrieval problem using at-

tention and memory models. Following this work, Ravi

and Larochelle proposed a LSTM-based meta-learner op-

timizer [26], and Chelsea et al. proposed a model-agnostic

meta learning method [8]. Although they show state-of-the-

art performances on their few-shot learning tasks, they are

not flexible for both large-scale and few-shot learning since

k and m are fixed in their architectures. We will compare

ours with these methods on their tasks for fair comparisons.

3.3. Unified Approach

Learning a metric then using nearest neighbor [14, 22,

30] is applicable but not necessarily optimal to the unified

problem of large-scale and few-shot learning since it is pos-

sible to train a better model on the large-scale part of the

dataset using the methods in §3.1. Mao et al. proposed

a method called Learning like a Child [24] specifically for

fast novel visual concept learning using hundreds of exam-

ples per category while keeping the original performance.

However, this method is less effective when the training ex-

amples are extremely insufficient, e.g. < 6 in this paper.

Model Regression [31] and SGM [10] are suitable for both

large-scale and few-shot image recognition. The compar-

isons with them are presented in the appendix.

4. Results

4.1. Full ImageNet Classification

In this section we describe our experiments and com-

pare our approach with other strong baseline methods. As

stated in §1, there are three aspects to consider in evaluating

a method: (1) its performance on the few-shot set Dfew, (2)

its performance on the large-scale set Dlarge, and (3) its com-

putation overhead of adding novel categories and the com-

plexity of image inference. In the following paragraphs, we

will cover the settings of the baseline methods, compare the

performances on the large-scale and the few-shot sets, and

discuss their efficiencies.

Baseline Methods The baseline methods must be ap-

plicable to both large-scale and few-shot learning set-

tings. We compare our method with a fine-tuned 50-layer

ResNet [11], Learning like a Child [24] with a pre-trained

50-layer ResNet as the starting network, Siamese-Triplet

Network [14, 22] using three 50-layer ResNets with shared

parameters, and the nearest neighbor using the pre-trained

50-layer ResNet convolutional features. We will elaborate

individually on how to train and use them.

As mentioned in §2.4, we first train a 900-category clas-

sifier on Dlarge. We will build other baseline methods us-

ing this classifier as the staring point. For convenience, we

denote this classifier as Rpt
large, where pt stands for “pre-

trained”. Next, we add the novel categories Cfew to each

method. For the 50-layer ResNet, we fine tune Rpt
large with

the newly added images by extending the fully connected

layer to generate 1000 classification outputs. Note that we

will limit the number of training samples of Cfew for the

few-shot setting. For Learning like a Child, however, we
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Method Dlarge Dfew FT Top-1 Clarge Top-5 Clarge Top-1 Cfew Top-5 Cfew

NN + Cosine 100% 1 N 71.54% 91.20% 1.72% 5.86%
NN + Cosine 10% 1 N 67.68% 88.90% 4.42% 13.36%
NN + Cosine 1% 1 N 61.11% 85.11% 10.42% 25.88%
Triplet Network [14, 22] 100% 1 N 70.47% 90.61% 1.26% 4.94%
Triplet Network [14, 22] 10% 1 N 66.64% 88.42% 3.48% 11.40%
Triplet Network [14, 22] 1% 1 N 60.09% 84.83% 8.84% 22.24%
Fine-Tuned ResNet [11] 100% 1 Y 76.28% 93.17% 2.82% 13.30%
Learning like a Child [24] 100% 1 Y 76.71% 93.24% 2.90% 17.14%

Ours-φ1 100% 1 N 72.56% 91.12% 19.88% 43.20%

Ours-φ2 100% 1 N 74.17% 91.79% 21.58% 45.82%

Ours-φ2∗ 100% 1 N 75.63% 92.92% 14.32% 33.84%

NN + Cosine 100% 2 N 71.54% 91.20% 3.34% 9.88%
NN + Cosine 10% 2 N 67.66% 88.89% 7.60% 19.94%
NN + Cosine 1% 2 N 61.04% 85.04% 15.14% 35.70%
Triplet Network [14, 22] 100% 2 N 70.47% 90.61% 2.34% 8.30%
Triplet Network [14, 22] 10% 2 N 66.63% 88.41% 6.10% 17.46%
Triplet Network [14, 22] 1% 2 N 60.02% 84.74% 13.42% 32.38%
Fine-Tuned ResNet [11] 100% 2 Y 76.27% 93.13% 10.32% 30.34%
Learning like a Child [24] 100% 2 Y 76.68% 93.17% 11.54% 37.68%

Ours-φ1 100% 2 N 71.94% 90.62% 25.54% 52.98%

Ours-φ2 100% 2 N 73.43% 91.13% 27.44% 55.86%

Ours-φ2∗ 100% 2 N 75.44% 92.74% 18.70% 43.92%

NN + Cosine 100% 3 N 71.54% 91.20% 4.58% 12.72%
NN + Cosine 10% 3 N 67.65% 88.88% 9.86% 24.96%
NN + Cosine 1% 3 N 60.97% 84.95% 18.68% 42.16%
Triplet Network [14, 22] 100% 3 N 70.47% 90.61% 3.22% 11.48%
Triplet Network [14, 22] 10% 3 N 66.62% 88.40% 8.52% 22.52%
Triplet Network [14, 22] 1% 3 N 59.97% 84.66% 17.08% 38.06%
Fine-Tuned ResNet [11] 100% 3 Y 76.25% 93.07% 16.76% 39.92%
Learning like a Child [24] 100% 3 Y 76.55% 93.00% 18.56% 50.70%

Ours-φ1 100% 3 N 71.56% 90.21% 28.72% 58.50%

Ours-φ2 100% 3 N 72.98% 90.59% 31.20% 61.44%

Ours-φ2∗ 100% 3 N 75.34% 92.60% 22.32% 49.76%

Table 1: Comparing 1000-way accuracies with feature extractor a(·) pre-trained on Dlarge. For different Dfew settings, red:

the best few-shot accuracy, and blue: the second best.

fix the layers before the global average pooling layer, ex-

tend the fully connected layer to include 1000 classes, and

only update the parameters for Cfew in the last classification

layer. Since we have the full access to Dlarge, we do not

need Baseline Probability Fixation [24]. The nearest neigh-

bor with cosine distance can be directly used for both tasks

given the pre-trained deep features.

The other method we compare is Siamese-Triplet Net-

work [14, 22]. Siamese network is proposed to approach

the few-shot learning problem on Omniglot dataset [17].

In our experiments, we find that its variant Triplet Net-

work [22, 30] is more effective since it learns feature repre-

sentation from relative distances between positive and nega-

tive pairs instead of directly doing binary classification from

the feature distance. Therefore, we use the Triplet Network

from [22] on the few-shot learning problem, and upgrade its

body net to the pre-trained Rpt
large. We use cosine distance as

the distance metric and fine-tune the Triplet Network. For

inference, we use nearest neighbor with cosine distance. We

use some techniques to improve the speed, which will be

discussed later in the efficiency analysis.

Few-Shot Accuracies We first investigate the few-shot

learning setting where we only have several training exam-

ples for Cfew. Specifically, we study the performances of

different methods when Dfew has for each category 1, 2, and

3 samples. It is worth noting that our task is much harder

than the previously studied few-shot learning: we are eval-

uating the top predictions out of 1000 candidate categories,

i.e., 1000-way accuracies while previous work is mostly in-

terested in 5-way or 20-way accuracies [8, 14, 22, 26, 29].

With the pre-trained Rpt
large, the training samples in Dfew

are like invaders to the activation space for Clarge. Intuitively,

there will be a trade-off between the performances on Clarge

and Cfew. This is true especially for non-parametric meth-

ods. Table 1 shows the performances on the validation set of

ILSVRC 2015 [27]. The second column is the percentage

of data of Dlarge in use, and the third column is the number

of samples used for each category in Dfew. Note that fine-

tuned ResNet [11] and Learning like a Child [24] require

fine-tuning while others do not.

Triplet Network is designed to do few-shot image infer-

ence by learning feature representations that adapt to the
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Method 1-Shot 5-Shot

Fine-Tuned Baseline 28.86 ± 0.54% 49.79 ± 0.79%
Nearest Neighbor 41.08 ± 0.70% 51.04 ± 0.65%
Matching Network [29] 43.56 ± 0.84% 55.31 ± 0.73%
Meta-Learner LSTM [26] 43.44 ± 0.77% 60.60 ± 0.71%
MAML [8] 48.70 ± 1.84% 63.11 ± 0.92%
Ours-Simple 54.53 ± 0.40% 67.87 ± 0.20%
Ours-WRN 59.60 ± 0.41% 73.74 ± 0.19%

Table 3: 5-way accuracies on MiniImageNet with 95% con-

fidence interval. Red: the best, and blue: the second best.

assumed equal for every channel in cosine distance. This

motivates us to investigate the impact of each channel of

the activation space.

For a fixed activation space, we define the impact of its

j-th channel on mapping φ by Ij(φ) =
∑

i |φij |. Simi-

larly, we define the activation impact Ij(·) on w
pt
large which

is the parameter matrix of the last fully connected layer of

Rpt
large. For cosine distance, Ij(1) = 1, ∀j. Intuitively, we

are evaluating the impact of each channel of a on the output

by adding all the weights connected to it. For w
pt
large which

is trained for the classification task using large-amounts

of data, if we normalize I(wpt
large) to unity, the mean of

I(wpt
large) over all channel j is 2.13e-2 and the standard devi-

ation is 5.83e-3. w
pt
large does not use channels equally, either.

In fact, φ1 has a high similarity with w
pt
large. We show

this by comparing the orders of the channels sorted by their

impacts. Let top-k(S) find the indexes of the top-k elements

of S. We define the top-k similarity of I(φ) and I(wpt
large)

by

OS(φ,w
pt
large

, k) = card

(

top-k(I(φ)) ∩ top-k(I(w
pt
large

))
)

/k (7)

where card is the cardinality of the set. The right image of

Figure 5 plots the two similarities, from which we observe

high similarity between φ and w
pt
large compared to the ran-

dom order of 1. From this point of view, φ1 outperforms

the cosine distance due to its better usage of the activations.

4.2. MiniImageNet Classification

In this subsection we compare our method with the pre-

vious state-of-the-arts on the MiniImageNet dataset. Unlike

ImageNet classification, the task of MiniImageNet is to find

the correct category from 5 candidates, each of which has 1
example or 5 examples for reference. The methods are only

evaluated on Dfew, which has 20 categories. For each task,

we uniformly sample 5 categories from Dfew. For each of

the category, we randomly select one or five images as the

references, depending on the settings, then regard the rest

images of the 5 categories as the test images. For each task,

we will have an average accuracy over this 5 categories. We

repeat the task with different categories and report the mean

of the accuracies with the 95% confidence interval.

Table 3 summarizes the few-shot accuracies of our

method and the previous state-of-the-arts. For fair com-

parisons, we implement two convolutional neural networks.

The convolutional network of Ours-Simple is the same

as that of Matching Network [29] while Ours-WRN uses

WRN-28-10 [33] as stated in §2.4. The experimental re-

sults demonstrate that our average accuracies are better than

the previous state-of-the-arts by a large margin for both the

Simple and WRN implementations.

It is worth noting that the methods [8, 26, 29] are not

evaluated in the full ImageNet classification task. This is

because the architectures of these methods, following the

problem formulation of Matching Network [29], can only

deal with the test tasks that are of the same number of ref-

erence categories and images as that of the training tasks,

limiting their flexibilities for classification tasks of arbitrary

number of categories and reference images. In contrast, our

proposed method has no assumptions regarding the number

of the reference categories and the images, while achieving

good results on both tasks. From this perspective, our meth-

ods are better than the previous state-of-the-arts in terms of

both the performance and the flexibility.

5. Conclusion

In this paper, we study a novel problem: can we develop

a unified approach that works for both large-scale and few-

shot learning. Our motivation is based on the observation

that in the final classification layer of a pre-trained neural

network, the parameter vector and the activation vector have

highly similar structures in space. This motivates us to learn

a category-agnostic mapping from activations to parame-

ters. Once this mapping is learned, the parameters for any

novel category can be predicted by a simple forward pass,

which is significantly more convenient than re-training used

in parametric methods or enumeration of training set used

in non-parametric approaches.

We experiment our novel approach on the MiniImageNet

dataset and the challenging full ImageNet dataset. The

challenges of the few-shot learning on the full ImageNet

dataset are from the large number of categories (1000) and

the very limited number (< 4) of training samples for Cfew.

On the full ImageNet dataset, we show promising results,

achieving state-of-the-art classification accuracy on novel

categories by a significant margin while maintaining com-

parable performance on the large-scale classes. On the

small MiniImageNet dataset, we also outperform the previ-

ous state-of-the-art methods by a large margin. The experi-

mental results demonstrate the effectiveness of the proposed

method for learning a category-agnostic mapping.
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