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Abstract

We propose an end-to-end network for visual illustration
of a sequence of sentences forming a story. At the core
of our model is the ability to model the inter-related na-
ture of the sentences within a story, as well as the ability to
learn coherence to support reference resolution. The frame-
work takes the form of an encoder-decoder architecture,
where sentences are encoded using a hierarchical two-level
sentence-story GRU, combined with an encoding of coher-
ence, and sequentially decoded using a predicted feature
representation into a consistent illustrative image sequence.
We optimize all parameters of our network in an end-to-
end fashion with respect to order embedding loss, encoding
entailment between images and sentences. Experiments on
the VIST storytelling dataset [9] highlight the importance of
our algorithmic choices and efficacy of our overall model.

1. Introduction

There is an unprecedented wealth of multimedia data
(image, video and text) on the web which stems from the
availability of accessible imaging devices (e.g., cell phone
and tablets) and the avid use of social media. Availabil-
ity of this rich data along with recent algorithmic devel-
opments in neural architectures has resulted in the wealth
of multi-modal image/video-text approaches. Typical prob-
lems include image captioning [ 0], natural language-based
image retrieval [22], and joint embedding of text and im-
ages to understand the relationship and be able to translate
between the two modalities [29]. However, most of these
formulations assume atomic image-sentence pairings both
at training and test time. This makes it difficult to apply
them for storytelling tasks where sentences are implicitly
inter-related in a narrative.

Recent approaches have started to address these chal-
lenges by proposing datasets (e.g., VIST [9]) and hierar-
chical language decoders that are able to generate multiple
sentences [14], or paragraph descriptions, forming stories
[7]. While some limited success has been shown, most of

The fireworks this year were amazing. Some were like colorful
star-flowers falling from fire bursts. Some went multicolored
from green to red. Many exploded from the ground making a
peacock tail of fire. Brilliant colors of light made for a beautiful
night.

Sentence
Retrieval

Figure 1. Two image sequences visualize the given story (top). The
images predicted by the proposed sequential model with coherence
(bottom) demonstrate higher consistency and better alignment
with the story than the images retrieved independently sentence-
by-sentence (middle).

these approaches (with the exception of [12]) attempt to
go in a forward direction, producing a multi-sentence de-
scription for an image [14], video [33], or image sequence
[9]. In this paper, we address the relatively unexplored,
inverse problem of generating illustrations for inter-related
sentences forming a narrative story. This problem is impor-
tant for a variety of creative applications, including auto-
matic storyboarding in film, storytelling [9], and story cre-
ation. The key difference with story captioning is that im-
ages tend to be more expressive (e.g., an image is worth a
thousand words), making it challenging to produce a coher-
ent sequence of illustrations.

In this paper, we propose a method for retrieving a se-
quence of illustrative images which correspond to a narra-
tive passage of text. Fig 1 illustrates the problem and our
solution (CNSI) for a given input passage (top). The im-
ages in the middle row are predicted by the baseline where
a sentence-image similarity is learned [27] and images are
independently retrieved for each sentence in the passage.
The key benefit of encoding context, through hierarchical
Gated Recurrent Units (GRU) [2], and coherence is illus-
trated by images in the bottom row. In fact, only the first
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sentence in the story mentions the word ‘fireworks’, but all
of the images in the output share that visual, highlighting
that the references were correctly resolved. This example
clearly illustrates the key benefits of our proposed model.

We develop an end-to-end network for visual illustration
of a sequence of sentences forming a story. We refer to
an input storytelling sequence of sentences as SIS (story-
in-sequence) and the corresponding output visual summary
of images as IIS (images-in-sequence). We achieve this
by building a neural architecture that takes the form of an
encoder-decoder, where sentences are encoded using hier-
archical two-level sentence-story GRU, combined with an
encoding of coherence, and then sequentially decoded us-
ing the predicted feature representation into consistent IIS.
We optimize all parameters of our network in an end-to-end
fashion with respect to the order embedding loss. The re-
sultant model tries to sequentially translate each input sen-
tence vector to a representative output image vector. The
image closest to this output vector is then retrieved from a
large dataset to illustrate the corresponding sentence.

Due to the ambiguity of the task, existing quantitative
metrics, such as mAP [16], produce misleading results, as
these metrics are computed based on the exact image IDs.
For example, as shown in Fig 2, the precision goes to zero
because predictions (in the bottom) consists of different im-
ages from the ground truth (middle). However, the pre-
dicted images are actually prefered, to ground truth, by
Amazon Mechanical Turk (AMT) subjects in terms of better
story visualization. To address this, we first perform a user
study on AMT to evaluate the performance of the proposed
architecture, in comparison to ground truth, and existing
baselines [27] of visual retrieval for isolated sentences, and
ablated model without coherence. Results indicate that the
proposed model outperforms the baseline, and users prefer
image sequences with coherence. Additionally, we propose
a new quantitative metric for this task based on the visual
saliency of the retrieved images with respect to the ground
truth images. We show this metric serves as a good proxy
for measuring whether a predicted image can be considered
a good visual illustration.

Contributions: Our core contribution is an end-to-end ar-
chitecture for retrieving a sequence of illustrative images
from a set of sentences, one for each sentence, forming a
story. We model context between sentences using hierarchi-
cal two-level sentence-story GRU. Further, since it is natu-
ral to use references (e.g., direct: he/she/it and indirect: they
both went there) within the story once actors and objects are
defined, we also introduce a coherence vector to help with
such reference resolution. Evaluation of the proposed archi-
tecture with a user study shows that the proposed algorithm
performs better than the baseline in a comprehensive abla-
tion study. Further, we introduce a new metric for this task
that can better deal with ambiguities in the image selection.

| choose to take black and white photos today. An old
leaflet | found on the floor of the cemetery. | tried to read
this but it was in a foreign language. These must have
been wealthy considering the size of the their

And that concluded the day at the Cemetery.

The friends met up for drinks. It was a fun night
out for everyone. The next morning everyone
played instruments. Ron had played the guitar
since he was a kid. That night everyone got
ready to go out and do the same thing again.

CNSI

Figure 2. Two samples of ground truth (middle) and our prediction
(bottom) for the story (top). The bottom sequence of images win
more votes from AMT workers for better visual illustration.

2. Related work

Our work is related to the rich literature on multi-modal
image-text representation and learning, including caption
generation, and natural-language based retrieval. Here we
overview only the most relevant related works.

Caption generation: Caption generation for images is a
well studied problem in the vision community [5, 18, 24,

, 31, 32, 34, 35]. Most recent works use some form of
Recurrent Neural Network (RNN) to generate the captions
word by word given the encoding of the image. Partic-
ularly, He er al. [8] use Part of Speech (POS) tags from
image descriptions, while Jia et al. [30] utilized semantic
information from images to guide Long Short Term Mem-
ory (LSTM) to generate meaningful descriptions. Vinyals
et al. [28] and Chen et al. [1] used CNN-based image en-
coders and an RNN and bidirectional RNN for decoding,
respectively. Attention-based neural networks are also pop-
ular and allow the model to focus on specific regions when
generating individual words [34]. Johnson et al. [10] pro-
posed a convolutional localization network to create dense
captions for an image in a single forward pass. Captions,
in general, have been defined as a descriptive piece of text
that contain information about the objects and scene in the
image. We wish to encode the relationship between mul-
tiple inter-related sentences that form a narrative story and
corresponding images.

Image Retrieval: Image retrieval is considered to be the
reverse of caption generation. Most techniques [4, 0, 17,

, 23, 27] that deal with image retrieval also evaluate
their algorithms on caption generation. For example, Wang
et al. [29] proposed structure preserving and bidirectional
ranking constraints, while Zhou et al. [23] formulated a
Gaussian visual-semantic embedding; Gong et al. [6] used
a multi-view version of Canonical Correlation Analysis
(CCA) for joint representation of phrases and images. Ven-
drov et al. [27] proposed to leverage intuition that a correct
caption-image pair can be considered as ordered, with the
caption being a more abstract representation of the image.
This effectively encoded entailment relationship between
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images and captions. Evaluations for this method produced
state-of-the-art results for image retrieval and caption gen-
eration. Reed et al. [22] proposed a Generative Adversarial
Network to synthesize images from descriptive text. Even
though these papers have addressed the problem of visual
illustration of text, they lack ability to deal with sequential
structure of a textural story, which is the focus of this paper.

Images in sequence to story in sequence (IIS to SIS): The
sequence of images is, in general, a continuous stream of
consistent images that are part of the same story or event.
Park and Kim [20] introduced a coherent recurrent convolu-
tional network to explicitly model coherence within the text
and jointly embed a sequence of text and the correspond-
ing sequence of images. Huang et al. [9] proposed a novel
visual storytelling dataset (VIST) for IIS to SIS generation.
They also proposed a simple baseline RNN to enable IIS to
SIS task. We make use of this dataset for evaluating our
algorithm for the reverse task of SIS to IIS. Yu et al. [36]
proposed an automatic hierarchically-attentive RNN to au-
tomatically summarize an album by selecting the most rep-
resentative set of photos and then generated a natural lan-
guage story. Evaluation using the VIST [9] dataset showed
state-of-the-art results for this task. All of the papers de-
scribed above deal with going from sequential images to
sequential text; we are looking to do the reverse. Applying
the same techniques in reverse is not trivial due to the differ-
ences in the information contained in the input and output.

Story in sequence to images in sequence (SIS to IIS): The
task of visually illustrating a sequence of inter-related sen-
tences, forming a story, is the problem addressed by this
paper. To the best of our knowledge, we could not find
any previous work that directly deals with this task. Kim
etal.[11, 12] are the closest. Both of these papers deal with
blogs or large pieces of text that require short visual sum-
maries. In particular, they look at blogs and photo streams
corresponding to a common topic. Blogs contain a rela-
tively large volume of text and tend to have information
related to ’location’, ’time’, 'ride name’ and other specific
details that make the retrieval space more constrained. Our
approach deals with sentences that are conceptually more
abstract, less descriptive and (by design) more closely inter-
related into a story.

3. Proposed Method

We develop the SIS to IIS retrieval algorithm as fol-
lows. Let S = {s1,532,...,8,} be a set of n sentences
(though in principal these can also be paragraphs or other
natural text elements) that tell a narrative story and let
I = {iy,ia,...,in} be the set of n corresponding images
from the dataset that best illustrate the input SIS. We con-
sider n to be equal to five in our paper to adhere with the

VIST [9] dataset, however, the algorithm is general and is
able to deal with arbitrary length sequences. There is, how-
ever, an implicit assumption that illustration is one-to-one,
meaning that for every sentence (element of the story) we
retrieve one illustration.

We build an end-to-end network, as shown in Fig 3,
which encodes the input sentences and coherence and pre-
dicts encoding of the feature representation for correspond-
ing illustrative images. We now explain each component of
the network in detail.

3.1. Sentence Encoding

The process of sentence encoding is illustrated in
Fig 3(b). Let each input sentence s; have m; words
{wy, wa, ..., Wh; }. The GRU RNN network in the first stage
sequentially encodes {w1, w, ..., wy, }, to generate feature
vector f1(s;) representing the j-th sentence. The corre-
sponding image feature vector g (i;) is obtained by using
a pre-trained VGG-16 model [26]. This entire network is
trained on the MS-COCO dataset [15] so that f;(s;) will
be aligned with g;(7,;). Conceptually, this is to form ini-
tial sentence representations that are closer to image vector
representations for each sentence in the story. The Order
embedding loss (OE-Loss) function as defined in [27] is
used to train this network. These encoded representations
are then used to initialize the next part of the network that
performs sequential story encoding in Fig 3(c).

3.2. Story encoding

The output of the sentence encoder is a sequence of in-
dividual sentence encodings: {f1(s1), f1(82), -, f1(8n)}-
To encode the story structure among them, we pass this to
a higher level network that encodes the sequential (from
left to right) nature of the input story to produce vectors:
{f2(s1), f2(s2), ..., f2(sn)}. The target vectors remain the
same from above g¢1(i;). A sequential, order embedding
loss function is used to train this network to constrain fs(s;)
to be as close as possible to g; (¢,). This process is depicted
as the sequential model in Fig 3 (c). For sequential story en-
coding, a three layered RNN with GRU cells [2] is applied
to model the shared context between sentences in a story.

3.3. Coherence Model

Even though the GRU sequential model encodes the re-
lationship between sentences, we also explicitly model co-
references between sentences to further improve the abil-
ity of our model to capture story structure. We do this by
making use of the coherence model proposed in [20]. The
authors represent the coherence between sentences, within
a piece of text, by a 64 dimensional coherence vector ob-
tained from the parse tree associated with each sentence in
the story. They use this vector as input to the final Fully
Connected (FC) layer in their network, after zero padding
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Figure 3. The proposed approach for story visualization: (a) Shows modeling of isolated sentences for sentence encoding and parse tree
extraction for coherence vector computation. (b) Uses encoded sentence vectors to train sentence-RNN using Order Embedding (OE) loss

function [

]. (c) Uses encoded sentence and image vectors along with coherence vector to sequentially encode the input story. Story-RNN

is trained using modified OE-loss function with On-line Negative Mining(ONM) for generating negative samples within a batch.

to match dimensions of the input vectors. We, however, di-
rectly concatenate the vector with each sentence before the
final FC layer. This is visualized in Fig 3(c).

3.4. Loss function

We use an order embedding loss function based on the
one proposed in [27] for our network. The assumption is
that a short textual description of an image is more abstract
than the image itself. The description-image pair can there-
fore be considered as an ordered pair. Since SIS text is in
general more abstract, we use a similar order embedding
constraint based model. For ours, the cost of a sentence-
image ordered pair violating the order is defined as:

E(z,y) = maz||0, (y — )]|? (1)

where E(z,y) =0 <= x < y according to the reversed
product order. If the order is not satisfied, then E(z,y) is
positive. If we treat the sentence-image pair (s; and i) as
a two level partial ordering, then we can define S(s;,4;) as
follows:

S(sj,15) = —E(g1(i5), f2(s5))

2
= —maz||0, (f2(i;) — g1(s;))||? @

where S(s;,4;) is the negative order violation penalty for
a ground-truth sentence-image pair. The objective is then
to maximize this for a ground truth pair relative to other
pairs by a margin. Here, f2() and g1() are the SIS and IIS
encoders as described in Sec 3.2. The loss function to be

minimized is then:

1 5
c= Z z (Zmaz{(), a— S(sk,j, k) + S(S;Cd"ik’j)}

k=1j=1 Vs

+ Z max{0,a — S(skj,ik;) + S(sk,j, z;”)})
i,

3)
where c is the cost for a batch with in size of [. Index k
iterates over each story within a batch while index j iterates
over each positive ground truth sentence-image pair within
each story. Given a batch of story sentence-image pairs, we
apply Online Negative Mining (ONM) to generate negative
samples [27]. The negative samples for each ground-truth
pair are taken from all other stories except the one in consid-
eration. In other words, for a sample (s1 1), the correspond-
ing negative samples are (s;,j,k # 1,7 = {1,2,3,4,5}).
Also, j is chosen uniformly at random between the five in-
dices for each negative story. Before each epoch, all the
samples are arranged and shuffled carefully to avoid identi-
cal images occurring in different stories.

4. Training Details

The proposed hierarchical GRU network with order em-
bedding loss function can be completely seen in Fig 3(c).
The sentence encoder is trained on MS-COCO dataset [15]
using a joint image-sentence embedding formulation. We
believe this ensures a good initial aligned representation for
both modalities. The resultant vector for each sentence is
given as input to the sequential model to encode the rela-
tionship between the sentence vectors. The loss function
is explained in Sec 3.4; it calculates loss between the five
encoded vectors and the corresponding five image vectors
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Graduation day has finally arrived. All the students started
filing in. He was thrilled to finally be graduation. Everyone
posed for pictures outside the venue. And to cap off the day;
we all hung out at the pool.

Figure 4. Two image sequences visualize a “graduation” story.
AMT workers prefer the GT over BL, though both look similar.

obtained from a pre-trained VGG16 CNN network. For
learning we use Adam optimizer [13] with a learning rate
of 0.001. The batch size is 32 stories, a relatively low num-
ber to prevent repetition of stories or images in each batch.

Note that out of the 40, 149 stories present in the train-
ing dataset for VIST [9], there are only 16, 041 unique story
image sequences. This means that multiple SIS can cor-
respond to a single sequence of images. There is a high
possibility that in a naive implementation the order embed-
ding loss function would get the same sequence of images
as both positive and negative during the training. This is ob-
viously undesirable. In addition, multiple stories can share
different permutations of the same sequence of images caus-
ing same image to be seen as both positive and negative il-
lustration for a sentence. Also, the algorithm performs pre-
diction over the entire dataset for each time instant (sen-
tence) during retrieval; therefore during training, we apply
Online Negativing Mining to obtain the negative samples
from dissimilar stories (k # 1 in Eq 3) from a disjoint set
of instants (j chosen uniformly at random in Eq 3).

The learning is set to run for 150 epochs. From obser-
vations, we find that after 130 epochs the loss value starts
to saturate at around 3.0. During testing, each sequence of
input sentences goes through the network and produces a
sequence of image vectors. All images in the dataset go
through the CNN part of the pre-trained baseline. Then, for
each output vector from network, the image with the closest
CNN feture vector is chosen as the predicted image.

We implement our networks and loss function in python
using Tensorflowand Keras. The network is trained on the
40, 154 training set stories in the VIST [9] dataset. We re-
move stories that have broken URLs or images. We perform
qualitative and quantitative evaluation on a subset of test set
stories that have captions for all of the images. This reduces
the number of test stories from 5, 054 to 3, 384. Retrieval is
performed over this entire set with 5, 055 candidate images,
i.e., 3,384 stories with 5 images each in the test set have a
total of 5,055 unique images. Each epoch takes approxi-

mately 250 seconds in a desktop with an NVIDIA Quadro
K2200 GPU and CPU With 32 GB RAM and 1 TB Hard
disk space. Prediction takes about 0.5 sec. per image.

S. Experiments

Evaluating the performance of the algorithm for SIS to
IIS is non-trivial as there may be multiple correct sequences
of images that each can visually describe a given story. For
example, Fig 4 shows a story that is visually represented by
two sequences of images. It is hard to tell which one of the
two visual depictions is the correct one as both sequences
describe the story adequately. The VIST [©] dataset has
many stories where visual coherence is not explicit (in terms
of common objects or scenes throughout the story). Also,
since stories are short, the possibility of a visually coher-
ent object or scene being present is generally low. Hence,
we resort to evaluation with a user study for a reference of
what is correct. We then try to replicate the results using a
visual saliency based quantitative metric. We first describe
the dataset and our baselines and then present the results.

5.1. Dataset

We use VIST dataset [9] for all of our experiments. To
our knowledge this is the only dataset that consists of se-
quences of images with sequences of text descriptions that
form narrative stories. The dataset consists of approxi-
mately 40,154 stories for training, with each story made of
5 sentences and corresponding set of 5 images. The sen-
tences are unique for each story, but the sets of images are
not unique. In fact, out of the 200,770 images (40,154 x 5)
only 65,145 are unique. In addition, there is a test set (5,054
stories) and validation set. Note that SIS is present for all
of the 40,154 stories while DII are present only for a subset
of 28,000 stories. This is the case with the test set as well.
Even though the dataset contains story image sequence re-
peats, this shortcoming actually represents a more realistic
scenario and so we use the dataset as is.

5.2. Comparative Evaluation

We compare our approach with two baseline networks to
analyze the different aspects of the proposed network.

BL: Baseline Network. For the baseline network, we use
the one-to-one description to image retrieval algorithm
proposed in [27]. The network is pre-trained on MS-COCO
[15] and then trained on VIST [9] dataset. Each sentence in
the SIS and image in the corresponding IIS are separated
from their story to get 200,770 separate sentence-image
pairs. We train on this and rearrange the test set similarly
for evaluation. This experiment is to study the importance
of sequential modeling of the input story.
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The stands were absolutely packed at this year's
Virginia Tech graduation ceremony. There were literally|
seas of people almost as if there was a sporting event.
The commencement came with speeches from the top
students in the graduating class. | will be keeping the

program in remembrance of the graduation.

NSI BL GT

CNSI

When she goes out she always has a great time.
She loves sitting at the bar; Drinking and talking
with the bartender. Friends are always there to
have fun also. There is always a lot of drinking;
talking; and just having a good time!

For the halloween party; Linda dressed all in black.
She is chatting with friends she hasn't seen in a
while. Everyone has such great costumes; one lady
even came dressed as riding hood. Another guest
decided to come as a Pokemon character. Even
little kids dressed up for this party.

Figure 5. Samples of predicted images for three stories where the image sequences in the last row predicted by our CNSI model wins the

most votes from AMT workers.

Graduation day has finally arrived. All the students started
filing in. He was thrilled to finally be graduation. Everyone
posed for pictures outside the venue. And to cap off the day;
we all hung out at the pool.

Figure 6. Example story where CNST failed to better illustrate the
story than BL according to the user study.

NSI: Network without Coherence. In order to evaluate
the effect of coherence on the performance of the network,
we also consider the proposed network without the coher-
ence vector. Since each sequence of images in the dataset
has a different amount of coherence, the role of coherence
in our algorithm needs to be assesed. The training proce-
dure is identical to our full model.

5.3. User Study

We perform evaluation with the help of AMT workers.
We obtain prediction results from the network without co-
herence (NSTI), network with coherence (CNST), baseline
(BL), and ground truth sequences (GT). Five experiments
are performed: 1)BL vs. GT; 2) NSTI vs. BL; 3) CNST vs.
NSI; and 4) CNSI vs. GT and 5) BL vs CNSI. We can
draw a conclusion that CNST is the best model among the
three approaches if CNST is preferred in (3), (4) and (5).
Additionally, results of experiments (1) and (2) shows the
performance gain of NST over BL.

Last weekend we had a great time at the party. Some people
had brought some very elaborate costumes. There were a lot
of strange people there too. The children had fun playing
together. Everyone gathered in the room for the meeting.

P | v -

GT

CNSI

Figure 7. The Amazon workers prefer the predicted image se-
quence in the bottom which shows less visual consistency than
the middle one.

For the AMT experiment, we take 200 random stories
from the test set. The test set consists of 3,335 stories with
4,980 unique images. Two image sequences correspond-
ing to the same text obtained from GT, BL, NSI, or CNSI
are presented to the user, who is asked to make a binary
selection of which visual story best characterizes the text.
The order of occurrence of the two representations are ran-
domly shuffled. Each experiment has 200 stories rated by 5
workers, for a sum of 1,000 total evaluations. The number
of votes where algorithm A is preferred over algorithm B
for an A vs B experiment is shown in Table 1. In addition,
Table 1 also lists the details of how many story visualiza-
tions generated by algorithm A are preferred by N work-
ers, where N varies from 5 to 0. Also, we perform another
experiment that compares all four visual stories simultane-
ously, considering the possibility that transitivity might not
hold in the pairwise experiments. The results for this exper-
iment are shown in Table 2.
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BL vs. GT #Votes 5 4 3 2 1 0
10.6% (106/894) #Samples 1 0 5 14 | 58 | 122
CNSTI vs. GT #Votes 5 4 3 1 0
22.29% (222/778) #Samples 3 3 20 | 37 | 61 | 76
NSIvs. BL #Votes 5 4 3 2 1 0
67.7% (677/323) #Samples | 44 | 57 | 54 | 26 | 15 | 4
CNSTI vs. NST #Votes 5 4 3 2 1 0
53.3% (533/467) #Samples | 15 | 41 | 56 | 47 | 32 | 9
BL vs. CNSI #Votes 5 4 3 2 1 0
38.5% (385/615) #Samples 3 17 | 40 | 62 | 59 | 20

Table 1. The results of pairwise preference test on story visualiza-
tion of workers reviews via AMT. Comparisons are conducted in
the manner of A vs. B. The numbers indicates the percentage of
responses that A is a better visualization than B for a given story.

Results and Discussion: Table 1 outlines the pairwise pref-
erence results from the AMT user study. For the compari-
son between BL and GT, BL was preferred 106 times, in
comparison to GT which was selected 894 times. Thus, the
users’ preference of BL over GT was 10.6%. Preference of
BL over GT is 3% (6 out of 200), if 3 of the 5 users (major-
ity) preferred the visual story obtained using BL. The user
preference for NST over BL is 67.7%. Similarly, the user
preference for CNST over NST is 53.3%. The results indi-
cate that the proposed model outperforms the baseline and
users prefer image sequences that are coherent and consis-
tent. Fig 5 shows example visual stories obtained from GT,
BL, NST, and CNSTI, where users preferred the results gen-
erated using the proposed model (CNSI). Fig 6 shows an
example scenario where users preferred BL over CNST.

From Table 2, we can also see that when shown all the
four results, users tend to prefer the result by the proposed
algorithm more than even GT. Both NST and CNST perform
reasonably well, but we think CNST could perform signifi-
cantly better if dataset was more coherent and/or if contri-
bution of coherence is more dynamically modulated by the
network (e.g., through some form of attention).

Algorithm GT BL NSI | CNST
#Samples | 52.5 | 445 | 47.5 | 55.5
Table 2. Preference of algorithm based on maximum voting of 5
workers for 200 samples. To avoid ties, if GT and CNSI get 2
votes each and BL gets one, then both GT and CNSTI gets half a
point.

Importance of Consistency and Coherence: In terms of
the predicted images, consistency indicates visual similar-
ity between images of a sequence while coherence is inter-
preted as images having common entities, such as a person
or an object. In Fig 7, it is clear that images of GT (mid-
dle) show higher visual consistency and coherence than our
prediction (bottom). However, our predictions were pre-
ferred by majority of workers for the visual description of
the input story. The fact is that users’ preference is highly
related to the alignment between the images and the corre-

She loves the winter and decided to take her new camera out
for pictures of the snow. She got a great shot of the trees with
clear blue sky in the background. Another beautiful picture of a
thin small tree leaning over from the weight of the snow. This
was a distance shot against the blue sky. And finally a great shot
of a tree with some color peeking out from under the snow.

Figure 8. A sample that our proposed method (bottom) gets less
votes from AMT users than the ground truth (middle). However
the two image sequences look visually similar.

sponding sentences apart from visual consistency and co-
herence. Ideally, consistency and coherence in the output
sequence is preferable as shown by the results in Table 1
but not always. For example, a set of 5 images that lack
visual coherence can still be perceived by a user as form-
ing a story. This is the case for many samples in the VIST
dataset. Also, in [7], authors show failure cases that result
from giving order to unordered sequence of images and sen-
tences within the same story in the VIST dataset. They ob-
serve that failure cases were due to lack of coherence in the
dataset itself. This motivates explicit encoding of coherence
in the input story, but not constraining the predicted images
to have common objects and scenes.

5.4. Visual Saliency based Metric

We observe that defining one visually correct sequence
of images is not trivial in storytelling. As shown in Fig 4
(GT and BL), multiple visual summaries can describe a story
without ambiguity. Majority of workers preferred BL pre-
dictions over GT in this example. Then, evaluation boils
down to checking if the predicted images describe the input
story as adequately as ground truth does. The correspon-
dence between ground truth and predicted images may be
caused by the presence of common salient objects/scenes in
the images. For example, both GT and BL image sequences
in Fig 4 visually describe a graduation day scenario. Given
that the SIS are not specific with respect to entities, the BL
can be considered a correct representation with respect to
GT. We propose a visual saliency based similarity metric to
evaluate this kind of correctness of a predicted story.

Text Processing: We consider a test subset with DII data
available. Each image has three captions associated with
it. The captions are processed using Stanford core NLP
[25] parser to extract noun entities. Some abnormal enti-
ties are extracted due to spelling, grammar and typograph-
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Recall @1(%) Recall @ 2(%) Recall @ 5(%)

BL 5 31 54
NSI 16 30 43.5
CNSI 20.5 33.5 50

Table 3. Visual Saliency based Recall@1, 2 and 5.

ical errors (e.g., the word ‘advertisement’ had five differ-
ent spellings). Even though ‘autocorrect’ ' corrected most
of them, the corrections were not always acceptable (e.g.
“abike” was changed to “alike” instead of “a bike”). Others
like “PyEnchant” ? required manual verification. To auto-
mate the process of correcting thousands of words, we use
autocorrect and consider only modifications for noun enti-
ties. The extracted entities generally represent objects and
scenes present in the images. There is a total 13,000 unique
entities over the entire set.

Visual Processing: We train a VGG-19 [26] model on Im-
ageNet for the 20,754 categories [3] and classify the im-
ages of the story test set using this network. The top-10
most probable categories are chosen as they are mostly in-
terchangeable. These categories were too specific compared
to entities extracted from the VIST dataset (e.g., image of a
‘daisy flower’ had ‘flower’ as an entity in the descriptions
while the exact type of daisy was the predicted result from
ImageNet). Hence we take immediate two hypernyms of the
predicted labels using WordNet [19] for each of the 10 cat-
egories to make the visual label list. The union of the visual
label list and textual entity list, made up the salient entity
set that has both visually and textually grounded entities.

Evaluation Metric: We provide Recall@Qk (k = {1,2,5})
for a story in the top-k predictions to have the same salient
entities as the ground truth. For each sentence in the story,
we retrieve the top ‘k’ images to get ‘k’ visual stories. If
at least one of the ‘k’ stories have for each of the images,
more than ‘n’ salient entities common with the GT, then
it is positive. ‘n’ is experimentally chosen as 10% of the
entities of GT as lower values had erroneous results and
higher values had poor Recall.

Results and Discussion: Table 3 show the Recall at 1, 2
and 5 for a predicted sequence of images to be visually sim-
ilar to the images in ground truth. Visual similarity can be
explicitly verified in Fig 8, where an example story (bot-
tom) predicted by CNST was in top 1 with respect to GT.
However, GT was preferred by majority of workers. Hence,
we believe that user study alone or the metric alone would
not suffice to measure the performance of the proposed al-
gorithm. Even though there exists some mismatch between
the results, we can see a clear pattern with respect to which

Uhttps://github.com/phatpiglet/autocorrect/
Zhttps:/pythonhosted.org/pyenchant/

Recall @10(%) @ 50(%) @ 100(%) @ 500(%)
BL 0 0.5 0.5 3
NSI 0 2 4 22
CNSI 0 1.5 4.5 24.5

Table 4. Visual Saliency based Recall of GT images@10, 50, 100
and 500.

models perform the best on the dataset. We can also see
that, as k in Recall at k increases, performance of BL starts
to increase more than that of the proposed model. This
might be because, as the number of considered images in-
crease, finding an image with same visual entities as GT
become easier while finding images that adhere to the story
and are also visually similar to GT becomes more difficult.

The values for Recall of retrieving GT images are shown
in Table 4. we can see that the proposed algorithm performs
better though GT images are not retrieved in ranking top 10
or 20. Note that GT images are not the unique visual repre-
sentation of input story ([7]) and sometimes stories retrieved
by our algorithm are preferred as shown in Table 2.

6. Conclusion, Limitations and Future Work

We propose a two stage network as a solution for the
problem of visual illustration of natural language stories.
Two networks, along with a baseline were evaluated on a
comprehensive dataset using both qualitative and quantita-
tive metrics. We observe that the proposed model performs
better than the baseline and in a few cases, better than the
ground truth itself, as verified by the user study. We observe
that evaluation metrics for the storytelling task is ill-defined
and hence propose a visual saliency based recall metric as
the new measure. It is observed from evaluation that this
task is non-trivial and more research is necessary to study
the relationship between SIS and corresponding images.

Limitations and Future Work: Even though the proposed
networks perform well, we note that there is a big space for
improvement. Particularly, coming up with stronger evalua-
tion metrics, studying the importance of coherence for visu-
alization, and developing a more comprehensive and proper
dataset. We are looking to explore these paths to define a
more robust and well defined solution to the problem of vi-
sual storytelling.
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