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Abstract

A practical limitation of deep neural networks is their

high degree of specialization to a single task and visual do-

main. Recently, inspired by the successes of transfer learn-

ing, several authors have proposed to learn instead univer-

sal feature extractors that, used as the first stage of any

deep network, work well for several tasks and domains si-

multaneously. Nevertheless, such universal features are still

somewhat inferior to specialized networks.

To overcome this limitation, in this paper we propose

to consider instead universal parametric families of neural

networks, which still contain specialized problem-specific

models, but differing only by a small number of parameters.

We study different designs for such parametrizations, in-

cluding series and parallel residual adapters, joint adapter

compression, and parameter allocations, and empirically

identify the ones that yield the highest compression. We

show that, in order to maximize performance, it is necessary

to adapt both shallow and deep layers of a deep network,

but the required changes are very small. We also show that

these universal parametrization are very effective for trans-

fer learning, where they outperform traditional fine-tuning

techniques.

1. Introduction

As deep neural networks continue to dramatically im-

prove results in almost all traditional problems in computer

vision, the interest of the community has started to shift

towards more ambitious goals. One of them is to super-

sede the common paradigm of addressing different image

understanding problems independently, using ad-hoc solu-

tions and learning different and largely incompatible mod-

els for each of them. Just like the human brain is capable

of addressing a very large number of different image anal-

ysis tasks, so it should be possible to develop models that

address well and efficiently a variety of different computer

vision problems, with better efficiency and generalization

︸ ︷︷ ︸

(a) universal parametric family

︸ ︷︷ ︸

(b) universal feature extractor

Figure 1: Universal parametric network families. We de-

velop compact parametric families of neural networks (a)

that can target very different visual domains, from Ima-

geNet to stop signs and characters, while sharing the vast

majority of their parameters w. Domain-specific parame-

ters αt are isolated in small modular adapters that can be at-

tached to an existing network to steer it non-disruptively to

different domains and enable efficient model storage, trans-

fer, and exchange, as well as transfer learning. Parametric

families are shown empirically to be much more powerful

than sharing a fixed universal feature extractor as in (b).

than individual networks.

There are at least three aspects to this challenge. The

first is to construct a multi-task model that can extract

multiple types of information from an image, performing

class/object detection and segmentation, boundary extrac-

tion, motion estimation, etc. [14]. The second is to develop

a multi-domain model that can work well for many different

visual domains, such as Internet images, scene text, medi-

cal images, satellite images, driving images, etc [3, 23]. The
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third is to develop an extensible model that can evolve over

time, reusing previously acquired knowledge to learn to

process new tasks and domains efficiently, while at the same

time avoiding to forget previously-acquired abilities [18].

Concerned with the second and third problem, several

authors before us have framed this as the problem of learn-

ing a single universal first-stage to be shared among differ-

ent deep networks (fig. 1.b). The idea is that early layers

should process low-level and hence widely-applicable vi-

sual information. However, such universal feature extrac-

tors do not work quite as well as learning problem-specific

networks, either from scratch or using transfer learning.

In this paper, we propose an alternative perspective. In-

stead of seeking a single, fixed first stage, we want to de-

velop compact parametrizations for multi-domain networks

(fig. 1.a). Consider a deep network Φ(x;w, α) applied to an

image x, for example for image classification. We partition

the network parameters in a universal vector w, which is

fixed and shared among all domains, and a parameter vector

α, which is instead domain specific. We then seek architec-

tures that: 1) can share the vast majority of their parameters,

so that the size of α is a small fraction of the size of w, and

2) can learn a new α for a new domain from a very small

number of training examples. In other words, we would like

to compress a family of domain-specific neural networks so

that they can be exchanged and learned more efficiently.

While our method does not result in a single, univer-

sal neural network, as the parameters α are still domain-

specific, finding architectures that afford a great degree of

parameter sharing is an important step in this direction.

There are also concrete practical benefits. First, universal

families work better than the standard transfer learning ap-

proach of fine-tuning off-the-shelf models; hence, they may

replace the latter strategy in numerous applications. Sec-

ond, there are applications such as mobile devices that re-

quire running several different neural networks, which may

incur a significant computational and energy overhead due

simply to the need of swapping their parameters on a ded-

icated integrated circuit. One may face similar overheads

when transmitting model parameters over a network, or

storing them locally. Our approach makes storing, exchang-

ing, and updating models much more efficient.

Related to our work, a few papers [23, 25] have proposed

low-dimensional parametrizations of the filters in a neural

network with good compression results. The paper of [23],

in particular, proposed the idea of residual adapters to build

networks with a high-degree of parameter sharing. In this

work, we propose some important improvements over this

basic module. First, we show that a simple change, where

the topology of the adapter is parallel rather than series, re-

sults in major improvements across the board, in terms of

overall accuracy, applicability to existing off-the-shelf net-

work, and transfer learning. Second, we investigate which

parts of typical networks require adaptation, and we show

that often both early and late layers need to be adapted to

obtain the best performance. Third, we experiment with

different regularization strategies for the adapters such as

dropout which proves highly beneficial when using a bigger

pretrained network. Fourth, we introduce a cross-domain

compression procedure for the adapters which allows to re-

duce significantly the numbers of adapter parameters. Most

importantly, this compression contributes to multi-domain

regularization resulting in improved overall performance

thanks to information sharing among target datasets.

The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 describes our neural net-

work parametrization and how it applies to state-of-the-art

neural network architectures. Section 4 demonstrates em-

pirically the power of our approach on standard datasets,

setting in particular the new state of the art on the Visual

Decathlon benchmark, as well as demonstrating excellent

transfer learning capabilities. Finally, section 5 summarizes

our findings.

2. Related Work

Our work intersects with various lines of research in

multi-task learning, learning without forgetting, domain

adaptation, and other areas.

Multi-task learning (MTL) aims at learning multiple

related tasks simultaneously by sharing information and

computation among them. Early work [5] in this area fo-

cuses on deep neural network (DNN) models which share

weights in the earlier layers and use specialized ones in

the later layers. It is shown in [5] that sharing param-

eters during training helps exploiting regularities present

across tasks and improving the performance by constraining

the learned representation. However this setting requires

to manually design the network and decide which layers

should be shared across multiple tasks. This paradigm is

applied to various learning problems from natural language

processing [6] and automated drug discovery [7] to speech

recognition [12]. In computer vision, deep MTL models

are applied to object tracking [34], facial-landmark detec-

tion [35], object and part detection [2], object detection and

instance segmentation [10], a collection of low-level and

high-level vision tasks [14]. Differently from our work, this

line of research focuses on learning a diverse set of tasks in

the same visual domain.

Multi-domain learning. Our method is most related to

recent works [3, 23, 25] which aim at learning a single net-

work to perform image classification tasks in a diverse set

of domains. The main focus is to learn a single network

that can represent compactly all the domains with minimal

number of task specific parameters. To do so, Bilen and

Vedaldi [3] propose to model different domains in a sin-

gle neural network by sharing all core model parameters
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except parameters in batch and instance normalization lay-

ers. Rebuffi et al. [23] extend [3] and propose a new pa-

rameterization of the standard residual network architecture

that enables a high degree of parameter sharing between

domains with a small increase (< 10%) in the model pa-

rameters. The authors of [25] propose a parameter-efficient

architecture that enables learning new domains sequentially

without forgetting. We build our method on [23, 25] and

significantly improve over them in terms of accuracy and

compression ratio by introducing a novel and more compact

adapter module, and a better regularization strategy.

Parameterized MTL. Another MTL approach [1, 32,

20] focuses on dynamically generating DNN weights given

the task identity. Bertinetto et al. [1] propose a method to

learn the parameters of a deep model from a single exem-

plar for one-shot classification. As a naive predicting of

high dimensional weights is not feasible, the authors first

obtain a low rank decomposition of filters and define the

new network as a linear combination of the low-rank fil-

ters. Similarly, the authors of [32] propose a tensor factor-

ization method that can realize automatic learning of end-

to-end knowledge sharing in deep networks. Meyerson and

Miikkulainen [20] propose a soft ordering approach, which

dynamically computes to what extent each filter contributes

to each tasks and thus how much is shared across different

tasks. As a matter of fact, we also use a similar low rank

decomposition technique to the one in [1]. However, the

decomposition is used to design a more compact sharing

across tasks.

Domain adaptation. There is a rich body of work in

domain adaptation including the ones in deep learning such

as [9, 31] that minimizes the domain discrepancy. The au-

thors of [19] propose a deep network architecture that can

jointly learn adaptive classifiers and transferable features

from the source to target domain by modeling source clas-

sifier as sum of target classifier and a residual function.

Bousmalis et al. [4] consider an explicit parameterization

of domain-generic and domain-specific that learns to ex-

tract image representations from the partitioned subspaces.

Li et al. [17] propose a meta-learning method that trains

any given model to be more robust to domain shift. Our

method differs to this group of work in two important as-

pects: First, in addition to domain change (e.g. DSLR vs.

webcam), each domain contains a unique set of outputs (i.e.

object categories) in our case. Second, domain adaptation

typically aims to maximise performance on the target do-

main regardless of potential forgetting.

Life-long learning. Another important research direc-

tion in MTL is sequential learning of multiple tasks [21, 30].

While the key idea is to exploit the knowledge from the pre-

vious tasks, learning sequentially typically suffers from for-

getting the previous tasks, a phenomenon referred as “catas-

trophic forgetting” in [8]. Recent work [29, 26] address

(a) series (b) parallel

Figure 2: Series vs parallel residual adapters. (a) typical

module of a residual network inclusive of batch normaliza-

tion layers and residual adapters (in blue). (b) the same con-

figuration, but with parallel adapters instead, resulting in a

simpler network.

this problem by freezing the network parameters for the

old tasks and only updating the parameters of the new task

which leads to a linear growth in the number of total param-

eters with the number of tasks. Another approach is to pre-

serve the previous knowledge by retaining the response of

the original network on the new task [18, 24]. The problem

is also addressed by keeping the network parameters [13]

and features [22] of the new task close to the original ones.

Our method can also be related to both [26, 13], as it retains

the knowledge of previous tasks perfectly, while adding a

small number of extra parameters for the new tasks.

3. Method

This section describes different ways of constructing a

parametric family of neural networks that can tackle mul-

tiple domains while sharing the vast majority of their pa-

rameters. Section 3.1 introduces a number of adapter mod-

ules. These modules attach to a standard deep neural net-

work architecture such as ResNet [11] to steer it to different

problems by means of a small number of adaptation param-

eters. Section 3.2 discusses different ways in which residual

adapters can be injected in a standard neural network, sec-

tion 3.3 how they can be regularized, and section 3.4 how

the parameters can be further compressed.
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3.1. Adapter modules

We begin by reviewing the recent adapter modules

of [23] (section 3.1.1). We then discuss a number of al-

ternative designs that, as shown empirically in section 4,

perform significantly better (3.1.2). These modules are il-

lustrated in fig. 2.

3.1.1 Series residual adapters

The residual adapter modules introduced by [23] consist of

a 1×1 filter bank in parallel with a skip connection (fig. 2.a):

y = ρ(x;α) = x+ diag
1
(α) ∗ x.

If the input tensor has shape x ∈ R
H×W×C , then α ∈

R
C×C has O(C2) parameters. Here we use the operator

diagL(A) ∈ R
L×L×C×D to reshape a matrix A ∈ R

C×D

in a bank of “diagonal” filters:

[diagL(A)]vucd =

{

Adc, v = u = (L− 1)/2 + 1,

0, otherwise.

This operator transforms the matrix A into a 1×1 filter bank

embedded as the central element of a larger L×L filter bank

by appending zeros around it (L is assumed to be odd).

An advantage of this relatively cumbersome notation is

that we can rewrite the module as a single filter:

ρ(x;α) = diag
1
(I + α) ∗ x

The rationale for the additive parameterization is that the

identity function is recovered if α = 0. This is the case

when a strong regularizer is applied on α during learning,

shrinking the weights towards zero. In turn, this allow to

easily control the adaptation strength, and thus generaliza-

tion.

Residual adapters are installed in series with standard fil-

ter banks f ∈ R
L×L×C×C in the neural network. So for

example a typical sequence is

z = ρ(f ∗ x;α) = (diag
1
(I + α) ∗ f) ∗ x.

This can also be interpreted as a low-rank decomposition of

a filter bank g, using f as a basis:

ρ(f ∗ x;α) = g ∗ x, [g]vucd =
∑

d

(1 + αdc)[f ]vucd.

This also means that the adapters can be “fused” with the

convolutional layer f by computing g explicitly, with no

added evaluation cost at test time. However, this operation

is difficult to undo, preventing from retargeting the network

to another problem, which may be inappropriate in certain

applications.

Size of the adapters. In this configuration, the adapter pa-

rameters are a fraction C2/L2C2 = 1/L2 of the filter bank

parameters. For example, for a 3× 3 filter bank, L = 3 and

the adapters are 9 times smaller.

Relationship to batch normalization. For learning, it

is customary to inject batch normalization (BN) layers in

architectures, especially of the very deep variety such as

ResNet. Figure 2.(a) illustrates a complete residual module,

inclusive of BN, ReLU, convolution, and adapter layers for

the series configuration.

3.1.2 Parallel residual adapters

While in the previous section adapters are installed in series

with existing filter banks f , we propose here an alternative

configuration in which adapters are connected in parallel

instead (fig. 2.b):

y = f ∗ x+ diag
1
(α) ∗ x = (f + diagL(α)) ∗ x.

Parallel adapters can also be interpreted as a low-

dimensional parametrization of a filter bank g:

ρ(f ∗ x;α) = g ∗ x,

[g]vucd = [f ]vucd +

{

αdc, v = u = (L− 1)/2 + 1,

0, otherwise.

However, differently from series ones, in this case the de-

composition is affine. The parameters f can be thought as a

universal filter bank which is adjusted additively by modi-

fying the “diagonal” elements of the filters based on α.

Like for the series residual adapters, at test time it is pos-

sible to “fuse” the adapters α and filters f by computing g

explicitly. Differently from that case, however, this additive

change can be easily undone to allow to retarget the network

to a new task.

Size of the adapters. If f ∈ R
L×L×C×C , then α ∈ R

C×C

has the same dimensions as before, so parallel and series

adapters have the same number of parameters. It also bene-

fits from the same shrinking to identity property, as setting

α = 0 recovers f .

Relationship to batch normalization. Just as for series

adapters, injection in a neural network such as ResNet [11]

requires to clarify the relationship between the adapters and

other layers such as BN. This is illustrated in fig. 2.(b). Note

that the parallel configuration is significantly simpler. For

example, compared to the parallel adapters, it saves one BN

layer per application.

Further discussion. For both residual and parallel

adapters, the filters g are points in a certain low-dimensional

affine subspace parameterized by α. However, for residual

adapters the affine subspace is linear (passes through the

origin) and its orientation is variable. For parallel adapters

the subspace is affine and the orientation is fixed (given by

coordinate axis along the “diagonal”).
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3.2. Network architecture

Having chosen a type of adapter modules, the next ques-

tion is how they can be best applied to a deep neural net-

work. Adapters may be applied throughout its depth, or

more adaptation may be required at the shallower, interme-

diate, or deeper layers.

To explore these design strategies, we consider as base-

line model ResNet [11] in the 26-layer configuration (suit-

able for medium-sized images). This network (section 3.2)

is formed of 3 macro-blocks of convolutional layers, each

outputting 64, 128 and 256 feature channels. Each macro-

block contains 4 residual blocks each, each of which con-

sists of two convolutional layers using 3 × 3 filters and a

skip connection. The resolution of the data is halved from

a macro-block to the next using average pooling. Note

that, compared to other architecture such as AlexNet [16]

and VGG16 [27], ResNet has a minimal fully-connected

layer, meaning that abstraction is likely to increase more

uniformly throughout the convolutional part of the network.

In order to experiment with different placements for the

adapters, ResNet is broken down into three trunks: early,

mid, and late, corresponding to the three macro blocks. Em-

pirically (section 4), we apply the adapters to each stage

individually, or to the three stages together. We also experi-

ment with distributing adapters throughout the depth of the

model, but skipping one every two, by adapting only the

second convolutional layer in each residual block.

Note that the adapter dimensionality is determined by the

number of channels in different layers of the architectures.

Adapters applied to deeper layers are therefore bigger be-

cause the number of feature channels increases with depth.

In section 3.4 we show how adapters can be further com-

pressed.

3.3. Regularization: shrinkage vs dropout

One advantage of residual adapters is that they revert to

the original neural network when α is zero. This is true

for series adapter (as noted before) as well as for parallel

adapters.

However, there are many alternative forms of regulariza-

tion that apply to deep networks. For example, BN layers

are noisy by construction, and are known to help regularize

learning. Another well known method is dropout [28]. In

the experiments, shrinkage is compared empirically against

dropout, and the latter is shown to be necessary when using

a bigger pretrained network. Note that, due to the additive

nature of the adapter, dropout in this case is akin to injecting

additive noise to the output of the network filters.

3.4. Cross­domain adapter compression

The size of a residual adapter is determined by the num-

ber of feature channels of the convolutional layer it is ap-

plied to. For deep layers in a neural network, where the

number of channels C can be quite large, the number C2 of

adapter parameters can still be non-negligible.

In order to address this issue, we propose to further com-

press the adapters. A simple approach is to consider a

low rank decomposition α = βγ⊤ of the adapter matrix

α ∈ R
C×C , where β, γ ∈ R

C×K and K ≪ C. Such a

decomposition can be obtained efficiently using the SVD to

minimize the reconstruction residual ‖α − βγ⊤‖F . After

replacing α with β, γ, the latter are fine-tuned again on the

target task to improve performance further. This scheme

uses a fraction 2KC/C2 = 2K/C of the parameters.

Better compression can be obtained by decomposing the

adapters jointly for all domains. In order to do so, let

α1, . . . , αT ∈ R
C×C be domain-specific adapters for T

tasks. After stacking these matrices, computing the SVD

decomposition of the result, and retaining only the top K
singular values, one gets:

[
α1 . . . αT

]
= UΣV =

[
U
...

][
Σ̄

. . .

][
V̄ ⊤
1

|
V̄ ⊤

T

...
...

]

where U, V̄t ∈ R
C×K , U⊤U =

∑

t V̄
⊤
t V̄t = I ∈ R

K×K

and Σ̄ ∈ R
K×K is diagonal. Setting β = U Σ̄ and γt = V̄ ⊤

t ,

we obtain the approximation:

∀t = 1, . . . , T : αt ≈ βγ⊤

t (1)

where β, γt ∈ R
C×K . In this case, β is shared between

domains acting as a common metric and only the factors γt
are fine-tuned to simplify optimization.

The total number of parameters in (β, γ1, . . . , γT ) over

the parameters in (α1, . . . , αT ) for a large number of tasks

T is given by

TCK + CK

TC2
→

K

C
.

In practice, we show that good results can be obtained by

setting K = C/2, therefore with a 2× reduction in the

adapter parameters. Joint compression also allows target

tasks to communicate and further share parameters (β), in

contrast with [23, 25] where adapters are independent. We

show that this results in a multi-task regularizer which al-

lows each domain to further benefit from the knowledge of

the others.

Finally, note that the parallel adapters can be seen as a

parametrization of filters spanning a fixed coordinate sub-

space. Equation (1) provides a more efficient parametriza-

tion of the same subspace, resulting in a higher degree of

parameter sharing.

4. Experiments

This section thoroughly assesses the proposed designs,

including the topology and position of the residual adapters
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(a) early
︷ ︸︸ ︷

(b) mid
︷ ︸︸ ︷

(c) late
︷ ︸︸ ︷

Figure 3: Adapter injection in ResNet-26. Following the scheme of fig. 2, adapters are added to each residual block (here

given by a pair of convolutional blocks). We experiment with focusing adaptation on different segments of the network:

early, mid, and late. adapters

and the regularization and compression strategies intro-

duced in section 3. We evaluate these decisions quanti-

tatively in multi-domain learning (section 4.1) and trans-

fer learning scenarios (section 4.2). We share our code

and models in https://github.com/srebuffi/

residual_adapters.

4.1. Learning multiple domains

We first investigate the problem of learning multiple,

visually-diverse domains using a parameterized neural net-

work family. To this end, we use the recently-introduced

Visual Decathlon benchmark [23]. This benchmark con-

sists of 10 different well known datasets, from ImageNet, to

OmniGlot (glyphs) and German Traffic Signs. In the bench-

mark, images are resized to a common resolution of roughly

72 pixels to accelerate evaluation. Furthermore, given the

different nature and difficulty of the problems, results are

reported both in terms of top-1 accuracy as well as using

a “Decathlon score” that rebalances the different problems

making them comparable [23] (see table 1).

Following [23], we first train the universal parameters

w of the model using the ImageNet data with a 26 layer

ResNet [11] via a stochastic gradient optimization with mo-

mentum and finally obtain 60.32% top-1 accuracy on 72

pixel resized validation set. As the first baseline, we fine-

tune the pre-trained network for each dataset separately, de-

note it as “Finetuning” and report its performance in table 1.

This standard procedure produces a strong baseline with

competitive results, 76.9% mean accuracy and score 3096

(higher than the finetuning score 2500 of [23] due to im-

provements in the data augmentation process). However it

requires ten times more parameter capacity than the base

network, as it needs to train one network for each domain.

Parallel vs Series. Next, we compare different topolo-

gies for the adapter modules, series and parallel (see sec-

tion 3.1). For both settings, we first freeze the weights of

the pre-trained ImageNet model and learn only the adap-

tation parameters α1,··· ,K for each domain. Compared to

fine-tuning, adding class-specific adapters lead to a modest

increase (2× vs 10×) in total number of parameters. De-

spite their compactness, both approaches outperform the

fine-tuning baseline, achieving similar or better accuracy

over all datasets. This indicates that substantial parameter

sharing is possible. We also see that the parallel config-

uration outperforms the series one (by 1 point in average

accuracy and 250 decathlon points).

The parallel configuration has the key advantage of be-

ing plug-and-play whereas the series configuration of [23]

requires the adapters to be included when ResNet is pre-

trained on ImageNet. Indeed, adding them a-posteriori de-

creases performance substantially (-1.73 point in accuracy

on average over 4 datasets). In contrast, parallel adapters

can be appended to any pre-trained network, which allows

them to be used with off-the-shelf models.

Location of residual adapters. Here we study the optimal

placement strategy for the residual adapters throughout the

network. As shown in fig. 3, the network is composed of

three macro blocks, early, mid and late. In the first experi-

ment, we apply the parallel residual adapters to each macro-

block, skip the other two and report the results in table 1

as “Parallel (early,mid,late)”. We observe that it is crucial

to use the adapters in all the macro blocks as these 3 par-

tial models perform significantly worse than the full model.

Still, the adapters are most beneficial in the last block which

suggests that, as expected, filters become more specialized

and domain specific towards the end of network. We also

investigate how the adapters should be distributed within

each residual block. In the default setting, the adapters are

applied at each of the two convolutional layers (see fig. 2).

We evaluate the performance when it is applied to only the

second convolutional layer which reduces the number of

domain specific parameters by half. We observe that this

results in a consistent drop in classification accuracy, sug-

gesting that adapting each convolutional layer is beneficial.

Regularization. One of the challenges of training a single

network for multiple tasks is to find an optimal training set-

ting that can work when tasks differ in their difficulty level

and number of training images. For instance, we observe in

the preliminary experiments that training the adapter mod-

ules on the domains with fewer images per class such as Air-

craft, DTD, Flowers datasets lead to overfitting on the train-

ing set after only a few iterations. To prevent this, we ap-
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Model #par. ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF mean S

# images 1.3m 7k 50k 30k 4k 40k 2k 26k 70k 9k

Finetuning 10× 60.32 60.34 82.12 92.82 55.53 99.42 81.41 89.12 96.55 51.20 76.88 3096

Series Res. adapt. 2× 60.32 61.87 81.22 93.88 57.13 99.27 81.67 89.62 96.57 50.12 77.17 3159

Parallel Res. adapt. 2× 60.32 64.21 81.91 94.73 58.83 99.38 84.68 89.21 96.54 50.94 78.07 3412

Parallel (early) 2× 60.32 50.47 78.58 93.26 58.46 99.00 82.27 87.68 95.39 47.77 75.32 2610

Parallel (mid) 2× 60.32 57.88 79.25 94.24 56.65 98.85 83.43 88.47 95.96 48.98 76.40 2852

Parallel (late) 2× 60.32 61.06 80.58 94.02 57.87 99.19 84.68 89.06 96.30 50.94 77.40 3159

Parallel (half) 1.5× 60.32 61.15 81.24 94.36 58.40 98.85 84.76 88.69 96.19 49.99 77.40 3061

Parallel SVD 1.5× 60.32 66.04 81.86 94.23 57.82 99.24 85.74 89.25 96.62 52.50 78.36 3398

Rebuffi et al. [23] 2× 59.23 63.73 81.31 93.30 57.02 97.47 83.43 89.82 96.17 50.28 77.17 2643

Rosenfeld & Tsotsos [25] 2× 57.74 64.11 80.07 91.29 56.54 98.46 86.05 89.67 96.77 49.38 77.01 2851

Table 1: Reports the (top-1) classification accuracy (%) and decathlon overall score (S) of different models on the decathlon

tasks [23]. The model size (“#par”) is the number of parameters w.r.t. the vanilla network pretrained on ImageNet. Our best

models use the parallel adapters and SVD, indicated as “Parallel SVD”.

ply a stronger regularization by increasing the weight decay

during training time. In particular, we group the datasets

in terms of size of their training set as in [23] and assign

a different weight decay value for each dataset i.e. higher

weight decay for smaller datasets (0.002 for Aircraft, DTD,

Flowers, 0.0005 for Omniglot, Pedestrian and UCF101 and

0.0001 for CIFAR100, GTSRB and SVHN). This forces a

stronger regularization for smaller datasets such that the re-

sulting network has to stay close to the pretrained network.

In addition to shrinkage, we also evaluate the effect of an-

other popular regularization strategy, dropout [28]. In this

experiment, we apply dropout just before the second par-

allel adapter in each residual block as done in the standard

WideResNet [33]. Figure 4a shows classification accuracies

for parallel adapters (with and without dropout) used with

pre-trained ResNet models with varying filter widths. We

see that dropout needs a wider pretrained network (2.5×) to

be effective and that the effect is significant no matter what

the size of the training set with a state-of-the-art 85% accu-

racy using the full training set or an impressive 73% accu-

racy using only 50 images per class. Thus, dropout enables

a better use of the adapters for high capacity pretrained net-

works even when few images per class are available.

Adapter compression. The size of each residual adapter is

dictated by the number of filters in its corresponding con-

volutional layer. In most of the modern deep network ar-

chitectures such as AlexNet [15], ResNet [11], the num-

ber of convolutional filters is designed to double after each

block. This leads to significant increase in the adapter size

at the later layers. While this is found to be beneficial for

a generic network design, we speculate that the dimension-

ality of required residual modules can be reduced without

any drop in classification performance, as some filter com-

binations can be useful for more than one domain. Thus,

we assume that weights of adapter modules α for different

domains are not linearly independent. To test our reason-

ing, we first take the pre-trained ResNet model and freeze

all the weights and only learn domain specific parameters α.

As described in section 3.4, we stack these weights, apply

the SVD and only retain half of the original dimensional-

ity that yields a further 50% reduction in parameters. Fi-

nally, we freeze β weights and fine-tune γ for each domain.

We show in table 1 that this approach preserves the perfor-

mance of the default parallel residual modules while having

lower number of parameters (twice as less adapters param-

eters). As expected, the cross-domain compression acts as

a multi-task regularizer and thus prevents from overfitting

on small datasets. For example, we can point out the sig-

nificant effect on Aircraft, VGG-Flowers or UCF 101 with

respectively an improvement of 1.8, 1.1 and 1.5 accuracy

points with less trainable parameters. For bigger datasets,

the performances are preserved while reducing the number

of parameters.

Comparison to the state-of-the-art. We also compare our

method to the recent work [23, 25] that report results on the

Decathlon dataset and show in table 1 that our method sig-

nificantly outperforms both. Our approach is directly com-

parable to [23] as the same base network is used; in particu-

lar, “Series Res. adapt.” in table 1 is our re-implementation

of [23], which outperforms the original in terms of mean ac-

curacy and Decathlon score (3159 vs 2643). Our final result

(SVD) achieves a boost of 1.2% in classification accuracy

and approximately 750 Decathlon points while employing

only half of the additional parameters used in [23]. Simi-

larly, we obtain a remarkable improvement over [25] (1.4%

in classification accuracy and approximately 550 Decathlon

points) with a significantly more compact architecture.

4.2. Transfer learning results

A desired property for a multiple domain learning

method is the ability to learn a previously unseen domain
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Figure 4: (a,b) analyze on CIFAR100 the influence of pretrained network settings when combined with parallel adapters.

(c,d,e) compare the performances of the different methods on 3 datasets in the Transfer Learning setting.

especially when training data is limited. To assess this

quantitatively, we take the pretrained ResNet model on Im-

ageNet and finetune by using the residual adapters on three

datasets, UCF-101 (“small”), CIFAR-100 (“medium”) and

MIT Places 205 (“large”) with more than 2 million images,

all resized to 72 pixels. We train our method with varying

the percent of training data and report the results in Figure 4.

Both the parallel and series configurations clearly outper-

form finetuning, not only when there is fewer data available

but also for the full size of CIFAR-100 and UCF101. Fine-

tuning only outperforms our method when it is trained on

the full training set of the MIT Places and obtains 51.13%
compared to our 47.2% validation accuracy. As our method

only updates the adapter parameters, finetuning can ex-

ploit the high capacity of the network. Hence, the paral-

lel adapters compare very favorably to standard fine-tuning

except for extremely large datasets. Series adapters are sim-

ilar, but with the key difference that the parallel configura-

tion can be applied to an off-the-shelf model a-posteriori. In

short, parallel adapters are a simple strategy that can replace

and outperform standard fine-tuning in almost every way.

4.3. Influence of the pre­training network

We discussed previously that dropout allows an efficient

use of wider networks with the parallel adapters and fig. 4a

shows that increasing the pretrained network size (from

0.5× to 2.5×) helps even when amount of training data is

limited. Here we also study how the pretrained network af-

fects the performances of transfer learning when it is trained

on a training set sampled from a smaller number of cate-

gories. We observe in fig. 4b that the classification accura-

cies on the target task decrease steadily if we pretrain the

same network with less ImageNet classes. Thus a good net-

work for transfer learning with adapters should be saturated

with as many classes as possible during pretraining.

5. Conclusion

In this paper we have shown that it is possible to build

universal parametric families of networks that can share

parameters very efficiently among multiple domains. We

have proposed and evaluated several design strategies for

the design of such architectures. The best results were ob-

tained by using parallel residual adapter modules distributed

throughout a neural network architecture and further jointly

rank-compressed. The resulting network families are very

compact, resulting in substantial savings in terms of model

storage, exchange, update, and transmission. They also

significantly outperform recent alternatives in benchmarks

such as Visual Decathlon. We have also showed that par-

allel adapter can replace traditional fine-tuning techniques,

achieving far superior performance that those in almost all

cases with no additional constraint or limitation.
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