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Abstract

Learning to generate natural scenes has always been

a challenging task in computer vision. It is even more

painstaking when the generation is conditioned on images

with drastically different views. This is mainly because un-

derstanding, corresponding, and transforming appearance

and semantic information across the views is not trivial.

In this paper, we attempt to solve the novel problem of

cross-view image synthesis, aerial to street-view and vice

versa, using conditional generative adversarial networks

(cGAN). Two new architectures called Crossview Fork (X-

Fork) and Crossview Sequential (X-Seq) are proposed to

generate scenes with resolutions of 64×64 and 256×256

pixels. X-Fork architecture has a single discriminator and

a single generator. The generator hallucinates both the im-

age and its semantic segmentation in the target view. X-Seq

architecture utilizes two cGANs. The first one generates

the target image which is subsequently fed to the second

cGAN for generating its corresponding semantic segmenta-

tion map. The feedback from the second cGAN helps the

first cGAN generate sharper images. Both of our proposed

architectures learn to generate natural images as well as

their semantic segmentation maps. The proposed methods

show that they are able to capture and maintain the true se-

mantics of objects in source and target views better than the

traditional image-to-image translation method which con-

siders only the visual appearance of the scene. Extensive

qualitative and quantitative evaluations support the effec-

tiveness of our frameworks, compared to two state of the

art methods, for natural scene generation across drastically

different views.

1. Introduction

In this work, we address the problem of synthesizing

ground-level images from overhead imagery and vice versa

using conditional Generative Adversarial Networks [20].

Primarily, such models try to generate new images from

conditioning variables as input. Preliminary works in GANs

utilize unsupervised learning to generate samples from la-

tent representations or from a random noise vector [9].

View synthesis is a long-standing problem in computer
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Figure 1: Example images in overhead/aerial view (left) and

ground-level/street-view (right). The images reflect the great di-

versity and richness of features in two views implying that the net-

work needs to learn a lot for meaningful cross-view generation.

We propose to use cGANs to solve this problem.

vision. This task is more challenging when views are drasti-

cally different, fields of views have little or no overlap, and

objects are occluded. Furthermore, two objects that are sim-

ilar in one view may look quite different in another (i.e., the

view-invariance problem). For example, the aerial view of

a building (i.e., the roof) tells very little about the color and

design of the building seen from the street-view. The gener-

ation process is generally easier when the image contains a

single object in a uniform background. In contrast, when the

scene contains multiple objects, generating other view be-

comes much more challenging. This is due to the increase in

underlying parameters that contribute to the variations (e.g.,

occlusions, shadows, etc). An example scenario, addressed

here, is generating street-view (a.k.a ground level) image of

a location from its aerial (a.k.a overhead) imagery. Figure 1

illustrates some corresponding images in two views.

Isola et al. [12] put forward a general-purpose frame-

work to solve multiple image translation tasks. Their work

translates images of objects or scenes which are represented

by RGB images, gradient fields, edge maps, aerial images,

sketches, etcetera between these representations. Thus,

their method operates on representations in a single view.

Formulating our problem as an image translation task be-

tween the views, we use their method as a baseline and ex-

tend it for cross-view image generation.

Inspired by recent works of [12, 35], we formulate the

cross-view image synthesis problem as an image-to-image

translation problem and solve it using the conditional gen-

erative adversarial network. Previous works in view synthe-

sis [8, 38, 31] have generated images with single objects in
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them or natural scenes with very little variation in viewing

angles between the input and target images. The network

learns to copy large parts of image content from the input.

Images in each view of our work contain high degree of

details and clutter (e.g., trees, cars, roads, buildings, etce-

tra) along with variations between the corresponding image

pairs. Thus, the network needs to learn that the correspond-

ing images in each view need to contain all details and place

them in correct positions with proper orientations and incli-

nations. Perhaps the closest work to ours is the one by Zhai

et al. [35]. They generate ground-level panorama from

aerial imagery by predicting ground image features from

aerial image features and use them to synthesize images.

In general, some of the challenges pertaining to cross-

view synthesis task are as follows. First, aerial images cover

wider regions of the ground than the street-view images

whereas street-view images contain more details about ob-

jects (e.g., house, road, trees) than aerial images. So, not

only the information in aerial images is too noisy, but also

less informative for street-view image synthesis. Similarly,

a network needs to estimate a lot regions to synthesize aerial

images. Second, transient objects like cars (also people) are

not present at the corresponding locations in image pairs

since they are taken at different times. Third, houses that are

different in street-view look similar from aerial view. This

causes synthesized street-view images to contain buildings

with similar color or texture, prohibiting diversity in gen-

erated buildings. Fourth challenge regards variation among

roads in two views due to perspective and occlusions. While

the road edges are nearly linear and visible in street-view,

they are often occluded by dense vegetations and contorted

in aerial view. Fifth, when using model generated segmen-

tation maps as ground truth to improve the quality of gen-

erated images, as done here, label noise and model errors

introduce some artifacts in the results.

To address the above challenges, we propose the fol-

lowing methods. We start with a simple image-to-image

translation network of [12] as a baseline. We then propose

two new cGAN architectures that generate images as well

as segmentation maps in target view. Addition of semantic

segmentation generation to the architectures helps improve

the generation of images. The first architecture, called X-

Fork, is a slight modification of the baseline, forking at the

penultimate block to generate two outputs, target view im-

age and segmentation map. The second architecture, called

X-Seq, has a sequence of two baseline networks connected.

The target view image generated by the first network is fed

to the second network to generate its corresponding seg-

mentation map. Once trained, both architectures are able to

generate better images than the baseline that learns to gen-

erate the images only. This implies that learning to generate

segmentation map along with the image indeed improves

the quality of generated image.

2. Related Works

2.1. Relating Aerial and Ground­level Images

Zhai et al. [35] explored to predict the semantic lay-

out of ground image from its corresponding aerial image.

They used the predicted layout to synthesize ground-level

panorama. Prior works relating the aerial and ground im-

ageries have addressed problems such as cross-view co-

localization [18, 33], ground-to-aerial geo-localization [17]

and geo-tagging the cross-view images [34].

Cross-view relations have also been studied between

egocentric (first person) and exocentric (surveillance or

third-person) domains for different purposes. Human re-

identification by matching viewers in top-view and egocen-

tric cameras have been tackled by establishing the corre-

spondences between the views in [1]. Soran et al. [29] uti-

lize the information from one egocentric camera and multi-

ple exocentric cameras to solve the action recognition task.

Ardeshir et al. [2] learn motion features of actions per-

formed in ego- and exocentric domains to transfer motion

information across the two domains.

2.2. Learning View Transformations

Existing works on viewpoint transformation have been

conducted to synthesize novel views of the same objects

[8, 31, 38]. Zhou et al. [38] proposed models that learn to

copy the pixel information from input view and utilize them

to preserve the identity and structure of the objects to gen-

erate new views. Tatarchenko et al. [31] trained an encode-

decoder network to obtain 3D representation models of cars

and chairs which they later used to generate different views

of an unseen car or chair image. Dosovitskiy et al. [8]

learned generative models by training on 3D renderings of

cars, chairs and tables and synthesized intermediate views

and objects by interpolating between views and models.

2.3. GAN and cGAN

Goodfellow et al. [9] are the pioneers of Generative

Adversarial Networks that is very successful at generat-

ing sharp and unblurred images, much better compared to

existing methods such as Restricted Boltzmann Machines

[10, 28] or deep Boltzmann Machines [25].

Conditional GANs are used to synthesize images condi-

tioned on different parameters during both training and test-

ing. Examples include conditioning on labels of MNIST to

generate digits by Mirza et al. [20], conditioning on im-

age representations to translate an image between differ-

ent representations [12], and generating panoramic ground-

level scenes from aerial images of the same location[35].

Pathak et al. [23] generated missing parts in images (i.e.,

inpainting) using networks trained jointly with adversarial

and reconstruction losses and produced sharp and coherent

images. Reed et al. [24] synthesized images conditioned

on detailed textual descriptions of the objects in the scene,

and Zhang et al. [36] improved on that by using a two-stage

Stacked GAN.
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2.4. Cross­Domain Transformations using GANs

Kim et al. [13] utilized the GAN networks to learn

the relation between images in two different domains such

that these learned relations can be transferred between the

domains. Similar work by Zhu et al. [39] learned map-

pings between unpaired images using cycle-consistency

loss. They assume that a mapping from one domain to the

other and back to the first should generate the original im-

age. Both works exploited large unpaired datasets to learn

the relation between domains and formulated the mapping

task between images in different domains as a generation

problem. Zhu et al. [39] compare their generation task with

previous works on paired datasets by Isola et al. [12]. They

conclude that the results with paired images is the upper-

bound for their unpaired examples.

3. Background on GANs

Generative Adversarial Network architecture [9] consists

of two adversarial networks: a generator and a discrimina-

tor that are trained simultaneously based on the min-max

game theory. The generator G is optimized to map a d-

dimensional noise vector (usually d=100) to an image (i.e.,

synthesizing) that is close to the true data distribution. The

discriminator D, on the other hand, is optimized to accu-

rately distinguish between the synthesized images coming

from the generator and the real images from the true data

distribution. The objective function of such a network is

min
G

max
D

LGAN (G,D) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))],
(1)

where, x is real data sampled from data distribution pdata
and z is a d-dimensional noise vector sampled from a Gaus-

sian distribution pz .

Conditional GANs synthesize images looking into some

auxiliary variable which may be labels [20], text embed-

dings [36, 24] or images [12, 39, 13]. In conditional GANs,

both the discriminator and the generator networks receive

the conditioning variable represented by c in Eqn. (2).

The generator uses this additional information during im-

age synthesis while the discriminator makes its decision by

looking at the pair of conditioning variable and the image it

receives. Real pair input to the discriminator consists of true

image from distribution and its corresponding label while

the fake pair consists of synthesized image and the label.

For conditional GAN, the objective function is

min
G

max
D

LcGAN (G,D) = Ex,c∼pdata(x,c)[logD(x, c)]

+Ex′,c∼pdata(x′,c)[log(1−D(x′, c))],
(2)

where x′ = G(z, c) is the generated image.

In addition to the GAN loss, previous works (e.g., [12,

39, 23]) have tried to minimize the L1 or L2 distances be-

tween real and generated image pairs. This step aids the

generator to synthesize images very similar to the ground

truth. Minimizing L1 distance generates less blurred im-

ages than minimizing the L2 distance. That is, using the

L1 distance increases image sharpness in generation tasks.

Therefore, we use the L1 distance in our method. The ex-

pression to minimize the L1 distance is
min

G
LL1(G) = Ex,x′∼pdata(x,x′)[|| x− x′ ||1], (3)

The objective function for such conditional GAN net-

work is the sum of Eqns. (2) and (3).

Considering the synthesis of the ground level imagery

(Ig) from aerial image (Ia), the conditional GAN loss and

L1 loss are represented as in Eqns. (4) and (5), respectively.

For ground to aerial synthesis, the roles of Ia and Ig are

reversed.
min

G
max

D
LcGAN (G,D) = EIg,Ia∼pdata(Ig,Ia)[logD(Ig, Ia)]

+EIa,I′

g
∼pdata(Ia,I′

g)
[log(1−D(I ′g, Ia))],

(4)

min
G

LL1(G) = EIg,I′

g
∼pdata(Ig,I′

g)
[|| Ig − I ′g ||1], (5)

where, I ′g = G(Ia). We employ the network of [12] as our

baseline architecture. The objective function for the base-

line is the sum of conditional GAN loss in Eqn. (4) and L1
loss in Eqn. (5), as represented in Eqn. (6):

Lnetwork = LcGAN (G,D) + λLL1(G), (6)

where, λ is the balancing factor between the losses.

4. Proposed cGAN-based Approaches

In this section, we propose two architectures for the task

of cross-view image synthesis.

4.1. Crossview Fork (X­Fork)

Our first architecture, known as Crossview Fork, is

shown in Figure 2a. The discriminator architecture is taken

from the baseline [12] but the generator network is forked

to synthesize images as well as segmentation maps. The

fork-generator architecture is shown in Figure 3. The first

six blocks of decoder share the weights. This is because the

image and segmentation map contain a lot of shared fea-

tures. The number of kernels used in each layer (block) of

the generator are shown below the blocks.

Even though the X-Fork architecture generates the cross-

view image and its segmentation map, the discriminator re-

ceives only the real/fake image pairs but not the segmenta-

tion pairs during the training. In other words, the generated

segmentation map serves as an auxiliary output. Notice that

here we are primarily interested in generating higher qual-

ity images rather than the segmentation maps. Thus, the

conditional GAN loss for this network is still the same as

in Eqn. (4). To use the segmentation information, in ad-

dition to the L1 distance between the generated image and

the real image, we also include the L1 distance between the

ground-truth segmentation and the generated segmentation

map into the loss.
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(a) X-Fork architecture.
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(b) X-Seq architecture.

Figure 2: Our proposed network architectures. a) X-Fork: Simi-

lar to baseline architecture except that G forks to synthesize image

and segmentation map in target view, and b) X-Seq: a sequence of

two cGANs, G1 synthesizes target view image that is used by G2

for segmentation map synthesis in corresponding view. In both ar-

chitectures, Ia and Ig are real images in aerial and ground views,

respectively. Sg is the ground-truth segmentation map in street-

view obtained using pre-trained RefineNet [16]. I
′

g and S
′

g are

synthesized image and segmentation map in ground view.

Aerial 
Image

Street view 
Image

Street view 
Segmentation

64 128
256 512 512 512 512 512

                   Upconvolution + BN + 
Dropout + ReLU(UBDR)

512 512 512 512 512256128
64

64
128256512

512 512 512 512

                   Convolution + BN
+ lReLU (CBL)

Convolution 
+ lReLU (CL)

        &          &                    Upconvolution + BN 
             + ReLU (UBR)

Figure 3: Generator of X-Fork architecture in Figure 2a. BN

means batch-normalization layer. The first six blocks of decoder

share weights, forking at the penultimate block. The number of

channels in each convolution layer are shown below each blocks.

4.2. Crossview Sequential (X­Seq)

Our second architecture uses a sequence of two cGAN

networks as shown in Figure 2b. The first network gener-

ates cross-view images similar to the baseline. The second

network receives images from the first generator as con-

ditioning input to synthesize the segmentation map in the

same view. Thus, the first network is a cross-view cGAN

while the second one is an image-to-segmentation cGAN.

The whole architecture is trained end-to-end so that both

cGANs learn simultaneously. Intuitively, the input-output

dependency between the cGANs constrains the generated

images and the segmentation maps, and in effect improves

the quality of the generated outputs. Training the first net-

work to generate better cross-view images enhances gen-

eration of better segmentation maps by the second genera-

tor. At the same time, the feedback from the better trained

second network forces the first network to improve its gen-

eration. Thus, when both networks are trained in tandem,

better quality images are generated compared to the base-

line.

Replacing G and D in Eqns. (4) and (5) by G1 and D1,

respectively, we obtain the equivalent expressions for losses

of cross-view cGAN network in this architecture. For the

image-to-segmentation cGAN network, the images gener-

ated by G1 are considered as conditioning inputs. We now

express the cGAN loss for this network as

min
G2

max
D2

LcGAN (G2, D2) = EI′

g,Sg
∼pdata(I′

g,Sg)[logD2(Sg, I
′

g)]+

ES′

g,I
′

g
∼pdata(S′

g,I
′

g)
[log(1−D2(S

′

g, I
′

g))],
(7)

where, I ′g = G1(Ia) and S′

g = G2(I
′

g). The L1 loss for the

image-to-segmentation network is

min
G2

LL1(G2) = ESg,S′

g
∼pdata(Sg,S′

g)
[|| Sg − S′

g) ||1], (8)

The overall objective function for the X-Seq network is

LX−Seq = LcGAN (G1, D1) + λLL1(G1) + LcGAN (G2, D2) + λLL1(G2). (9)

Eqn. (9) is optimized during the training to learn the

parameters G1, D1, G2 and D2.

5. Experimental Setting

5.1. Dataset

For the experiments in this work, we use the cross-view

image dataset provided by Vo et al. [33]. This dataset con-

sists of more than one million pairs of street-view and over-

head view images collected from 11 different cities in the

US. We select 76,048 image pairs from Dayton and create

a train/test split of 55,000/21,048 pairs. We call it Dayton

Dataset. The images in the original dataset have resolution

of 354×354. We resize them to 256×256. Some example

images are shown in Figure 1.

We also recruit the CVUSA dataset [34] for direct com-

parison of our work with Zhai et al. [35]. This dataset con-

sists of 35,532/8,884 train/test split of image pairs. Follow-

ing Zhai et al., the aerial images are center-cropped to 224

× 224 and then resized to 256 × 256. We only generate

a single camera-angle image rather than the panorama. To

do so, we take the first quarter of the ground level images

and segmentations from the dataset and resize them to 256

× 256 in our experiments. Please see Figure 7 for some

images from the CVUSA dataset.

The two networks, X-Fork and X-Seq, learn to gener-

ate the target view images and segmentation maps condi-

tioned on source view image. Training procedure requires

the images as well as their semantic segmentation maps.
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Figure 4: Original image pairs from training set (left), images

with segmentation masks from pre-trained RefineNet [16] overlaid

on original images (middle) and images with segmentation masks

generated by X-Fork network overlaid on original images (right).

The CVUSA dataset has annotated segmentation maps for

ground view images, but for Dayton dataset such informa-

tion is not available. To compensate, we use one of the

leading semantic segmentation methods, known as the Re-

fineNet [16]. This network is pre-trained on outdoor scenes

of the Cityscapes dataset [6] and is used to generate the

segmentation maps that are utilized as ground truth maps.

These semantic maps have pixel labels from 20 classes (e.g.,

road, sidewalk, building, vegetation, sky, void, etc). Figure

4 shows image pairs from the dataset and their segmentation

masks overlaid in both views. As can be seen, the segmen-

tation mask (label) generation process is far from perfect

since it is unable to segment parts of buildings, roads, cars,

etcetera in images.

5.2. Implementation Details

We use the conditional GAN architecture of [12] as the

baseline and call it Pix2pix. The generator is an encoder-

decoder network with blocks of Convolution, Batch Nor-

malization [11] and activation layers. Leaky ReLU with a

slope of 0.2 is used as the activation function in the encoder,

whereas the decoder has ReLU activation except for its final

layer where Tanh is used. The first three blocks of the de-

coder have a Dropout layer in between Batch normalization

and activation layer, with dropout rate of 50%. The discrim-

inator is similar to the encoder of the generator. The only

difference is that the final layer uses sigmoid non-linearity

that gives the probability of its input being real.

The used convolutional kernels are 4×4 with a stride of

2. The upconvolution in the decoder is Torch[5] implemen-

tation of SpatialFullConvolution, and upsamples the in-

put by 2. For the encoder and the discriminator, convolu-

tional operation downsamples the images by 2. No pooling

operation is used in the networks. The λ used in Eqns. (6)

and (9) is the balancing factor between the GAN loss and L1
loss. Its value is fixed at 100. Following the idea to smooth

the labels by [30] and demonstration of its effectiveness by

Salimans et al. [26], we use one-sided label smoothing to

stabilize the training process, replacing 1 by 0.9 for real la-

bels. During the training, we utilized different data augmen-

tation methods like random jitter and horizontal flipping of

images. The network is trained end-to-end with weights ini-

tialized with a random Gaussian distribution with zero mean

and 0.02 standard deviation. It is implemented in Torch [5].

6. Results

Our experiments are conducted in a2g (aerial-to-ground)

and g2a (ground-to-aerial) directions on Dayton dataset and

a2g direction only on CVUSA dataset. We consider im-

age resolutions of 64×64 and 256×256 on Dayton dataset

while for experiments on CVUSA dataset, 256×256 reso-

lution images are used.

First, we run experiments on lower resolution images

(64×64) for proof of concept. Encouraging qualitative and

quantitative results in this resolution motivated us to apply

our methods to higher resolution (256×256) images. The

lower resolution experiments are carried out for 100 epochs

with batch size of 16, whereas the higher resolution experi-

ments are conducted for 35 epochs with batch size of 4.

We conduct experiments on CVUSA dataset for compar-

ison with Zhai et al.’s work [35]. Following their setup, we

train our architectures for 30 epochs, using the Adam opti-

mizer and moment parameters β1 = 0.5 and β2 = 0.999.

It is not straightforward to evaluate the quality of synthe-

sized images [3]. In fact, evaluation of GAN methods con-

tinues to be an open problem [32]. A common evaluation

method is to show the generated images to human observers

and ask their opinion about the images. Human judgment is

based on the response to the question: Is this image (image-

pair) real or fake? Alternatively, the images generated by

different generative models can be pitted against each other

and the observer is asked to select the image that looks more

real. But in experiments involving natural scenes, such eval-

uation methods are more challenging as multiple factors of-

ten affect the quality of the generated images. For example,

the observer may not be sure whether to base his judgment

on better visual quality, higher sharpness at object bound-

aries, or more semantic information present in the image

(e.g., multiple objects in the images, more details on ob-

jects, etc). Therefore, instead of behavioral experiments,

we illustrate qualitative results in Figures 5, 6 and 7 and

conduct an in-depth quantitative evaluation on test images

of two datasets.

6.1. Qualitative Evaluation

For 64×64 resolution experiments, the networks are

modified by removing the last two blocks of CBL from dis-

criminator and encoder, and the first two blocks of UBDR

from decoder of the generator. We run experiments on all

three methods. Qualitative results are depicted in Figure 5.

The results affirm that the networks have learned to trans-

fer the image representations across the views. Generated

ground level images clearly show details about road, trees,

sky, clouds, and pedestrian lanes. Trees, grass, road, house

roofs are well rendered in the synthesized aerial images.

For 256×256 resolution synthesis, we conduct experi-

ments on all three architectures and illustrate the qualitative

results on Dayton and CVUSA datasets in Figures 6 and 7
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a2g
a2g synthesis g2a

Pix2pix      X-Fork       X-Seq
g2a synthesis

Pix2pix      X-Fork       X-Seq

Figure 5: Example images generated by different methods in

lower (64 × 64) resolution in a2g and g2a directions.

a2g
a2g synthesis g2a

Pix2pix      X-Fork       X-Seq
g2a synthesis

Pix2pix      X-Fork       X-Seq

Figure 6: Example images generated by different methods in

higher (256 × 256) resolution in a2g and g2a directions.

respectively. For Dayton dataset, we observe that the im-

ages generated in higher resolution contain more details of

objects in both views and are less granulated than those in

lower resolution. Houses, trees, pedestrian lanes, and roads

look more natural. Test results on CVUSA dataset show that

images generated by proposed methods are visually better

compared to Zhai et al. [35] and Pix2pix [12] methods.

6.2. Quantitative Evaluation

The quantitative results of our experiments on both

datasets are presented in Tables 1-4. 64×64 and 256×256

in column headers of the tables refer to results obtained for

two resolutions of Dayton dataset. Next, we discuss the

quantitative measures used to evaluate our methods.

6.2.1 Inception Score

A common quantitative GAN evaluation measure is the

Inception Score [26]. The core idea behind the inception

score is to assess how diverse the generated samples are

within a class while being meaningfully representative of

the class at the same time.

InceptionScore, I = exp(ExDKL(p(y|x)||p(y))), (10)

where, x is a generated sample and y is its predicted label.

a2g synthesis   Zhai et al          Pix2pix             X-Fork             X-Seq

Figure 7: Qualitative results of our methods and baselines on

CVUSA dataset in a2g direction. First two columns show true

image pairs, next four columns show images generated by Zhai et

al. [35], Pix2pix[12], X-Fork and X-Seq methods, respectively.

We can not use the Inception model because the datasets

that we use include natural outdoor images that do not fit

into ImageNet classes [7]. To solve this, we use the AlexNet

model [14] trained on Places dataset [37] with 365 cate-

gories to compute the inception score. The Places dataset

has images similar to those in our datasets. The scores are

reported in Table 1. The scores for X-Fork generated im-

ages are closest to that of real data distribution for Day-

ton dataset in lower resolution in both directions and also

in higher resolution in a2g direction. The X-Seq method

works best for CVUSA dataset and for g2a synthesis in

higher resolution over Dayton dataset.

We observe that the confidence scores predicted by the

pre-trained model on our dataset are dispersed between

classes for many samples and not all the categories are rep-

resented by the images. Therefore, we compute inception

scores on Top-1 and Top-5 classes, where ”Top-k” means

that top k predictions for each image are unchanged while

the remaining predictions are smoothed by an epsilon equal

to (1 -
∑

(top-k predictions))/(n-k classes). Results on top-k

classes follow a similar pattern as in all classes (except for

Top-1 class on lower resolution in g2a over Dayton dataset).

In addition to inception score, we compute the top-k pre-

diction accuracy between real and generated images. We

use the same pre-trained Alexnet model to obtain annota-

tions for real images and class predictions for generated im-

ages. We compute top-1 and top-5 accuracies. Results are

shown in Table 2. For each setting, accuracies are computed

in two ways: 1) considering all images, and 2) considering

real images whose top-1 (highest) prediction is greater than

0.5. Below each accuracy heading, the first column consid-

ers all images whereas the second column computes accu-
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Table 1: KL divergence scores between conditional and marginal probabilities (Inception Score).

Dir. Methods 64×64 256×256 CVUSA

⇄ all Top-1 Top-5 all Top-1 Top-5 all Top-1 Top-5
classes class classes classes class classes classes class classes

Zhai et al. [35] – – – – – – 1.8434 1.5171 1.8666
Pix2pix [12] 1.8029 1.5014 1.9300 2.8515 1.9342 2.9083 3.2771 2.2219 3.4312

a2g X-Fork 1.9600 1.5908 2.0348 3.0720 2.2402 3.0932 3.4432 2.5447 3.5567
X-Seq 1.8503 1.4850 1.9623 2.7384 2.1304 2.7674 3.8151 2.6738 4.0077

Real Data 2.2096 1.6961 2.3008 3.7090 2.5590 3.7900 4.9971 3.4122 5.1150

Pix2pix [12] 1.7970 1.3029 1.6101 3.5676 2.0325 2.8141 – – –
g2a X-Fork 1.8557 1.3162 1.6521 3.1342 1.8656 2.5599 – – –

X-Seq 1.7854 1.3189 1.6219 3.5849 2.0489 2.8414 – – –

Real Data 2.1408 1.4302 1.8606 3.8979 2.3146 3.1682 – – –

Table 2: Accuracies: Top-1 and Top-5.

Dir. Methods 64×64 256×256 CVUSA

⇄ Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Zhai et al. [35] – – – – – – – – 13.97 14.03 42.09 52.29
Pix2pix [12] 7.90 15.33 27.61 39.07 6.8 9.15 23.55 27.00 7.33 9.25 25.81 32.67

a2g X-Fork 16.63 34.73 46.35 70.01 30.00 48.68 61.57 78.84 20.58 31.24 50.51 63.66
X-Seq 4.83 5.56 19.55 24.96 30.16 49.85 62.59 80.70 15.98 24.14 42.91 54.41

Pix2pix [12] 1.65 2.24 7.49 12.68 10.23 16.02 30.90 40.49 – – – –
g2a X-Fork 4.00 16.41 15.42 35.82 10.54 15.29 30.76 37.32 – – – –

X-Seq 1.55 2.99 6.27 8.96 12.30 19.62 35.95 45.94 – – – –

Table 3: KL Divergence between model and data distributions.

Dir. Method 64×64 256×256 CVUSA

Zhai et al. [35] – – 27.43± 1.63

Pix2pix [12] 6.29± 0.8 38.26± 1.88 59.81± 2.12

a2g X-Fork 3.42 ± 0.72 6.00± 1.28 11.71 ± 1.55
X-Seq 6.22± 0.87 5.93 ± 1.32 15.52± 1.73

Pix2pix [12] 6.39± 0.90 7.88± 1.24 –
g2a X-Fork 4.45 ± 0.84 6.92 ± 1.15 –

X-Seq 7.20± 0.92 7.07± 1.19 –

racies the second way. For lower resolution images on Day-

ton dataset and for experiments on CVUSA dataset, X-Fork

method outperforms the remaining methods. For higher res-

olution images, our methods show dramatic improvements

over Pix2pix in the a2g direction, whereas X-Seq works

best in the g2a direction.

6.2.2 KL(model ‖ data)

We next compute the KL divergence between the model

generated images and the real data distribution for quan-

titative analysis of our work, similar to some generative

works [4, 21]. We again use the same pre-trained Alexnet

as in the previous subsection. The lower KL score implies

that the generated samples are closer to the real data dis-

tribution. The scores are provided in Table 3. As it can

be seen, our proposed methods generate much better results

than existing generative methods on both datasets. X-Fork

generates images very similar to real distribution in all ex-

periments except on the higher resolution a2g experiment

where X-Seq is slightly better than X-Fork.

6.2.3 SSIM, PSNR and Sharpness Difference

As in some generative works [19, 15, 27, 22], we also

employ Structural-Similarity (SSIM), Peak Signal-to-Noise

Ratio (PSNR) and Sharpness Difference measures to evalu-

ate our methods.

SSIM measures the similarity between the images based

on their luminance, contrast and structural aspects. SSIM

value ranges between -1 and +1. A higher value means

greater similarity between the images being compared. It

is computed as

SSIM(Ig, I
′

g) =
(2µIgµI′

g
+ c1)(2σIgI′

g
+ c2)

(µ2
Ig

+ µ2
I′

g
+ c1)(σ2

Ig
+ σ2

I′

g
+ c2)

(11)

PSNR measures the peak signal-to-noise ratio between

two images to assess the quality of a transformed (gener-

ated) image compared to its original version. The higher

the PSNR, the better is the quality of generated image. It is

computed as

PSNR(Ig, I
′

g) = 10log10(
max2

I′

g

mse
) (12)

where, mse(Ig, I
′

g) =
1

n

∑n

i=1(Ig[i]− I ′g[i])
2,

and maxIg′
= 255 (maximum pixel intensity value).
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Table 4: SSIM, PSNR and Sharpness Difference between real data and samples generated using different methods.

Dir. Methods 64×64 256×256 CVUSA

⇄ SSIM PSNR Sharp Diff SSIM PSNR Sharp Diff SSIM PSNR Sharp Diff

Zhai et al. [35] – – – – – – 0.4147 17.4886 16.6184
Pix2pix [12] 0.4808 19.4919 16.4489 0.4180 17.6291 19.2821 0.3923 17.6578 18.5239

a2g X-Fork 0.4921 19.6273 16.4928 0.4963 19.8928 19.4533 0.4356 19.0509 18.6706
X-Seq 0.5171 20.1049 16.6836 0.5031 20.2803 19.5258 0.4231 18.8067 18.4378

Pix2pix [12] 0.3675 20.5135 14.7813 0.2693 20.2177 16.9477 – – –
g2a X-Fork 0.3682 20.6933 14.7984 0.2763 20.5978 16.9962 – – –

X-Seq 0.3663 20.4239 14.7657 0.2725 20.2925 16.9285 – – –

Sharpness difference measures the loss of sharpness dur-

ing image generation. To compute the sharpness difference

between the generated image and the true image, we fol-

low [19] and compute the difference of gradients between

the images as

SharpDiff.(Ig, I
′

g) = 10log10(
max2

I′

g

grads
), (13)

where, grads =
1

N

∑
i

∑
j(|(▽iIg+▽jIg)-(▽iI

′

g+▽jI
′

g)|)

and, ▽iI = |Ii,j − Ii−1,j | , ▽jI = |Ii,j − Ii,j−1|.

Sharpness difference in Eqn. (13) is inverse of grads.

We would like the grads to be small, so the higher the over-

all score the better.

The scores are reported in Table 4. Over Dayton dataset,

X-Seq model works the best in a2g direction while X-Fork

outperforms the rest in the g2a direction. On CVUSA, X-

Fork improves over Zhai et al. by 5.03% in SSIM, 8.93%

in PSNR, and 12.35% in Sharpness difference.

Because there is no consensus in evaluation of GANs,

we had to use several scores. Theis et al. [32] show that

these scores often do not agree with each other and this was

observed in our evaluations as well. So, it is difficult to

infer whether X-Fork or X-Seq is better. We find that the

proposed methods are consistently superior to the baselines.

6.3. Generated Segmentation Maps

Our methods generate semantic segmentation maps

along with the real images in cross-view. The overlay

of segmentation maps generated by X-Fork network (pre-

trained RefineNet) on Dayton images are presented in the

last (second) column of Figure 4. Please see supplemen-

tary materials for more qualitative results on semantic seg-

mentation. The overlaid images show that the network is

able to learn the semantic representations of object classes.

For quantitative analysis, segmentation maps generated by

our methods are compared against the segmentation maps

obtained by applying RefineNet [16] to the target images.

We compute per-class accuracies and mean IOU for the

most common classes in our datasets: ‘vegetation’, ‘road’

and ‘building’ in aerial segmentation maps plus the ‘sky’ in

ground segmentations. The scores are reported in Table 5.

Even though X-Fork does better than X-Seq, we find that

both methods achieve good scores for segmentation.

Table 5: Evaluation Scores for segmentation maps.

Methods a2g g2a

Per-class acc. mIOU Per-class acc. mIOU

X-Fork 0.6262 0.4163 0.5473 0.2157
X-Seq 0.4783 0.3187 0.4990 0.2139

Real pairs X-Seq Closest images from training set

Figure 8: Along the columns, we show real image pairs, cor-

responding street-view image synthesized by X-Seq method and

three nearest images in the training set retrieved by computing L1

distance between generated image and training set images.

6.4. kNN

Here, we test whether our proposed architectures have

actually learned the representations between images in two

views rather than just memorizing the blocks from training

images to generate new ones. For this, we pick three im-

ages from the training set that are closest to the generated

images in terms of L1 distance. As shown in Figure 8, the

generated images have subtle differences with the training

set images implying that our network has indeed learned

important semantic representations in input view needed to

transform the source image to target view.

7. Discussion and Conclusion

We explored image generation using conditional GANs

between two drastically different views. Generating seman-

tic segmentations together with images in target view helps

the networks learn better images compared to the baselines.

Extensive qualitative and quantitative evaluations testify the

effectiveness of our methods. Using higher resolution im-

ages provided significant improvements in visual quality

and added more details to synthesized images. The chal-

lenging nature of the problem leaves room for further im-

provements. Code and data will be shared.
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