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Abstract

In this paper, we propose an efficient algorithm to di-

rectly restore a clear image from a hazy input. The pro-

posed algorithm hinges on an end-to-end trainable neural

network that consists of an encoder and a decoder. The

encoder is exploited to capture the context of the derived

input images, while the decoder is employed to estimate the

contribution of each input to the final dehazed result us-

ing the learned representations attributed to the encoder.

The constructed network adopts a novel fusion-based strat-

egy which derives three inputs from an original hazy im-

age by applying White Balance (WB), Contrast Enhancing

(CE), and Gamma Correction (GC). We compute pixel-wise

confidence maps based on the appearance differences be-

tween these different inputs to blend the information of the

derived inputs and preserve the regions with pleasant vis-

ibility. The final dehazed image is yielded by gating the

important features of the derived inputs. To train the net-

work, we introduce a multi-scale approach such that the

halo artifacts can be avoided. Extensive experimental re-

sults on both synthetic and real-world images demonstrate

that the proposed algorithm performs favorably against the

state-of-the-art algorithms.

1. Introduction

The single image dehazing problem [9, 45] aims to esti-

mate the unknown clean image given a hazy or foggy im-

age. This is a classical image processing problem, which

has received active research efforts in the vision commu-

nities since various high-level scene understanding tasks

[19, 29, 32, 40] require the image dehazing to recover the

clear scene. Early approaches focus on developing hand-

crafted features based on the statistics of clear images, such

∗Part of this work was done while Wenqi Ren was with Tencent AI Lab

as a Visiting Scholar.
†Corresponding author.

(a) Hazy input (b) WB of (a) (c) CE of (a) (d) GC of (a)

(e) Our result (f) Weight of (b) (g) Weight of (c) (h) Weight of (d)

Figure 1. Image dehazing result. We exploit a gated fusion net-

work for single image deblurring. (a) Hazy input. (b)-(d) are the

derived inputs. (f)-(h) are learned confidence maps for (b), (c) and

(d), respectively. (e) Our result.

as dark channel prior [9] and local max contrast [2, 33]. To

avoid hand-crafted priors, recent work [4, 14, 28, 41] au-

tomatically learns haze relevant features by convolutional

neural networks (CNNs). In the dehazing literature, the haz-

ing process is usually modeled as,

I(x) = J(x)t(x) +A
(

1− t(x)
)

, (1)

where I(x) and J(x) are the observed hazy image and the

haze-free scene radiance, A is the global atmospheric light,

and t(x) is the scene transmission describing the portion of

light that is not scattered and reaches the camera sensors. In

practice, transmission and atmospheric light are unknown.

Thus, most dehazing methods try to estimate the transmis-

sion t(x) and the atmospheric light A, given a hazy image.

Estimating transmission from a hazy image is a severely

ill-posed problem. Some approaches try to use visual cues

to capture deterministic and statistical properties of hazy

images [3, 6, 8, 30]. However, these transmission ap-

proximations are inaccurate, especially in the cases of the

scenes where the colors of objects are inherently similar

to those of atmospheric lights. Note that such an erro-

neous transmission estimation directly affects the quality
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of the recovered image, resulting in undesired haze arti-

facts. Instead of using hand-crafted visual cues, CNN-based

methods [4, 28] are proposed to estimate the transmissions.

However, these methods still follow the conventional de-

hazing methods in estimating atmospheric lights to recover

clear images. Thus, if the transmissions are not estimated

well, they will interfere the following atmospheric light es-

timation and thereby lead to low-quality results.

To address the above issues, we propose a novel end-

to-end trainable neural network that does not explicitly es-

timate the transmission and atmospheric light. Thus, the

artifacts arising from transmission estimation errors can be

avoided in the final restored results. The proposed neural

network is built on a fusion strategy which aims to seam-

lessly blend several input images by preserving only the

specific features of the composite output image.

There are two major factors in hazy images that need to

be dealt with. The first one is the color cast introduced by

the atmospheric light. The second one is the lack of vis-

ibility due to attenuation. Therefore, we tackle these two

problems by deriving three inputs from the original image

with the aim of recovering the visibility of the scene in at

least one of them. The first input ensures a natural rendition

(Figure 1(b)) of the output by eliminating chromatic casts

caused by the atmospheric light. The second contrast en-

hanced input yields a better global visibility, but mainly in

the thick hazy regions (e.g., the rear wall in Figure 1(c)).

However, the contrast enhanced images are too dark in the

light hazy regions. Hence, to recover the light hazy regions,

we find that the gamma corrected images restore informa-

tion of the light hazy regions well (e.g., the front lawn in

Figure 1(d)). Consequently, the three derived inputs are

gated by three confidence maps (Figure 1(f)-(g)), which aim

to preserve the regions with good visibility.

The contributions of this work are three-fold. First,

we propose a deep end-to-end trainable neutral network

that restores clear images without assuming any restric-

tions on scene transmission and atmospheric light. Second,

we demonstrate the utility and effectiveness of a gated fu-

sion network for single image dehazing by leveraging the

derived inputs from an original hazy image. Finally, we

train the proposed model with a multi-scale approach to

eliminate the halo artifacts that hurt image dehazing. We

show that the proposed dehazing model performs favorably

against the state-of-the-arts.

2. Related Work

There mainly exist three kinds of methods for image

dehazing: multi-image based methods, hand-crafted priors

based methods, and data-driven methods.

Multi-image aggregation. Early methods often require

multiple images to deal with the dehazing problem [23, 13,

36]. Kopf et al. [13] used an approximated 3D model of the

scene for dehazing. Different polarized filters were used

in [36] to capture multiple images of the same scene, and

then degrees of polarization were used for haze removal.

Narasimhan and Nayar [23] also used the differences be-

tween multiple images for estimating the haze properties.

All these methods make the same assumption of using

multiple images in the same scene. However, there only

exists one image for a specific scene in most cases.

Hand-crafted priors based methods. Different image pri-

ors have been explored for single image dehazing in pre-

vious methods [16]. Tan et al. [33] enhanced the visibility

of hazy images by maximizing the contrast. The dehazed

results of this method often present color distortions since

this method is not physically valid. He et al. [9] presented a

dark channel prior (DCP) for outdoor images, which asserts

that the local minimum of the dark channel of a haze-free

image is close to zero. The DCP has been shown effec-

tive for image dehazing, and a number of methods improve

[9] in terms of efficiency [35] or quality [24]. Fattal [7]

discovered that pixels of image patches typically exhibit

a one-dimensional distribution, and used it to recover the

scene transmission. However, this approach cannot guaran-

tee a correct classification of patches. Recently, Berman et

al. [3] observed that colors of a haze-free image can be well

approximated by a few hundred distinct colors, and then

proposed a dehazing algorithm based on this prior.

Another line of research tries to make use of a fusion

principle to restore hazy images in [1, 5]. However, these

methods need complex blending based on luminance, chro-

matic and saliency maps. In contrast, we introduce a gated

fusion based single image dehazing technique that blends

only the derived three input images.

All of the above approaches strongly rely on the accuracy

of the assumed image priors, so may perform poorly when

the assumed priors are insufficient to describe real-world

images. As a result, these approaches tend to introduce un-

desirable artifacts such as color distortions.

Data-driven methods. Tang et al. [34] combined four

types of haze-relevant features with Random Forest to es-

timate the transmission. Zhu et al. [46] created a linear

model for modeling the scene depth of the hazy image un-

der a color attenuation prior, and learned the parameters of

the model in a supervised manner. However, these methods

are still developed based on hand-crafted features.

Recently, CNNs have also been used for image recover-

ing problems [4, 14, 39, 42, 43, 44]. Cai et al. [4] proposed

a DehazeNet and a BReLU layer to estimate the transmis-

sions from hazy inputs. In [28], a coarse-scale network was

first used to learn the mapping between hazy inputs and

their transmissions, and then a fine-scale network was ex-

ploited to refine the transmission. One problem of these

CNNs based methods [4, 27, 28] is that all these meth-

ods require an accurate transmission and atmospheric light
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Figure 2. The coarsest level network of GFN. The network contains layers of symmetric encoder and decoder. To retrieve more contextual

information, we use Dilation Convolution (DC) to enlarge the receptive field in the convolutional layers in the encoder block. Skip shortcuts

are connected from the convolutional feature maps to the deconvolutional feature maps. Three enhanced versions are derived from the input

hazy image. Then, these three inputs are weighted by the three confidence maps learned by our network, respectively.

estimation step for restoring the clear image. Although

the recent AOD-Net [14] bypasses the estimation step, this

method still needs to compute a newly introduced variable

K(x) which integrates both transmission t(x) and atmo-

spheric light A. Therefore, AOD-Net still falls into a phys-

ical model in (1).

Different from these CNNs based approaches, our pro-

posed network is built on the principle of image fusion, and

is learned to produce the sharp image directly without esti-

mating transmission and atmospheric light. The main idea

of image fusion is to combine several images into a single

one, retaining only the most significant features. This idea

has been successfully used in a number of applications such

as image editing [25] and video super-resolution [18].

3. Gated Fusion Network

This section presents the details of our gated fusion net-

work that employs an original hazy image and three derived

images as inputs. We refer to this network as Gated Fu-

sion Network, or GFN, as shown in Figure 2. The central

idea is to learn the confidence maps to combine several in-

put images into a single one by keeping only the most sig-

nificant features of them. Obviously, the choice of inputs

and weights is application-dependent. By learning the con-

fidence map for each input, we demonstrate that our fusion

based method is able to dehaze images effectively.

3.1. Derived Inputs

We derive several inputs based on the following obser-

vations. The first one is that the colors in hazy images often

change due to the influence of the atmospheric light. The

second one is the lack of visibility in distant regions due to

scattering and attenuation phenomena. Based on these ob-

servations, we generate three inputs that recover the color

and visibility of the entire image from the original hazy im-

age. We first estimate the White Balanced (WB) image Iwb

of the hazy input I to recover the latent color of the scene.

Then we extract visible information including the Contrast

(a) Hazy inputs (b) WB (c) CE (d) GC

Figure 3. We derive three enhanced versions from an input hazy

image. These three derived inputs contain different important vi-

sual cues of the input hazy image.

Enhanced (CE) image Ice and the Gamma Corrected (GC)

image Igc to yield a better global visibility.

White balanced input. Our first input is a white balanced

image which aims to eliminate chromatic casts caused by

the atmospheric color. In the past decades, a number of

white balancing approaches [11] have been proposed. In

this paper, we use the gray world assumption [26] based

technique. Despite its simplicity, this low-level approach

has shown to yield comparable results to those of more

complex white balance methods [17]. The gray world as-

sumption is that given an image with a sufficient quantity

of color variations, the average value of the Red, Green and

Blue components of the image should average out to a com-

mon gray value. This assumption is in generally valid in any

given real-world scene since the variations in colors are ran-

dom and independent. It would be safe to say that given a

large number of samples, the average should tend to con-

verge to the mean value, which is gray. White balancing

algorithms can make use of this gray world assumption by

forcing images to have a uniform average gray value for the
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R, G, and B channels. For example, if an image is shot un-

der a hazy weather condition, the captured image will have

an atmospheric light A cast over the entire image. The ef-

fect of this atmospheric light cast disturbs the gray world

assumption of the original image. By imposing the assump-

tion on the captured image, we would be able to remove

the atmospheric light cast and re-acquire the colors of our

original scene. Figure 3(b) demonstrates such an effect.

Although white balancing could discard the color shift-

ing caused by the atmospheric light, the results still present

low contrast. To enhance the contrast, we introduce the fol-

lowing two derived inputs.

Contrast enhanced input. Inspired by the previous dehaz-

ing approaches [1] and [5], our second input is a contrast

enhanced image of the original hazy input. Ancuti and An-

cuti [1] derived a contrast enhanced image by subtracting

the average luminance value Ĩ of the entire image I from

the hazy input, and then using a factor µ to linearly increase

the luminance in the recovered hazy regions as follows:

Ice = µ
(

I− Ĩ
)

, (2)

where µ = 2(0.5 + Ĩ). Although Ĩ is a good indicator of

image brightness, there is a problem in this input, especially

in denser haze regions. The main reason is that the negative

values of (I− Ĩ) may dominate the contrast enhanced input

as Ĩ increases. As shown in Figure 3(c), the dark image

regions tend to be black after contrast enhancing.

Gamma corrected input. To overcome the dark limitation

in Ice, we create another type of contrast enhanced image

using gamma correction:

Igc = αIγ . (3)

Gamma correction is a nonlinear operation which is used to

encode (γ < 1) and decode (γ > 1) luminance or tristim-

ulus values in image content, In this paper, we use α = 1
and a decoding gamma correction γ = 2.5. We find that us-

ing these parameters achieves satisfactory results, as shown

in Figure 3(d). The derived inputs by decoding gamma cor-

rection effectively remove the severe dark aspects of Ice and

enhance the visibility of the original image I.

3.2. Network Architecture

We use an encoder-decoder network, which has been

shown to produce good results for a number of genera-

tive tasks such as image denoising [20], image harmoniza-

tion [37], time-lapse video generation [38]. In particular,

we choose a variation of the residual encoder-decoder net-

work model for image dehazing. We use skip connections

between encoder and decoder halves of the network, where

features from the encoder side are concatenated to be fed

to the decoder. This significantly accelerates the conver-

gence [20] and helps generate a much clear dehazed image.

Figure 4. Multi-scale GFN structure.

We perform an early fusion by concatenating the original

hazy image and three derived inputs in the input layer. The

network is of a multi-scale style in order to prevent halo arti-

facts, which will be discussed in more details in Section 3.3.

We show a diagram of GFN in Figure 2. Note that we only

show the coarsest level network of GFN in Figure 2. To

leverage more context without losing local details, we use

dilation network to enlarge the receptive field in the con-

volutional layers. Rectification layers are added after each

convolutional or deconvolutional layer. The convolutional

layers act as a feature extractor, which preserve the pri-

mary information of scene colors in the input layer, mean-

while eliminating the unimportant colors from the inputs.

The deconvolutional layers are then combined to recover

the weight maps of three derived inputs. In other words,

the outputs of the deconvolutional layers are the confidence

maps of the derived input images Iwb, Ice and Igc.

We use 3 convolutional blocks and 3 deconvolutional

blocks with stride 1 in each scale. Each layer is of the same

type: 32 filters of the size 3 × 3 × 32 except the first and

last layers. The first layer operates on the input image with

kernel size 5 × 5, and the last layer is used for confidence

map reconstruction. In this work, we demonstrate that ex-

plicitly modeling confidence maps has several advantages.

These are discussed later in Section 5.2. Once the confi-

dence maps for the derived inputs are predicted, they are

multiplied by the three derived inputs to give the final de-

hazed image in each scale:

J = Cwb ◦ Iwb + Cce ◦ Ice + Cgc ◦ Igc, (4)

where ◦ denotes element-wise multiplication, and Cwb, Cce,

and Cgc are the confidence maps for gating Iwb, Ice, and Igc,

respectively.

3.3. The multi­Scale Refinement

The network described in the previous subsection is

subject to halo artifacts, particularly for strong transitions

within the confidence maps [1, 5]. Hence, we perform es-
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timation by varying the image resolution in a coarse-to-fine

manner to prevent halo artifacts. The multi-scale approach

is motivated by the fact that the human visual system is sen-

sitive to local changes (e.g., edges) over a wide range of

scales. As a merit, the multi-scale approach provides a con-

venient way to incorporate local image details over varying

resolutions.

Figure 4 shows the proposed multi-scale fusion network,

in which the coarsest level network is shown in Figure 2.

Finer level networks basically have the same structure as

the coarsest network. However, the first convolutional layer

takes the sharp image from a previous stage as well as its

own hazy image and derived inputs, in a concatenated form.

Each input size is twice the size of its coarser scale network.

There is an up-sampling layer before the next stage. At the

finest scale, the original high-resolution image is restored.

The multi-scale approach desires that each scale output

is a clear image of the corresponding scale. Thus, we train

our network so that all intermediate dehazed images should

form a pyramid of the sharp image. The MSE criterion is

applied to every level of the pyramid. In specific, given a

collection of N training pairs Ii and Ji, where Ii is a hazy

image and Ji is the clean version as the ground truth, the

loss function at the k-th scale is defined as follows:

Lcont(Θ, k) =
1

N

N
∑

i=1

‖F(Ii,k,Θ, k)− Ji,k‖
2
, (5)

where Θ keeps the weights of the convolutional and decon-

volutional kernels.

3.4. Adversarial Loss

Recently, generative adversarial networks (GANs) are

reported to generate sharp realistic images [22]. Therefore,

we follow the architecture introduced in [22], and build a

discriminator to take the output of the finest scale or the

ground-truth sharp image as input. The adversarial loss is

defined as follows:

Ladv = E
J∽pclear(J)

[

logD(J)
]

+ E
I∽phazy(I)

[

log
(

1−D(F(I))
)]

,
(6)

where F is our multi-scale network in Figure 4, and D is the

discriminator. Finally, by combining the multi-scale content

loss and adversarial loss, our final loss function is

Ltotal = Lcont + 0.001Ladv. (7)

Through optimizing the network parameters, we train the

model in the combination of two losses, multi-scale content

loss (5) and adversarial loss (6).

4. Experimental Results

We quantitatively evaluate the proposed algorithm on

both synthetic dataset and real-world hazy photographs,

with comparisons to the state-of-the-art methods in terms

of accuracy and visual effect. The implementation code can

be found at our project website.

4.1. Implementation Details

In our network, patch size is set as 128 × 128. We use

ADAM [12] optimizer with a batch size 10 for training. The

initial learning rate is 0.0001 and we decrease the learning

rate by 0.75 every 10,000 iterations. For all the results re-

ported in the paper, we train the network for 240,000 itera-

tions, which takes about 35 hours on an Nvidia K80 GPU.

Default values of β1 and β2 are used, which are 0.9 and

0.999, respectively, and we set weight decay to 0.00001.

Since our approach dehazes images in a single forward pass,

it is computationally very efficient. Using a NVidia K80

GPU, we can process a 640× 480 image within 0.3s.

4.2. Training Data

Generating realistic training data is a major challenge

for tasks where ground truth data cannot be easily col-

lected. For training our neural network, we adopt the NYU2

dataset [31] and the synthetic method in [28] to synthe-

size the training data. We use 1400 clean images and the

corresponding labeled depth maps from the NYU Depth

dataset [31] to construct the training set. Given a clear im-

age J, a random atmospheric light A ∈ (0.8, 1.0) and the

ground truth depth d, we use t(x) = e−βd(x) to synthesize

transmission first, then generate hazy image using the phys-

ical model (1). For scattering coefficient β, we randomly

select it from 0.5 to 1.5 as suggested in [28]. We use 7 dif-

ferent β for each clean image, so that we can synthesize

different haze concentration images for each input image.

In addition, 1% Gaussian noise is added to each hazy input

to increase the robustness of the trained network.

4.3. Quantitative Evaluation on Synthetic Dataset

For quantitative evaluation, we use the remaining 49

clean images in the label data except the 1400 training im-

ages from the NYU2 dataset [31] to synthetic hazy images

with known depth map d as like in [28]. We evaluate these

methods by two criteria: Structure Similarity (SSIM) and

Peak Signal to Noise Ratio (PSNR). In this section, we com-

pare the proposed algorithm with the following seven meth-

ods on the synthesized datasets.

Priors based methods [10, 21, 3]. We use three prior based

methods for comparisons. The first one is the DCP pro-

posed by He et al. [9, 10]. This is a commonly used baseline

approach in most dehazing papers. The second is Boundary

Constrained Context Regularization (BCCR) proposed by

Meng et al. [21] and the third is the Non-local Image De-

hazing (NLD) algorithm in [3].

Learning based methods [46, 4, 28, 14]. We also use

four learning based methods for comparisons. The first
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(a) Hazy inputs (b) DCP (c) BCCR (d) NLD (e) CAP (f) MSCNN (g) DehazeNet (h) AOD-Net (i) GFN (j) Ground truths

Figure 5. Dehazed results on the synthetic dataset. Dehazed results generated by the priors based methods [10, 21, 3] have some color

distortions in some regions. The learning based methods [46, 28, 4, 14] tend to underestimate haze concentration so that the dehazed results

have some remaining hazes. In contrast, the dehazed results by our method are close to the ground-truth images.

Table 1. Average PSNR and SSIM values of dehazed results on the synthetic dataset.

PSNR/SSIM

DCP [10] BCCR [21] NLD [3] CAP [46] MSCNN [28] DehazeNet [4] AOD-Net [14] GFN (G) GFN (G + D)

Light 18.74/0.77 17.72/0.76 18.61/0.71 21.92/0.83 22.34/0.82 24.87/0.84 22.64/0.85 24.78/0.85 24.60/0.83

Medium 18.68/0.77 17.54/0.75 18.47/0.70 21.40/0.82 21.21/0.80 23.37/0.83 21.33/0.84 23.68/0.84 23.55/0.84

Heavy 18.67/0.77 17.43/0.75 18.21/0.70 20.21/0.80 20.51/0.79 21.98 /0.82 20.24/0.81 22.32/0.83 22.75/0.82

Random 18.58/0.77 17.35/0.75 18.28/0.71 19.99/0.78 20.01/0.78 20.97/0.80 19.36/0.78 22.41/0.81 22.20/0.82

one learns a linear model based on Color Attenuation Prior

(CAP). The second and third are CNNs based methods of

DehazeNet [4] and MSCNN [28]. These methods imple-

ment image dehazing by learning the map between hazy in-

puts and their transmission based on convolutional neural

networks. The last AOD-Net [14] is also a CNNs based

method, but integrates the transmission and atmospheric

light into a new variable.

Figure 5 shows some dehazed images by different meth-

ods. Since we directly restore the final dehazed image with-

out transmission estimation in our algorithm, we only com-

pare the final dehazed results with other methods. The pri-

ors based image dehazing methods [10, 21, 3] overestimate

the haze thickness, so the dehazed results tend to be darker

than the ground truth images and contain color distortions

in some regions, e.g., the desks in the second row and the

wall in the last row in Figure 5(b)-(d). We note that the de-

hazed results by CAP [46], DehazeNet [4], MSCNN [28]

and AOD-Net [14] methods are similar as shown in Fig-

ure 5(e)-(h). Although the dehazed results by CAP, De-

hazeNet, MSCNN and AOD-Net are closer to ground truth

than the results by [10, 21, 3], there are still some remaining

haze as shown in Figure 5(e)-(h).

In contrast, the dehazed results generated by our ap-

proach in Figure 5(i) are close to the ground truth haze-free

images in Figure 5(j). Overall, the dehazed results by the

proposed algorithm have higher visual quality and fewer

color distortions. The qualitative results are also reflected

by the quantitative PSNR and SSIM metrics in Table 1.

In addition, to further test the dehazing effect on differ-

ent haze concentration, we use three scattering coefficient

β = 0.8, 1.0 and 1.2 to synthesize three haze concentra-

tion on the 49 testing images, respectively. As shown in

Table 1, our method without adversarial loss performs fa-

vorably against the state-of-the-art image dehazing meth-

ods [10, 21, 3, 46, 28, 4, 14] on all of these haze concen-

trations. However, if we use adversarial loss, the network

can still recover better dehazed results than without adding

adversarial loss in terms of SSIM in some cases. Although

the SSIM values by [14] are close to ours in some cases, the

PSNR generated by our method are higher than [14] by up

to 2dB, especially for heavy haze concentration images.

RESIDE dataset. Recently, a dehazing benchmark is pro-

posed in [15], which is an extended version of our data in

Table 1. We further evaluate our method on the RESIDE

dataset in Table 2. As shown, our method performs favor-
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(a) Hazy inputs (b) DCP [10] (c) BCCR [21] (d) NLD [3] (e) CAP [46] (f) MSCNN [28] (g) DehazeNet [4] (h) AOD-Net [14] (i) GFN

Figure 6. Qualitative comparison of different methods on real-world images. Best viewed on high-resolution display.

Table 2. Average PSNR/SSIM of dehazed results on the SOTS

dataset from RESIDE.

NLD [3] MSCNN [28] DehazeNet [4] AOD-Net [14] GFN

17.27/0.75 17.57/0.81 21.14/0.85 19.06/0.85 22.30/0.88

ably against other competitors [3, 4, 14, 28] in this dataset.

4.4. Evaluation on Real Images

To further evaluate the proposed method, we use the real

image dataset in Fattal [7] and compare with different state-

of-the-art methods. Figure 6 shows the qualitative com-

parison of results with the seven state-of-the-art dehazing

algorithms [9, 21, 3, 28, 4, 14] on challenging real-world

images. Figure 6(a) shows the hazy images to be dehazed.

Figure 6(b)-(h) shows the results of DCP [9], BCCR [21],

NLD [3], CAP [46], MSCNN [28], DehazeNet [4] and

AOD-Net [14], respectively. The results generated by the

proposed algorithm are given in Figure 6(i). As shown in

Figure 6(b)-(d), most of the haze is removed by DCP, BCCR

and NLD methods, and the details of the scenes and objects

are well restored. However, the results significantly suffer

from over-enhancement (for instance, the sky region of the

first and second images are much darker than it should be

as shown in Figure 6(b)-(d), and there are some color dis-

tortions in the second and last images in Figure 6(c) and

(d)). This is because these algorithms are based on hand-

crafted priors which have an inherent problem of overesti-

mating the transmission as discussed in [9, 46]. The results

of CAP [46] do not have the over-estimation problem and

maintain the original colors of the objects as shown in Fig-

ure 6(e). But have some remaining haze in the dehazed re-

sults. For example, the third image. The dehazed results

by MSCNN [28] and DehazeNet [4] have a similar problem

as [46] tends to have some remaining haze. Especially the

last image in Figure 6(f) and the first image in Figure 6(g).

The method of AOD-Net [14] generates relatively clear re-

sults, but the images in first three rows are still dark than

ours, while the results in last two rows still have some re-

maining haze as shown in Figure 6(h). In contrast, the de-

hazed results by our method are clear and the details of the

scenes are enhanced moderately.

5. Analysis and Discussions

5.1. Effectiveness of Multi­Scale Network

In this section we analyze how the multi-scale network

helps refine dehazed results. The recovered images from

coarser-scale network provide additional information in the

finer-scale net, which can greatly improve the final dehazed

results. We show the dehazed results generated by only us-

ing the finest-scale and the proposed multi-scale networks

in Figure 7. Figure 7 shows that dehazed results and cor-

responding confidence maps. The first row is the dehazed

results by only using the finest scale network and the second

row is the results by the proposed multi-scale approach. As
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(a) Maps of Iwb (b) Maps of Ice (c) Maps of Igc (d) GFN

Figure 7. Effectiveness of the proposed multi-scale approach. The

first and second rows are the results by single and multi-scale net-

works, respectively. The zoomed-in regions are shown in the left-

top corner in each image.

(a) Hazy inputs (b) Without gating (c) Without fusion (d) GFN

Figure 8. Effectiveness of the gated fusion network.

shown in the first row in Figure 7(a) and (c), there are ob-

vious halo around the head of the person in the confidence

maps, so the final dehazed result in the first row Figure 7(d)

has the halo artifacts. In contrast, the dehazed results gener-

ated by the proposed multi-scale approach has a more clean

edge as shown in the second row in Figure 7(d).

5.2. Effectiveness of Gating Strategy

Image fusion is a method to blend several images into a

single one by retaining only the most useful features. To

blend effectively the information of the derived inputs, we

filter their important information by computing correspond-

ing confidence maps. Consequently, in our gated fusion net-

work, the derived inputs are gated by three pixel-wise confi-

dence maps that aim to preserve the regions with good visi-

bility. Our fusion network has two advantages: the first one

is that it can reduce patch-based artifacts (e.g. dark chan-

nel prior [9]) by single pixel operations, and the other one

is that it can eliminate the influence caused by transmission

and atmospheric light estimation.

To show the effectiveness of fusion network, we also

train an end-to-end network without fusion process. This

network has the same architecture as DFN except the input

is hazy image and output is dehazed result without confi-

dence maps learning. In addition, we also conduct a ex-

periment based on equivalent fusion strategy, i.e., all the

three derived inputs are weighted equally using 1/3. Fig-

ure 8 shows visual comparisons of on two real-world ex-

amples with different settings. In these examples, the ap-

proach without gating generates very dark images in Fig-

ure 8(b), and the method without fusion strategy generates

results with color distortion and dark regions as shown in

(a) Hazy input (b) DCP [9] (b) DehazeNet [4] (d) GFN

Figure 9. A failure case for a thick foggy image.

Figure 8(c). In contrast, our results recover most scene de-

tails and maintain the original colors.

5.3. Limitations

The proposed DFN performs well in general natural im-

ages. However, as the previous methods [28, 4], a limi-

tation of our method is that the DFN cannot handle cor-

rupted images with very large fog as shown in Figure 9. As

heavy haze seriously interferes the atmospheric light (which

is not a constant), the hazy model does not hold for such

examples. Figure 9(d) shows an example where the pro-

posed method does not generate a clear image. Future work

will consider this problem with haze-free reference retrieval

based on an effective deep neural network model.

6. Conclusions

In this paper, we addressed the single image dehazing

problem via a multi-scale gated fusion network (GFN),

a fusion based encoder-decoder architecture, by learning

confidence maps for derived inputs. Compared with pre-

vious methods which impose restrictions on scene trans-

mission and atmospheric light, our proposed GFN is easy

to implement and reproduce since the proposed approach

does not rely on the estimations of transmission and atmo-

spheric light. In the approach, we first applied white balance

method to recover the scene color, and then generated two

contrast enhanced images for better visibility. Third, we

carried out the GFN to estimate the confidence map for each

derived input. Finally, we used the confidence maps and de-

rived inputs to render the final dehazed result. The exper-

imental results on synthetic and real-world images demon-

strate the effectiveness of the proposed approach.
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