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Abstract

Action detection and temporal segmentation of actions in

videos are topics of increasing interest. While fully super-

vised systems have gained much attention lately, full anno-

tation of each action within the video is costly and imprac-

tical for large amounts of video data. Thus, weakly super-

vised action detection and temporal segmentation methods

are of great importance. While most works in this area as-

sume an ordered sequence of occurring actions to be given,

our approach only uses a set of actions. Such action sets

provide much less supervision since neither action order-

ing nor the number of action occurrences are known. In

exchange, they can be easily obtained, for instance, from

meta-tags, while ordered sequences still require human an-

notation. We introduce a system that automatically learns to

temporally segment and label actions in a video, where the

only supervision that is used are action sets. An evaluation

on three datasets shows that our method still achieves good

results although the amount of supervision is significantly

smaller than for other related methods.

1. Introduction

Due to the huge amount of publicly available video

data, there is an increasing interest in methods to ana-

lyze these data. In the field of human action recogni-

tion, considerable advances have been made in recent years.

A lot of research has been published on action recogni-

tion, i.e. action classification on pre-segmented video clips

[35, 30, 11]. While current methods already achieve high

accuracies on large datasets such as UCF-101 [32] and

HMDB-51 [14], the assumption of having pre-segmented

action clips does not apply for most realistic tasks. There-

fore, there is a growing interest in efficient methods for

finding actions in temporally untrimmed videos. With the

availability of large scale datasets such as Thumos [9], Ac-

tivity Net [5], or Breakfast [12], many new approaches to

temporally locate and classify actions in untrimmed videos

emerged [27, 21, 39, 29, 24, 18]. However, these ap-

proaches usually rely on fully supervised data, i.e. the exact

temporal location of each action occurring in the training

videos is known. Creation of such training data requires

manual annotation on video frame level which is very ex-

pensive as well as impractical for large datasets. Thus, there

is a need for methods that can learn temporal action seg-

mentation and labeling with less supervision. A commonly

made assumption is that instead of full supervision, only

an ordered sequence of the actions occurring in the video

is provided [2, 15, 6, 25]. Although this kind of weak su-

pervision is already much easier to obtain, e.g. from movie

scripts or subtitles, for a vast amount of real world tasks,

such information still can not be assumed to be available.

Instead, weak labels often arise in form of meta tags or un-

ordered lists from document indexing.

To address this problem, we propose a weakly super-

vised method that can learn temporal action segmentation

and labeling from unordered action labels, which we refer to

as action sets. In contrast to the above mentioned methods

(cf . Figure 1a), we assume that neither ordering nor num-

ber of occurrences of actions is provided during training.

Instead, only a set of actions occurring within the video is

given (cf . Figure 1b). This task is much more difficult than

the case where ordered action transcripts are given. Con-

sider, for instance, a video with T frames and a transcript

of C ordered actions. Then, there are
(C+T )!
C!T ! possible la-

belings for the video. If the actions are not ordered, there

are already CT possible labelings. For a very short video of

100 frames and C = 5, this means that using unordered ac-

tions sets as supervision already allows for about 1060 times

more possible labelings than when provided ordered action

transcripts.

In order to deal with such an enormously large search

space, we propose three model components that aim at

decomposing the search space on three different levels of

granularity. The coarsest level is addressed by a context

model that restricts the space of possible action sequences.

On a finer level, a length model restricts the durations of

actions to a reasonable length. On the lowest, most fine-
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(a) weak supervision: ordered action sequences

action A action B action A action C

video to be segmented

(b) weak supervision: action sets

action A

action B

action C

video to be segmented

Figure 1. (a) Weak supervision with ordered action sequences [2, 15, 6]. The number of actions and their ordering is known. (b) Weak

supervision with action sets (our setup). Note that neither action orderings nor the number of occurrences per action are provided.

grained level, a frame model provides class probabilities for

each video frame.

Note that context models [15, 25] and length models [24]

have been used before. However, in these works either or-

dered action transcripts for the context model or framewise

annotations for the length models are provided. To the best

of our knowledge, we are the first to use these models with-

out being provided any training data that allows to directly

infer such models from the video annotation.

In an extensive evaluation, we investigate the impact of

each component within the system. Moreover, temporal

segmentation and action labeling quality is evaluated on un-

seen videos alone and on videos with action sets given at

inference time as additional supervision.

2. Related Work

Strong feature extractors developed in classical action

recognition such as Fisher vectors of improved dense trajec-

tories [35] or a variety of sophisticated CNN methods [30,

8, 11, 4] have also pushed the advances in untrimmed action

segmentation.

When processing untrimmed videos, actions can either

be localized in the temporal domain only [2, 24, 39, 29, 25,

15, 17, 26], or in the spatio-temporal domain [33, 7, 20, 38].

For the latter, videos are usually constrained to contain only

few action instances. While most approaches in this area are

fully supervised, [38] propose a weakly supervised method

for actor-action segmentation that is based on a multi-task

ranking model.

In this work, we focus on localizing actions in the tem-

poral domain only. In this setting, videos either con-

tain multiple actions of several classes occurring densely

throughout the whole video [12, 27], or sparsely [9], i.e.

most of the video is background and all instances of a

single class or a small set of classes need to be detected

in the video. Well studied methods from classical action

recognition are frequently used as framewise feature extrac-

tors [21, 27, 39, 24]. Although CNN features are successful

in some action detection methods [39, 29], they usually re-

quire to be retrained using full supervision. Improved dense

trajectories, on the contrary, are extracted in an unsuper-

vised manner, making them the features of choice for most

weakly supervised approaches [2, 15, 6, 25].

In the context of fully supervised action detection, most

approaches use a sliding window to efficiently segment

a video [21, 27] and rely on CNNs or recurrent net-

works [39, 31, 29] that can not be used if only weak su-

pervision is available. The same holds for [24], who model

context and length information, which is also done in our

approach. They show that length and context information

significantly improve action segmentation systems, using a

Poisson distribution to model action lengths and a language

model to incorporate action context information. Other

fully supervised methods guided by grammars have been

proposed in [22, 34, 13]. Note that in contrast to our task,

their length and context model can be easily estimated from

the frame-level training annotations. The challenge for our

problem formulation, however, is that no annotations that

allow a direct estimation of a context or length model are

provided.

When working with weak supervision, existing methods

use ordered action sequences as annotation. Early works

suggest to get action sequences from movie scripts [16, 3].

Alayrac et al. [1] propose to localize specific actions in a

video from narrated instructions. In [19], it is proposed to

use automatic speech recognition and align textual descrip-

tions, in their cases recipes, to the recognized spoken se-

quence. Bojanowski et al. [2] address the task of aligning

actions to frames. In their work, ordered action sequences

are assumed to be provided during training and testing and

only an alignment between the frames and the action se-

quence is learned. Kuehne et al. [15] extend their approach

from [13] to weak supervision by inferring a linear segmen-

tation from ordered action sequences and training a classi-

cal GMM+HMM speech recognition system on iteratively

refined segmentations. A further extension of this idea has

been proposed by Richard et al. [25], where the GMM is

replaced by a recurrent neural network. Recently, Huang et

al. [6] proposed to use connectionist temporal classification

(CTC) to learn temporal action segmentation from weakly

supervised videos. In order to avoid degenerate alignments

between video frames and provided action transcripts, they
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propose to use a visual similarity measure as an extension

to the classical CTC approach.

In contrast to the approaches of [15, 2, 6, 25], our ap-

proach only uses action sets, i.e. a much weaker supervi-

sion. Consequently, the way our model is learned is also

different from the above mentioned approaches.

Another recently published and related method by Wang

et al. [36] addresses the task of detecting an action in a

video with sparse action occurrences. More precisely, for a

given action class, they generate action proposals and train

a neural network to distinguish instances of this action from

background in the video. Being designed to distinguish ac-

tions from background in a video, their method is not suited

for densely labeled videos containing many difference ac-

tions followed by one another, as it is the case in this paper.

3. Temporal Action Labeling

Task Definition. Let (x1, . . . , xT ) be a video with T
frames and xt are the framewise feature vectors. The task is

to assign an action label c from a predefined set of possible

labels C to each frame of the video. Following the notation

of [24], connected frames of the same label can be inter-

preted as an action segment of class c and length l. With

this notation, the goal is to cut the video into an unknown

number of N action segments, i.e. to define N segments

with lengths (l1, . . . , lN ) and action labels (c1, . . . , cN ). To

simplify notation, we abbreviate sequences of video frames,

lengths, and classes by x
T
1 , lN1 , and c

N
1 , where the subscript

is the start index of the sequence and the superscript the

ending index.

Model Definition. In order to solve this task, we pro-

pose a probabilistic model and aim to find the most likely

segmentation and segment labeling of a given video,

(̂lN1 , ĉN1 ) = argmax
N,lN1 ,cN

1

{

p(cN1 , lN1 |xT
1 )

}

, (1)

where ln is the length of the n-th segment and cn is the

corresponding action label. We use a background class for

all parts of the video in which no action (or no action of

interest) occurs. So, all video frames belong to one partic-

ular action class and segment. Hence, lN1 and c
N
1 define a

segmentation and labeling of the complete video.

In order to build a probabilistic model, we first decom-

pose Equation (1) using Bayes rule,

(̂lN1 , ĉN1 ) = argmax
N,lN1 ,cN

1

{

p(cN1 )p(lN1 |cN1 )p(xT
1 |c

N
1 , lN1 )

}

.

(2)

The first factor, p(cN1 ) is the coarsest model, controlling

the likelihood of action sequences. The second factor, on a

finer level, is a length model that controls the action dura-

tions, and the third factor finally provides a likelihood of the

video frames for a specific segmentation and labeling. The

same factorization has also been proposed in [24] for fully

supervised action detection. We would like to emphasize

that our model only shares the factorization with the work

of [24]. Due to weak supervision, the actual models we use

and the way they are trained are highly different.

3.1. Weak Supervision

While most works on weakly supervised temporal action

segmentation use ordered action sequences as supervision

[6, 15, 2], in our task, only unordered sets of actions occur-

ring in the video are provided, cf . Figure 1b. Notably, nei-

ther the order of the actions nor the number of occurrences

per action is known. Assuming the training set consists of I
videos, then the supervision available for the i-th video is a

set Ai ⊆ C of actions occurring in the video.

During inference, no action sets are provided for the

video and the model has to infer an action labeling from

the video frames only. As an additional task, we also dis-

cuss the case where action sets are given for inference, see

Section 4.6.

In the following, the models for the three factors p(cN1 ),
p(lN1 |cN1 ), and p(xT

1 |c
N
1 , lN1 ) from Equation (2) are intro-

duced.

3.2. Context Modeling with Context­free Gram­
mars

Our first step to handle the huge search space is to restrict

the possible action orderings using a context-free grammar

G in order to model the context prior p(cN1 ). Once the gram-

mar is generated, define

p(cN1 ) =

{

const, if cN1 ∈ G,

0, otherwise.
(3)

Concerning the maximization in Equation (2), this means

that each action sequence generated by G has the same prob-

ability and all other sequences have zero probability, i.e.

they can not be inferred. We propose the following strate-

gies to obtain a grammar:

Naive Grammar. All action sequences that can be cre-

ated using elements from each action set from the training

data are possible. Formally, this means

Gnaive =

I
⋃

i=1

A∗
i , (4)

where i indicates the i-th training sample and A∗
i is the

Kleene closure of Ai.

Monte-Carlo Grammar. We randomly generate a large

amount of k action sequences. Each sequence is generated

by randomly choosing a training sample i ∈ {1, . . . , I}.

Then, actions are uniformly drawn from the corresponding
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action set Ai until the accumulated estimated means λc of

all drawn actions exceed the video length Ti. The mean

lengths λc are estimated action class durations, see Sec-

tion 3.3.

Text-Based Grammar. Frequently, it is possible to ob-

tain a grammar from external text sources, e.g. from web

recipes or books. Given some natural language texts, we

enhance the monte-carlo grammar by mining frequent word

combinations related to the action classes. Consider two

action classes v and w, for instance butter pan and

crack egg. If either of the words butter or pan is pre-

ceding crack or egg in the textual source, we increase the

count N(v, w) by one. This way, word conditional proba-

bilities

p(w|v) =
N(v, w)

∑

w̃ N(v, w̃)
(5)

are obtained that have a high value if v precedes w fre-

quently and a low value otherwise. The actual construction

of the grammar follows the same protocol as the monte-

carlo grammar with the only difference that the actions are

not drawn uniformly from the action set but according to the

distribution p(w|v), where v is the previously drawn action

class.

3.3. Length Model from Action Sets

While a grammar already introduces some ordering con-

straints, the search space is still tremendously large, consid-

ering that actions can be of arbitrary and even practically

unreasonable durations. Therefore, as a second step, we es-

timate a length model out of the scarce information we get

from the training data. In order to model the length fac-

tor p(lN1 |cN1 ), we assume conditional independence of each

segment length and further drop the dependence of all class

labels but the one of the current segment, i.e.

p(lN1 |cN1 ) =

N
∏

n=1

p(ln|cn). (6)

Each class-conditional p(l|c) is modeled with a Poisson dis-

tribution for class c.

For the estimation of the class-wise Poisson distribu-

tions, only the action sets Ai provided in the training data

can be used. Ideally, the free parameter of a Poisson distri-

bution, λc, should be set to the mean length of action class

c. Since this can not be estimated from the action sets, we

propose two strategies to approximate the mean duration of

each action class.

Naive Approach. In the naive approach, the frames of

each training video are assumed to be uniformly distributed

among the actions in the respective action set. The average

length per class can then be computed as

λc =
1

|Ic|

∑

i∈Ic

Ti

|Ai|
, (7)

where Ic = {i : c ∈ Ai} and Ti is the length of the i-th
video.

Loss-based. The drawback of the naive approach is that

actions that are usually short are assumed to be longer if the

video is long. Instead, we propose to estimate the mean of

all classes together. This can be accomplished by minimiz-

ing a quadratic loss function,

I
∑

i=1

∑

c∈Ai

(λc − Ti)
2 subject to λc > lmin, (8)

where lmin is a minimal action length. For minimization,

we use constrained optimization by linear approximation

(COBYLA) [23].

Note that the true mean length of action c is likely to be

smaller than λc since actions may occur multiple times in

a video. However, this can not be included into the length

model since the action sets do not provide such information.

3.4. Multi­task Learning of Action Frames

Given the grammar and the length model that already

strongly restrict the search space, the last missing factor is

the actual framewise model providing a likelihood for each

class to be present in a given frame.

In order to model this last factor from Equation (2), we

train a network with |C| many binary softmax output layers.

Each layer predicts if for a given frame xt label c is present,

i.e. if c ∈ Ai or not. Since an action c usually occurs in

different context, all frames belonging to class c are always

labeled with its true class c and some varying other classes.

Thus, a classifier can learn a strong response on the presence

of the correct class and weaker responses on the presence

of other falsely assigned classes. As loss of our network,

we therefore use the accumulated cross-entropy loss of each

binary classification task.

In order to use the output probabilities of the multi-task

network during inference, they need to be transformed to

model the last factor from Equation (2), p(xT
1 |c

N
1 , lN1 ). We

therefore define the class-posterior probabilities

p(c|xt) :=
p(c present|xt)

∑

c̃ p(c̃ present|xt)
(9)

and transform them into class-conditional probabilities

p(xt|c) ∝
p(c|xt)

p(c)
. (10)

Since the network is a framewise model, p(c) is also a

framewise prior. More specifically, if count(c) is the to-

tal number of frames labeled with c present, then p(c) is the

relative frequency count(c)/
∑

c̃ count(c̃).
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Assuming conditional independence of the video frames,

the probability of an action segment ranging from frame ts
to te can then be modeled as

p(xte
ts
|c) =

te
∏

t=ts

p(xt|c). (11)

Framewise conditional independence is a commonly made

assumption in multiple action detection and temporal seg-

mentation methods [24, 15, 13]. Note that ts and te are im-

plicitly given by the segment lengths lN1 . For the n-th seg-

ment in the video, t
(n)
s = 1 +

∑

i<n li and t
(n)
e =

∑

i≤n li.
The third factor of Equation (2) is now modeled using

the previously defined segment probabilities,

p(xT
1 |c

N
1 , lN1 ) :=

N
∏

n=1

p(x
t(n)
e

t
(n)
s

|cn). (12)

3.5. Inference

With the explicit models for each factor, the optimization

problem from Equation (2) reduces to

(̂lN1 , ĉN1 ) = argmax
N,lN1 ,cN

1 ∈G

{

N
∏

n=1

p(ln|cn) · p(x
t(n)
e

t
(n)
s

|cn)
}

.

(13)

Note that the argmax is only taken over action sequences

that can be generated by the grammar. Since the same prob-

ability has been assigned to all those sequences, the factor

p(cN1 ) from Equation (2) is a constant. Moreover, the length

model p(ln|cn) strongly penalizes unlikely action durations

and allows for an efficient pruning of unlikely segmenta-

tions. Both together lead to a significant reduction of the

search space.

The solution to Equation (13) can now be efficiently

computed using a Viterbi algorithm over context-free gram-

mars, as widely used in automatic speech recognition, see

for example [10]. The algorithm is linear in the number

of frames and therefore allows for efficient processing of

videos with arbitrary length. The authors of [24] have

shown that adding a length model increases the complex-

ity from O(T ) to O(TL), where L is the maximal action

length that can occur. In theory, there is no limitation on the

duration of actions, so inference would be quadratic in the

number of frames. In practice, however, it is usually pos-

sible to limit the maximal allowed action length L to some

reasonable constant, maintaining linear runtime.1

4. Experiments

In this section, we analyze the components of our ap-

proach, starting with the grammar (Section 4.2) and the

1Source code and details on the dynamic programming equations can

be found on https://alexanderrichard.github.io

length model (Section 4.3), before we compare our system

to existing methods that use more supervision (Section 4.5).

4.1. Setup

Datasets. We evaluate our approach on three datasets

for weakly supervised temporal action segmentation and la-

beling, namely the Breakfast dataset [12], MPII Cooking

2 [28], and Hollywood Extended [2].

The Breakfast dataset is a large scale dataset compris-

ing 1, 712 videos, corresponding to roughly 67 hours of

video and 3.6 million frames. Each video is labeled by one

of the 10 coarse breakfast related activities like coffee or

fried eggs. Additionally, a finer action segmentation into 48
classes is provided which is usually used for action detec-

tion and segmentation. Overall, there are nearly 12, 000 in-

stances of these fine grained action classes with durations

between a few seconds and several minutes, making the

dataset very challenging. The actions are densely annotated

and only 7% of the frames are background frames. We use

four splits as suggested in [12] and provide frame accuracy

as evaluation metric.

MPII Cooking 2 consists of 273 videos with 2.8 million

frames. We use the 67 action classes without object anno-

tations. Overall, around 14, 000 action segments are anno-

tated in the dataset. The dataset provides a fixed split into a

train and test set, separating 220 videos for training. With

29%, the background portion in this dataset is at a medium

level. For evaluation, we use the midpoint hit criterion as

proposed in [27].

Hollywood Extended is a smaller dataset comprising

937 videos with roughly 800, 000 frames. There are about

2, 400 non-background action instances from 16 different

classes. With 61% of the frames, the background portion

within this dataset is comparably large. We follow the sug-

gestion of [2] and use a 10-fold cross-validation. The orig-

inally proposed evaluation metric is a variant of the Jac-

card index, intersection over detection, which is only rea-

sonable for a transcript-to-video alignment task where the

transcripts and thus the action orderings are known for the

test sequences as in [2] and [6]. For temporal action seg-

mentation, only a video is given during inference and the

number of predicted segments can differ from the number

of annotated segments. In this case, the metric can not be

used. Thus, we stick to the Jaccard index (intersection over

union), which is widely used in the domain of action detec-

tion [24, 9] and has also been used on this dataset by [15].

Feature extraction. For a fair comparison, we use the

same features as [15] and [6]. Fisher vectors of improved

dense trajectories [35] are extracted for each frame and the

result is projected to a 64-dimensional subspace using PCA

as proposed by Kuehne et al. [13]. Then, the features are

normalized to have zero mean and unit variance along each

dimension. If not mentioned otherwise, we use the monte-
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frame accuracy

Grammar train test

none 0.147 0.099

naive 0.194 0.134

monte-carlo 0.282 0.233

manually created 0.333 0.269

ground truth 0.367 0.294

Table 1. Evaluation of our method on Breakfast using different

context-free grammars. As length model, the loss-based approach

is used.

carlo grammar and the loss-based length model. The in-

depth evaluation of our approach is conducted on Breakfast,

final results on other datasets are reported in Section 4.5.

Model. For the neural network in the framewise model

we use a simple feed forward network with a single hidden

layer of 256 rectified linear units. Experiments with deeper

models could not generalize to the test data (VGG-16: ac-

curacy of 0.031 on Breakfast). We also evaluated the neural

network based multiple instance learning approach of [37],

which also was not able to make reliable predictions (accu-

racy 0.089 on Breakfast). We therefore found the multi-task

network as proposed in Section 3.4 to be a simple yet effec-

tive model.

Efficient inference. During inference, we allow to hy-

pothesize new segments only every 30 frames. This allows

for inference roughly in realtime without affecting the per-

formance of the system compared to a more fine-grained

segment hypothesis generation.

4.2. Effect of the Grammar

The main contribution of the grammar is to limit the

search space and remove unrealistic action sequences. We

compare different kinds of grammars and report the frame

accuracy on both, test and train set. Recall that due to weak

supervision, our method does not necessarily provide good

results on the training videos, making it interesting to inves-

tigate both sets. As shown in Table 1, the use of a sophisti-

cated grammar is crucial for good performance. The naive

grammar is only slightly better than the system without any

grammar. The monte-carlo grammar boosts the frame accu-

racy by 10% on the test set. Note that we found the number

of k monte-carlo samples for the grammar not to be criti-

cal and chose 1, 000 randomly generated sequences for all

experiments. Using a ground truth grammar, i.e. a gram-

mar learned from ordered action transcripts (which are not

provided in our setting) gives an upper bound on the perfor-

mance that can be reached by improving the grammar only.

Notably, the monte-carlo grammar is only 6% below this

upper bound.

For a further comparison, we gave all action sets from

the training data to an annotator who was asked to manually

create an ordered action sequence for each set. This manu-

ally created grammar serves as a comparison of the purely

Breakfast Cooking 2 Holl. Ext.

frame acc. midpoint hit jacc. idx

monte-carlo 0.233 0.098 0.093

text-based 0.232 0.106 0.092

Table 2. Evaluation of the text-based grammar. For Cooking 2,

where the text sources are closely related to the content of the

videos, an improvement can be observed.

frame accuracy

Length model train test

naive 0.254 0.201

loss-based 0.282 0.233

ground truth 0.341 0.257

Table 3. Evaluation of our method on Breakfast using different

length models. As grammar, the monte-carlo approach is used.

data driven monte-carlo grammar to human knowledge. Al-

though the manual grammar is better, the frame accuracy

only differs by 3.6%. Since the annotator on average only

needed one minute per action set, a manual grammar is also

a cheap opportunity to add human knowledge without the

need to actually annotate videos.

As proposed in Section 3.2, textual sources can be used

to enhance the monte-carlo grammar by restricting the tran-

sition between action classes to only the likely ones. We

evaluate such a text-based grammar for all three datasets.

For Breakfast, we used a webcrawler to download more

than 1, 200 breakfast related recipes, for Hollywood Ex-

tended, 10 movie scripts of IMDB top-ranked movies have

been downloaded, and for Cooking 2, we used the scripts

provided by the authors of the dataset. These scripts were

obtained by asking annotators to write sequential instruc-

tions on how to execute the respective kitchen task. Con-

sequently, the text sources used for Breakfast and Holly-

wood Extended are only loosely connected to the datasets,

whereas the textual source for Cooking 2 covers exactly the

same domain as the videos. Not surprisingly, we find that

only for this case, the text-based grammar leads to an im-

provement over the monte-carlo grammar, cf . Table 2. For

the other datasets, neither an improvement nor a degrada-

tion is observed.

4.3. Effect of the Length Model

Besides the choice of the context-free grammar, the

length model is a crucial component of our system. The

estimated mean action lengths influence the performance

in two ways: first, they define the Poisson distribution that

contributes to the actual length of hypothesized action seg-

ments. Secondly, they have a huge impact on the number of

action instances that are generated for each action sequence

in the monte-carlo grammar.

Mean Length Approximation. We compare the two

proposed mean approximation strategies, naive and loss-

based mean approximation, with a ground truth model, i.e.
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µ− σ µ µ+ σ µ− σ µ µ+ σ µ− σ µ µ+ σ

Gaussian Box Triangle Poisson

accuracy 0.148 0.220 0.227 0.233

Figure 2. Evaluation of different length models on Breakfast.

the true action means estimated on a frame-level ground

truth annotation of the training data. The results are shown

in Table 3. The naive mean approximation suffers from

some conceptual drawbacks. Due to the uniform distri-

bution of video frames among all actions occurring in the

video, short actions may be assigned a reasonable length as

long as the video is also short. If the video is long, how-

ever, short actions get the same share of frames as long ac-

tions, resulting in an over-estimation of the mean for short

actions and an under-estimation of the mean for long ac-

tions. The loss-based mean approximation, on the contrary,

can provide more realistic estimates by minimizing Equa-

tion (8). Note that the solution of the problem in princi-

ple would allow for negative action means. Hence, setting

the minimal action length lmin > 0 is crucial. In practice,

we want to ensure a reasonable minimum length and set

lmin = 50 frames, corresponding to roughly two seconds of

video. The loss-based mean approximation performs signif-

icantly better than the naive approximation, increasing the

frame accuracy by 3%.

Comparing these numbers to the ground truth length

model reveals that particularly on the train set, on which

the ground truth lengths have been estimated, there is still

room for improvement. Considering the small amount of

supervision that we can utilize to estimate mean lengths,

i.e. actions sets only, and the small gap between the loss-

based approach and the ground truth model on the test set,

on the other hand, we find that our loss-based method al-

ready yields a good approximation.

Evaluating Different Length Models. So far we mod-

eled the length with a Poisson distribution. There is a va-

riety of other possible length models. In Figure 2, three

additional models are evaluated, a Gaussian, a box-, and

a triangle model. Box and triangle model are zero outside

[µ−σ, µ+σ]. The standard deviation σ of each action class

is heuristically estimated by mapping actions according to

their mean length onto the possible segmentations generated

by the monte-carlo grammar. The Gaussian model decays

too fast around the mean lengths and leads to low accura-

cies. Although the other models perform well, the Poisson

distribution still yields the best results.

4.4. Impact of Model Components

All three components, the grammar, the length model,

and the framewise model, contribute their share to restrict-

frame accuracy

grammar length model train test

✗ ✗ 0.118 0.080

✗ ✓ 0.147 0.099

✓ ✗ 0.208 0.154

✓ ✓ 0.282 0.233

fully supervised 0.774 0.556

Table 4. The first four rows are a comparison of the impact of the

grammar and the length model on the Breakfast dataset; the last is

our system trained on fully supervised, i.e. framewise annotated,

data. It is an upper bound for the weakly supervised setup.

✗, ✗

✗, ✓

✓, ✗

✓, ✓

GT

Figure 3. Example segmentation on a test video from Breakfast.

Row one to four correspond to row one to four from Table 4. The

last row is the ground truth segmentation.

ing the search space to reasonable segmentations. In this

section, we evaluate the impact of the grammar and length

model on their own and in combination with each other. We

use the best-working grammar and length approximation,

i.e. the monte-carlo grammar with loss-based mean approx-

imation, and analyze the effect of omitting the grammar

and/or the length model from Equation (13) during infer-

ence. The results are reported in Table 4. Not surprisingly,

the performance without a grammar is poor, as the model

easily hypothesizes unreasonable action sequences. Adding

a grammar alone already boosts the performance, restrict-

ing the search space to more reasonable sequences. In order

to also get action segments of reasonable length, however,

the combination of grammar and length model is crucial.

This effect can also be observed in a qualitative segmenta-

tion result, see Figure 3. Note the strong over-segmentation

if neither grammar nor length model is used. Introducing

the length model partially improves the result but still the

grammar is crucial for a reasonable segmentation in terms

of correct segment labeling and segment lengths. The fully

supervised model (last row of Table 4) is trained by assign-

ing the ground truth action label to each video frame. Apart

from the labeling, the multi-task network architecture re-

mains unchanged. The full supervision defines an upper

bound for our weakly supervised method.

4.5. Comparison to State of the Art

The task of weakly supervised learning of a model for

temporal action segmentation given only action sets has not

been addressed before. Still, there are some works on tem-

poral action segmentation given ordered action sequences.

In this section, we compare our approach to these meth-

ods on the three datasets. Kuehne et al. [15] approach the

problem with hidden Markov models and Gaussian mixture
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Breakfast Cooking 2 Holl. Ext.

frame acc. midpoint hit jacc. idx

Weak supervision: unordered action sets

monte-carlo 0.233 0.098 0.093

text-based 0.232 0.106 0.092

Stronger supervision: ordered action transcripts

HMM [15] 0.259 0.200 0.086

CTC [6] 0.218 − −

ECTC [6] 0.277 − −

HMM+RNN [25] 0.333 − 0.119

Table 5. Performance of our method compared to state of the art

methods for weakly supervised temporal segmentation. Note that

our method uses action sets as weak supervision, whereas [15, 6,

25] have a stronger supervision with ordered action sequences.

ours

GT

spoopour milkspoonpour m stir milk

spoon powder pour milk stir milk

Figure 4. Example segmentation. All relevant ground truth actions

are present. Note that spoon powder always occurs jointly with

pour milk, so it is hard for our model to distinguish them.

cuts per video 4 2 -

avg. #actions per video 12.5 25 50

midpoint hit 0.174 0.121 0.098

Table 6. Different levels of video trimming for Cooking 2. More

videos and less actions per video result in better performance.

models and Richard et al. [25] extend their approach us-

ing recurrent neural networks. Huang et al. [6], in con-

trast, rely on connectionist temporal classification (CTC)

with LSTMs and extend it by downweighting degenerated

alignments and incorporating visual similarity of frames

into the decoding algorithm. They call their approach ex-

tended CTC (ECTC). All of these approaches use ordered

action sequences, and thus a much stronger supervision than

our method. Keeping the tremendously large search space

for our problem compared to [15, 6, 25] in mind (cf . Sec-

tion 1), our model achieves remarkable results on Breakfast

and Hollywood Extended, cf . Table 5. Note that training

the HMM approach of [15] with monte-carlo sampled ac-

tion transcripts (i.e. with the same amount of supervision as

in this paper) only yields an accuracy of 0.145 on Breakfast,

which is far less than our approach. An example segmen-

tation of our approach is shown in Figure 4. Falsely rec-

ognized actions are frequently those that only occur jointly,

such as spoon powder and pour milk. In these cases,

the model typically fails to predict the correct ordering.

Actions per Video. While our approach works well on

Breakfast and Hollywood Extended, the results on Cooking

2 show its limitations. The dataset has many classes (67)

but only a small amount of training videos (220), which

are very long and contain a huge amount of different ac-

Breakfast Cooking 2 Holl. Ext.

frame acc. midpoint hit jacc. idx

monte-carlo 0.284 0.102 0.230

text-based 0.280 0.106 0.242

Table 7. Results of our method when the action sets are provided

for inference.

tions. These characteristics make it difficult for the multi-

task learning to distinguish different classes, as many of

them occur jointly in most training videos. We show the

importance of having enough videos by cutting each video

of Cooking 2 into two/four parts (Table 6). This increases

the number of videos and reduces the number of actions per

video. The more videos and the less actions per video on

average, the better are the results of our method.

4.6. Inference given Action Sets

So far, it has always been assumed that no weak supervi-

sion in form of action sets is provided for inference. If the

action sets for the videos are, for example, generated using

meta-tags of Youtube videos, however, they may as well be

available during inference. In this section, we evaluate our

method under this assumption.

Let A be the given action set for a video. During in-

ference, only action sequences that are consistent with A
need to be considered, i.e. for a grammar G, only sequences

c
N
1 ∈ G ∩A∗ are possible. If G ∩A∗ is empty, we consider

all sequences cN1 ∈ A∗. The results are shown in Table 7.

The above mentioned limitations on Cooking 2 again pre-

vent our method from generating a better segmentation. On

Breakfast and Hollywood Extended, a clear improvement

of 5% and 15% compared to the inference without given

action sets (Table 5) can be observed.

5. Conclusion

We have introduced a system for weakly supervised tem-

poral action segmentation given only unordered action sets.

In contrast to ordered action sequences that have been pro-

posed as weak supervision by previous works, action sets

are often publicly available in form of meta-tags for videos

and do not need to be annotated. Although action sets pro-

vide by far less supervision than ordered action sequences

and lead to a tremendously large search space, our method

still achieves good results. Providing the possibility to in-

corporate data-driven grammars as well as text-based infor-

mation or human knowledge, our method can be adapted to

specific requirements in different video analysis tasks.
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