
Geometry Aware Constrained Optimization Techniques for Deep Learning∗

Soumava Kumar Roy1, Zakaria Mhammedi1,2, and Mehrtash Harandi1,2

1Australian National University, Canberra, Australia
2Data61, CSIRO, Canberra, Australia

1{soumava.kumarroy, zak.mhammedi, mehrtash.harandi}@anu.edu.au

Abstract

In this paper, we generalize the Stochastic Gradient De-

scent (SGD) and RMSProp algorithms to the setting of Rie-

mannian optimization. SGD is a popular method for large

scale optimization. In particular, it is widely used to train

the weights of Deep Neural Networks. However, gradi-

ents computed using standard SGD can have large vari-

ance, which is detrimental for the convergence rate of the

algorithm. Other methods such as RMSProp and ADAM

address this issue. Nevertheless, these methods cannot be

directly applied to constrained optimization problems. In

this paper, we extend some popular optimization algorithm

to the Riemannian (constrained) setting. We substantiate

our proposed extensions with a range of relevant problems

in machine learning such as incremental Principal Com-

ponent Analysis, computating the Riemannian centroids of

SPD matrices, and Deep Metric Learning. We achieve com-

petitive results against the state of the art for fine-grained

object recognition datasets.

1. Introduction

The field of machine learning and computer vision is

abundant with problems that can benefit from the use of

constraints to obtain optimal solutions. For example, or-

thogonality constraints have shown to be very useful in lin-

ear dimensionality reduction algorithms such as Principal

Component Analysis (PCA) [4]. Over the past few years,

deep learning has led to tremendous improvement in many

applications such as image and object recognition, speech

recognition, natural language processing, and content based

retrieval systems [33]. Deep Metric Learning (DML) [27],

for example, has received a significant amount of attention

lately, and it is well known that learning a metric can bene-

∗This work was supported under the Australian Research Council‘s

Discovery Projects funding scheme (project DP150104645)

fit from the use of orthogonality constraints [41]. However,

most popular optimizers which use a variant of Stochastic

Gradient Descent (SGD) cannot directly be applied to con-

strained optimization. We attempt to bridge this gap by ex-

tending certain popular optimization algorithms to enhance

their capability in handling constraints on the parameter

space. We begin our formulation by studying the popular

class of empirical risk minimization problems in the Rie-

mannian setting, where the objective can take the following

form

argmin
θ∈M

1

n

n
∑

i=1

J(yi, fθ(xi)), (1)

with (xi,yi) ∈ R
d × R

ℓ refers to the ith data instance,M
is a Riemannian manifold, fθ : Rd → R

ℓ is a “prediction”

function (e.g. output of a neural network) parameterized by

θ, and J a positive real-valued objective function to be min-

imized. Gradient Descent (GD) is a standard technique

used to optimize Equation (1) by updating the parameters

of the model along negative gradient directions. However,

this approach can be fragile when the objective function is

highly non-convex. In this case, the standard GD algorithm

can get stuck in a bad local minima leading to poor perfor-

mance. The SGD [10], the stochastic variant of GD, was in-

troduced to overcome this drawback. SGD trains the model

on mini-batches of the training data, resulting in faster con-

vergence rates compared to GD.

The Computed gradients during SGD can display large

variances due to the random generation of mini-batches.

This can lead to undesirable oscillations of the model pa-

rameters around optimal values [29]. Ensuring that these

oscillations are dampened has been the subject of several

works lately [30, 17]. Two prominent algorithms which ad-

dress this issue are the Momentum SGD (SGD-M) [29] and

the Stochastic Variance Reduced Gradient (SVRG) [17] and

they have been quite successful in achieving higher conver-

gence rates over SGD and GD.

14460

One drawback of SGD-M is that the learning rate is ma-

nipulated globally and equally for all parameters. This re-

sults in devising various heuristics for tuning the learning

rates to ensure a good overall convergence rate. Ideally

the learning rates for every parameter should be adapted

automatically, in some suitable way, to achieve faster con-

vergence rates. There exist many well documented opti-

mization algorithms; namely Adagrad [11], ADAM [18],

Adadelta [45] and RMSProp [15], which maintain adapt-

able learning rates for different parameters.

The latter methods cannot directly be applied to large-

scale, nonlinear, constrained problems in machine learning.

This has motivated us to extend SGD-M and RMSProp to

handle constrained optimization problems. Although in the

past, both SGD and SVRG have been studied extensively

under the lens of Riemannian geometry [5, 47], we believe

that our extensions, which we name cSGDM and cRM-

SProp, are novel. Inspired from the success of Riemannian

optimization techniques [22, 25, 2], we employed concepts

from Riemannian geometry to formulate our approach in

handling constraints.

Our Contributions

Our contributions in this work are two-fold. 1. We propose

cSGD-M and cRMSProp, representing extensions of SGD-

M and RMSProp, which can be directly used in constrained

problem settings. 2.Using our novel extensions, we sub-

stantiate the impact of our proposed methods on some rele-

vant applications in machine learning, such as incremental

PCA and DML, where orthogonality constraints naturally

arise. We achieve competitive results against the state of

the art for fine-grained objective recognition. Our proposed

approach can easily be integrated into various deep learning

packages.

Related Work

The stochastic variant of the gradient descent algorithm

approximates the full gradient using mini-batches of sam-

ples. This can cause undesirable oscillations around local

optima [48]. One of the most popular techniques used to al-

leviate this issue is to anneal the learning rate during train-

ing. However, this can sometimes be detrimental to the con-

vergence rate [31]. Thus, it is desirable to design methods

which control the variance of the gradients so that higher

values for the learning rate can be used during optimiza-

tion. Stochastic Average Gradient (SAG) [34] is an exam-

ple of an algorithm which attempts to do just that. As its

name suggests, SAG computes an averaged gradient at each

time step. However, this requires the storage of all previous

gradient vector which can significantly increase the mem-

ory requirements. Stochastic Variance Reduced Gradient

(SVRG) [17] overcomes this problem by cyclically storing

(a)

(b)

Figure 1: (a) Riemannian operations used in performing cSGD-

M. Refer to the main text for a detailed explanation. The man-

ifold M is shown by the blue surface, the geodesic by a dotted

yellow line, the tangent spaces by light red surfaces and the gradi-

ent vectors on the tangent space by green arrows.The update vec-

tors {m(t)} (solid blue vectors) are used to obtain the minimiz-

ing geodesics. The solution θ(t+1) at time step t + 1 is obtained

from θ(t), the current gradient vector u(t) and the velocity vector

m
(t−1) mapped by parallel transport (shown by the dotted blue

vector at t). This velocity vector smooths out the gradients over

time and helps to improve the convergence rate of the algorithm.

cRMSProp also follow similar operations in obtaining the mini-

mizing geodesic, with a slight change in the representation of the

vectors m
(t) and u

(t). (b) An Illustrative schematic of various

operations used in Riemannian Optimization. p and q represent

points on the manifold connected by a geodesic shown by a yel-

low dotted line. Vector v1 is the projection of the ambient gradient

vector u1 at p. To move back to the manifold from the tangent

space at p, we use the retraction rp(v1) operator. In a neigh-

borhood of p, the retraction (shown in brown) identifies a point

on the geodesic, thus guarantees decreasing the objective function

(denoted by J(θ)). Here w = rp(v1). v2 is the gradient vector

obtained at q by mapping v1 through parallel transport, i.e., v2 =

Γp→q(v1).

only one copy of the full gradient at current parameter es-

timate and using it to prevent subsequent updates from de-

viating too far from this stored copy. Though the conver-

gence analysis of the SVRG is very promising, convincing

4461

results in practical machine learning applications are yet to

be demonstrated.

Other more popular methods used to decrease undesir-

able oscillations around local optima include the SGD-M

which computes a smoother version of the gradient vector

using an exponentially moving average with coefficient ν.

This reduces the chances of radical updates in the parameter

space. The update equations in this case can be expressed

as

m(t+1) = ν m(t) + η ∇J, (2)

θ(t+1) = θ(t) −m(t+1). (3)

SGD-M has the drawback that all parameters have a com-

mon learning rate, where as it is desirable to have separate

learning rates for each parameter of the model based on

some suitable criteria. RMSProp is an example of a gradient

based optimization algorithm which does this by maintain-

ing an exponentially moving average of the squared gradi-

ent, which is an estimate of the 2nd raw moment (the un-

entered variance) of the gradient. The update equations for

RMSProp can be expressed as

m(t+1) = ρ m(t) + (1− ρ) (∇J ⊙∇J), (4)

θ(t+1) = θ(t) − η
∇J√

m(t+1) + ǫ
, (5)

where ρ and η are hyper-parameters and ⊙ denotes the

Hadamard product. Note that the square root and division

of vectors is performed element-wise.

Relevant to optimizing a problem under constraints, is

the work of Bonnabel et al (2013), which laid down the the-

oretical foundation for extending SGD to the general Rie-

mannian setting [5]. Riemannian SVRG [47](RSVRG, the

Riemannian variant of SVRG) is another promising method

which works in the setting of constrained optimization and

has good convergence bounds. With these two pioneering

work at our disposal, we propose to integrate the geometry

of Riemannian manifold in SGD-M and RMSProp.

2. Mathematical Background

In this section, we briefly introduce various concepts of

Riemannian geometry. This will be crucial for the under-

standing of our proposed extensions which enable optimiza-

tion on Riemannian manifolds. Interested readers are re-

ferred to [6, 1] for a more comprehensive introduction to

the concepts discussed here.

Notation

Throughout the paper, matrices are denoted by bold upper-

case letters whereas column vectors are denoted by bold

lower-case letters. The identity function and the identity

matrix of size n × n are denoted In and id, respectively.

Sym(n) denotes the space of real symmetric matrices of

size n × n. The Frobenius norm of a matrix A ∈ R
n×d

denoted by ||A||F is defined as

√

Tr(AAT), where Tr

is the trace operator and AT denotes the transpose of A.

Sn++ represents the manifold of Symmetric Positive Definite

(SPD) matrices, while the Grassmann and Stiefel manifolds

are denoted by G(n, p) and St(p, n), respectively. A set

M ⊂ R
n is a smooth m-dimensional manifold if at ev-

ery point p ∈ M there exists an open neighborhood of p

such that its intersection with M is diffeomorphic to R
m.

The tangent space at p ∈ M, denoted by TpM, is a real

vector space containing all tangent vectors to M at p. A

vector v is tangent to M at p, if there exists a smooth

curve γ : I → M, I open interval containing 0, such that

γ(0) = p and γ̇(0) = v. A smooth m-dimensional man-

ifold equipped with an inner product on the tangent space

at every point on the manifold is called as a Riemannian

manifold. This inner product induces a Riemannian met-

ric which then defines various geometric concepts on the

manifold such as curve lengths, volumes, and gradients of

functions defined on the manifold. Informally, geodesics

on a smooth manifold M are smooth curves on M gen-

eralizing the concept of straight lines in Euclidean spaces.

Locally, geodesics are length minimizing; that is, the short-

est path between two points p, q ∈ M, close enough to

each other with respect the metric topology, is given by the

length of the geodesic curve passing through them. A num-

ber of operations are needed to perform optimization on a

Riemannian manifold. These are listed below.

Orthogonal Projection

Optimization on a manifold M requires the gradients of

some objective function at a point p ∈ M to be defined

on the tangent space TpM. These gradients can be used

to travel appropriately along the manifold to minimize the

objective function. In fact, each tangent vector defines a

geodesic curve through the exponential map. Taking small

enough steps along geodesics corresponding to directions of

negative gradients ensures reduction of the objective func-

tion. However, it is often the case that gradients are com-

puted in the ambient Euclidean space and they need, there-

fore, to be orthogonally projected onto the appropriate tan-

gent space TpM, p ∈ M. We denote πp : R
n →

TpM the orthogonal projection onto the tangent space at

p. As an example, consider the following constrained mini-

mization problem min‖θ‖=1 J(θ). Figure 1(b), shows the

descent direction u1 at p in the ambient space; that is,

u1 = −∂J
∂θ

∣

∣

θ=p
. It is obvious from the diagram that mov-

ing along the direction of u1 will violate the constraint

‖θ‖ = 1; the updated parameter will lie outside the desired

manifold. Therefore, it is necessary to project the gradi-

ent u1 onto TpM. Then, taking an appropriate step along

4462

the corresponding geodesic curve to reduce the objective

function while keeping the parameters of the model on the

manifoldM.

Retraction

As stated above, the next step after obtaining the required

tangential gradient vector is to move along the correspond-

ing geodesic curve. This geodesic curve is obtained by

applying the exponential map, denoted by Exp, to scaled

copies of the (negative) gradient vector. However, evaluat-

ing the exponential map can be computationally expensive.

The retraction operation rp : TpM → M is often used

as a more efficient approximation of the exponential map

(see Figure 1(b) for an illustration). Most manifolds have

well defined Inverse Exponential Map which is a mapping

r−1
p :M→ TpM, satisfying r−1

p (Expp(u)) = u ∈ TpM.

Parallel Transport

Most optimization techniques such as SGD-M and RM-

Sprop use smooth estimates of first or second order mo-

ments of gradient vectors. In Euclidean spaces, these es-

timates are obtained merely by linearly combining previous

moment vectors due to the inherent “undistorted” nature

of Euclidean spaces. However, since general Riemannian

manifolds can be curved, it is not possible to simply add

moment vectors at different points on the manifold, as the

resulting vectors may not even lie in the tangent spaces at

either points. A way around this is to use parallel transport.

The parallel transport operator Γp→q : TpM → TqM
takes vp ∈ TpM and outputs vq ∈ TqM. Informally,

vq is obtained by moving vp in a “parallel” fashion along

the geodesic curve connecting p and q, where the interme-

diate vectors obtained through this process have constant

norm and are always lying on a tangent space. In practice,

if Γp→q is not known for a given Riemannian manifold or

it is computationally expensive to evaluate, one can, as an

approximation, use the orthogonal projection to correct and

map tangent vectors between p and q onM [6].

In order to be self-contained, we also provide brief defi-

nitions of the matrix manifolds used in this work as well as

some key terminologies.

Definition 1 (The SPD Manifold) It is defined as the set of

(p × p) dimensional real, SPD matrices endowed with the

Affine Invariant Riemannian Metric (AIRM) [28], as

Sp++ , {M ∈ R
p×p : vTMv > 0, ∀v ∈ R

p − {0p}}.

The SPD manifold Sp++ represents the interior of a con-

vex cone in the p× (p+1)/2 dimensional Euclidean Space.

Definition 2 (The Grassmann Manifold) The Grassmann

manifold G(n, p) [16], p ≤ n, represents the collection of

subspaces spanned by the columns of n× p matrices whose

columns are orthonormal. That is,

G(n, p) , {Span
(

X
)

: X ∈ R
n×p,XTX = Ip}.

Definition 3 (The Stiefel Manifold) The Stiefel manifold

St(p, n) [6] consists of the set of (n × p)-dimensional ma-

trices, p ≤ n, with orthonormal columns equipped with the

Frobenius inner product

St(p, n) , {W ∈ R
n×p : W TW = Ip}.

The dimensionalities of Sp++, G(n, p) and St(p, n) are

p(p+1)/2, n(n−p) and np− 1
2p(p+1), respectively. Note

that there is a subtle difference between the Grassmann and

Stiefel manifolds; a point on the Stiefel manifold represents

a basis for a subspace, whereas a point on the Grassmann

manifold represents an entire subspace. Therefore, the set

of orthogonal matrices defining the same subspace can be

represented by a single point on a Grassmann manifold.

This subtle difference between the two will be relevant in

choosing appropriate constraints for different problems.

3. Our Approach

Throughout this paper, we focus on constrained prob-

lems of the form

min
θ∈M

J
(

θ
)

. (6)

where J is an objective function parameterized by θ. In a

general manifold setting equipped with a Riemannian met-

ric, the parameter update at time step t is given by

θ(t+1) = rθ(t)

(

− ηπθ(t)

(

∇J
)

)

, (7)

where ∇J denotes the gradient of J at θ(t), and π (resp.

r) refers to the orthogonal projection (resp. retraction) on

the manifold (c.f . § 2). Most of traditional optimization al-

gorithms operate on Euclidean spaces. As a result of the

flat geometry of the latter, we have πp(x) = id(x) and

rp(x) = p+ x. Thus the update in Equation (7) reduces to

the more familiar GD update

θ(t+1) = θ(t) − η∇J. (8)

We now introduce our proposed extensions to SGD-M

and RMSprop in the constrained setting.

3.1. Constrained SGD­M

Our aim here is to extend the SGD-M method so that

it can be directly applied to the constrained optimization

problem in Equation (6). To this end, we need to derive the

Riemannian equivalents of Equations (2) and (3). We first

start with Equation (3). Comparing Equations (7) and (8), it

4463

can be observed that if m(t+1) ∈ Tθ(t)M, the Riemannian

counterpart of (3) will take the following form

θ(t+1) = rθ(t)

(

−m(t+1)
)

.

However, the main difficulty arises when trying to ex-

tend Equation (2). Note that it is desired to have m(t+1) ∈
Tθ(t)M at time step t + 1. Naturally, we will also have

m(t) ∈ Tθ(t−1)M. Therefore, m(t) must be transported

from Tθ(t−1)M to Tθ(t)M to then be combined with the

projected gradient vector at θ(t). This will yield the updated

momentum vector m(t+1) ∈ Tθ(t)M. This is analogous to

the rule of vector addition in Euclidean spaces. Recall that

Γp→q(v) moves a vector v ∈ TpM along a geodesic curve

to obtain a new vector in TqM (c.f . § 2). Thus, we can make

use of parallel transport to get the following momentum up-

date rule for the Constrained Stochastic Gradient Descent

with Momentum (cSGD-M).

m(t+1) = γΓθ(t−1)→θ(t)

(

m(t)
)

+ ηπθ(t)(∇J).

3.2. Constrained RMSProp

To derive the constrained counterpart of RMSProp, we

follow a similar approach to the case of cSGD-M. Looking

at Equation (5), we can express the constrained update as

θ(t+1) = rθ(t)

(

− η
πθ(t)

(

∇J
)

√
m(t+1) + ǫ

)

.

Now to translate Equation (4) to the Riemannian setting,

we need to project the vector ∇J ⊙ ∇J onto Tθ(t)M and

apply the appropriate parallel transport to m(t) so that they

can be combined. This can be summarized as follows

m(t+1) = ρΓθ(t−1)→θ(t)

(

mt

)

+ (1− ρ)πθ(t)

(

∇J ⊙∇J
)

.

4. Experiments:

In order to draw fair comparison between the standard

optimization algorithms; SGD, SGD-M, SVRG, RMSProp,

and their respective Riemannian counterparts; cSGD,

RSVRG, cSGD-M and cRMSProp, we consider two types

of experiments. First, we look at some classical problems in

machine learning; we evaluate the performance of our novel

extensions on the problem setting of incremental PCA [4] as

well as the task of computing the Riemannian Centroid of

SPD matrices. These fall under the category of Linear Di-

mensionality Reduction. Second, we look at the problem

of Mahalanobis metric learning [13], where we incorporate

cSGD-M and cRMSProp into deep Convolutional Neural

Network (CNN) architectures.

Algorithm 1

1: Input: ∇(J) ← gradient of the loss J with respect to

the parameters θ at time step t.
2: ∇θ(t) ← πθ(t)(∇J)

cSGD-M

3: m(t+1) ← γ Γθ(t−1)→θ(t)

(

m(t)
)

+ η∇θ(t)

4: θ(t+1) ← rθ(t)

(

−m(t+1)
)

.

cRMSProp

3: ∇2
θ(t) ← πθ(t)(∇J ⊙∇J

)

4: m(t+1) ← ρ Γθ(t−1)→θ(t)

(

m(t)
)

+ (1− ρ)∇2
θ(t)

5: θ(t+1) ← rθ(t)

(

− η
∇θ(t)√

m(t+1)+ǫ

)

In all the experiments described bellow, we selected the

best hyper-parameters for each algorithm by performing a

standard grid search. All performance results reported here

are with respect to optimal hyper-parameters. The values of

the latter are provided in the supplementary material.

4.1. Linear Dimensionality Reduction

In this section, we evaluate our proposed methods on the

incremental version of PCA for face recognition. Most lin-

ear dimensional reduction techniques can be formulated as

optimization problems over matrix manifolds [9], that is

min
M∈M

J(M),

where M ∈ M ⊂ R
n×p, p < n, is usually required to

satisfy MTM = Ip [9]. As discussed before, both the

Stiefel and Grassmann manifolds can represent the latter or-

thogonality constraint. The correct geometry that should

be considered in a given problem depends on the nature

of objective function J . In particular, if J exhibits a ro-

tation invariance property, that is J(MR) = J(M) for

R ∈ O(p), then the Grassmann manifold is more suitable

than the Stiefel manifold, and vice versa [9]. In incremental

PCA, the goal is to minimize the reconstruction error com-

puted through the following objective function

J(M) =
∥

∥

∥
X −MMTX

∥

∥

∥

2

F
,

where X ∈ R
n×N is a matrix whose columns are N

data points. Note that since the objective function satis-

fies J(M) = J(MR), for R ∈ O(p), minimizing J can

be view as constraint optimization problem over the Grass-

mann manifold G(n, p); that is

min
M∈G(n,p)

∥

∥

∥
X −MMTX

∥

∥

∥

2

F
. (9)

4464

0 10 20 30 40 50
3

4

5

6

7

8

Training Epochs

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

PCA−YALEB

SGD

SGD−M

SVRG

RMSProp
cSGD

cSGDM

RSVRG

cRMSProp

(a) p = 128

0 10 20 30 40 50
3

4

5

6

7

8

Training Epochs

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

PCA−YALEB

SGD

SGD−M

SVRG

RMSProp
cSGD

cSGDM

RSVRG

cRMSProp

(b) p = 256

Figure 2: Plots for objective values for all the algorithms. (a)

and (b) show the plots of reconstruction error i.e. Equation (9) for

the various algorithms for YALEB-Test dataset when p is set to 128

and 256 respectively for a Mini-Batch (MB) size of 256. Similar

results were obtained for different values of p and MB.

Dataset

• (a) The YaleB database [24] consists of images of

38 subjects captured under 64 different illumination

conditions. We used a preprocessed version of the

database, where each face is cropped, down-sampled

to a 48 × 42 image, and converted to a column vector

of size 2016. We used the first 52 images of every sub-

ject for training (YALEB-Train) and the remaining 12

images for testing (YALEB-Test).

• (b) The MNIST dataset [23] which contains 70000

28× 28 gray-scale images of handwritten digits. The

preprocessing step involves transforming every image

to 784 dimensional vector and normalizing its pixel

values to lie in the range of [0, 1]. We have fol-

lowed the standard train-test split strategy consisting of

60000 training images (MNIST-Train) and 10000 test

images overall (MNIST-Test). We performed experi-

ments for different values of p and mini-batch sizes for

both the datasets.

Figures 2(a) and 2(b) show the reconstruction error on the

YALEB-Test dataset for the different algorithms discussed

in the previous section.Similar results for MNIST-Test are

shown in Figures 3(a) and 3(b). It is clear from the error

plots that for each optimization method, the addition of the

orthogonality constraint leads to lower reconstruction errors

with a faster rates of convergence. Note also that cRM-

SProp achieves both the lowest reconstruction error and the

highest convergence rate compared to all other algorithms.

cSGD-M comes in second place after the RMSprop vari-

ants.

0 10 20 30 40 50

2

3

4

5

6

7

8

Training Epochs

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

PCA−MNIST

SGD

SGD−M

SVRG

RMSProp
cSGD

cSGDM

RSVRG

cRMSProp

(a) p = 128

0 10 20 30 40 50

2

3

4

5

6

7

8

Training Epochs

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

PCA−MNIST

SGD

SGD−M

SVRG

RMSProp
cSGD

cSGDM

RSVRG

cRMSProp

(b) p = 256

Figure 3: Plots for objective values for all the algorithms. (a)

and (b) show the plots of reconstruction error i.e. Equation (9) for

the various algorithms for MNIST-Test dataset when p is set to 128

and 256 respectively for a Mini-Batch (MB) size of 256. Similar

results were obtained for different values of p and MB.

0 5 10 15 20 25
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Training Epochs

O
b
je

c
ti
v
e

Computaion of Riemannian Centroid

SGD

SGD−M

SVRG

RMSProp
cSGD

cSGDM

RSVRG

cRMSProp

(a) MB = 64

0 5 10 15 20 25
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Training Epochs

O
b
je

c
ti
v
e

Computaion of Riemannian Centroid

SGD

SGD−M

SVRG

RMSProp
cSGD

cSGDM

RSVRG

cRMSProp

(b) MB = 64

Figure 4: The plots for optimizing Equation (10) to calculate the

Riemannian Centroid for KYLBERG dataset is shown in (c) and

(d) for the specified size of Mini-Batch (MB). Similar results were

observed for different sizes of MB.

4.2. Computation of the Riemannian Centroid

Medical imaging is an example of a field where com-

putations using SPD matrices [8] are crucial (DTI Tensor

Imaging) [12]. The problem we consider here is that of

finding the Riemannian centroid of a set of SPD matrices

A1,A2 · · ·Ak such that Ai ∈ Sn++, i = 1, . . . k. The ob-

jective function can be expressed as the follows

min
M

k
∑

i

∥

∥

∥
log(A

−1/2
i MA

−1/2
i)

∥

∥

∥

2

F
. (10)

In the constrained versions of our algorithms, we require

the matrix M to be in the Sn++ manifold. This constraint

appears natural as we are trying to compute the centroid of

a set of matrices in Sn++.

4465

Dataset

We follow similar preprocessing steps to [14] when evalu-

ating our method on the KYLBERG dataset [20]. The latter

consists of patches from 28 different texture classes of nat-

ural and artificial surfaces. There are two versions of the

dataset; one with rotated texture patches and another with-

out. Here we considered the latter dataset which has 160

unique samples per class. The original images were scaled

to 128×128 pixels and Covariance Descriptors [38] were

generated from 1024 4×4 non-overlapping pixel grids. At

each position u, v on the coarse grid, we generate a 5 di-

mensional feature vector as follows

xu,v =

[

Iu,v,

∣

∣

∣

∣

∂I

∂u

∣

∣

∣

∣

∣

∣

∣

∣

∂I

∂v

∣

∣

∣

∣

∣

∣

∣

∣

∂2I

∂u2

∣

∣

∣

∣

∣

∣

∣

∣

∂2I

∂v2

∣

∣

∣

∣

]

,

where Iu,v represents the intensity. We have used 80-20%

split for each class to create the training and test datasets

respectively. Figures 4(a)and 4(b) show the results for this

experiment in terms of the objective value of Equation (10)

evaluated on the test dataset. We observe a similar trend

compared to the case of incremental PCA; the constrained

versions of the SGD algorithms performed better than their

non-constrained counterparts. Once again, the cRMSProp

reaches the lowest objective value and the highest conver-

gence rate, with the cSGD-M coming second.

4.3. Deep Metric Learning

In general, Metric Learning refers to algorithms which

learn a suitable similarity function in the feature space

which ensures that large values (resp. small values) for

inter-class separability (resp. intra-class separability) are

maintained [41]. Conventional classification techniques do

not perform well in settings where there is either a large

number of categories or very few examples in some cat-

egories [27]. This has paved the way for metric learning

algorithms which directly learn the underlying geometri-

cal structure of the relevant features in a dataset. Thus,

the problem of classification reduces to that of standard

clustering using the learned metric. Metric learning has

been crucial in several important computer vision tasks such

as content-based image retrieval, image classification, face

recognition, and unsupervised learning algorithms such as

clustering [3]. A large pool of algorithms exists in the litera-

ture regarding metric learning. However, for simplicity, we

decided to focus our attention on learning a Mahalanobis

metric [44]. A Mahalanobis metric is defined as

dM (xi,xj) =
√

(xi − xj)TM(xi − xj), (11)

where R
n×n ∋M � 0 which ensures that dM (·, ·) has the

properties of a pseudo-metric. By learning a suitable Maha-

lanobis (pseudo) metric one can infer the geometrical struc-

ture of the feature space and use it to compare examples of

categories not seen during training - this is known as Zero

shot Learning [43, 46]. In this case, a model is trained on a

dataset and evaluated on a second set with instances repre-

senting similar concepts and sharing the same ”semantical”

metric. The first step to learning a metric is to map data

points to a suitable features space. Deep Neural Networks

are good candidates for this task as they can model complex

mapping while insuring that instances from the same (resp.

different) categories are semantically closer (resp. further

apart). For this experiment we use the Siamese architec-

ture [7] consisting of two identically parameterized subnet-

works, followed by a linear layer whose weights are cap-

tured by a matrix L ∈ R
n×p. The matrix M in (11) is then

expressed as M = LLT which ensures that it is always

positive semi-definite. Note, however, that multiplying L

by an orthogonal matrix Q yields the same pseudo-metric

dM . Such a rotation invariance is known to be detrimental

for the convergence of learning algorithms [26, 13]. One

way around this problem is to further decompose M as

M = UD
1
2D

1
2UT , where U ∈ St(p, n) and D ∈ R

p×p.

Note that replacing U by UQ, yields a different symmet-

ric positive definite matrix M , which circumvents rotation

invariance problem. As a result of this further decomposi-

tion, the linear layer of the Siamese network is divided into

two sublayers whose weights are the new matrices U and

D
1
2 . To test our approach, we have trained the Siamese net-

work with the triplet embedding loss [35] for fine-grained

object recognition task. More specifically, from a mini-

batch of N training samples, we mine m triplets of the form
{(

xa
i ,x

+
i ,x

−
i

)}m

i=1
, belonging to the feature space (i.e.

from the output of the first layer of the network) with the

constraint that
(

xa
i ,x

+
i

)

are in the same category, whereas
(

xa
i ,x

−
i

)

are not. In our experiments, we used the semi-

hard mining strategy [35] to generate the triplets as this

ensures more robustness during the training phase. These

triplets are then used to compute the embedding loss

J(θ) =
1

|P |

|P |
∑

i=1

[

∥

∥xa
i−x+

i

∥

∥

2−
∥

∥xa
i−x−

i

∥

∥

2
+τ

]

+
.

where [y]+ = max(0, y) is the hinge loss, |P | is the number

of positive pairs, and τ > 0 is the user-specified margin.

Dataset

We followed the experimental protocol described in [21]

and evaluate our method on two fine-grained datasets using

the same train/test split strategy. (1) The Caltech-UCSD

Birds (CUB-200-2001) [42] consists of 11,788 images of

birds from 200 different varieties. The first 100 categories

are for training (5,864 images), while the remaining 100

categories are for testing (5,924 images). (2) The CARS196

dataset(Cars) [19] consists of 16,185 images of cars from

4466

Table 1: NMI and Recall@K evaluation on the Birds (CUB-200-2011) [42] and CARS196 [19] dataset. Note that all the

constrained optimization has been performed in the non-compact Stiefel manifold.

Dataset CUB-200-2011 CARS196

Method NMI R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8

KMeans Results

DFL [36] 59.23 48.18 61.44 71.83 81.92 59.04 58.11 70.64 80.27 87.81

DSC [21] 56.99 47.57 59.66 71.57 81.28 56.08 57.08 69.23 79.39 87.46

SGD 51.15 42.63 53.51 61.47 72.52 51.31 52.29 59.65 70.53 78.07

cSGD 52.86 44.15 55.07 62.97 74.18 53.79 54.53 61.16 72.17 78.59

SGD-M 55.4 47.41 58.61 66.61 77.51 55.13 56.19 65.09 74.25 79.71

cSGD-M 58.74 49.53 61.81 71.95 81.78 59.03 59.28 70.56 81.02 87.79

RMSProp 58.85 48.19 61.23 72.13 81.05 60.11 61.43 72.05 81.97 89.17

cRMSProp 61.37 52.40 64.26 74.97 83.59 63.58 69.17 80.31 85.59 92.13

Spectral Clustering Results

DSC [21] 58.12 49.78 62.56 73.55 82.78 58.04 59.37 71.25 80.62 88.32

cRMSProp 61.37 52.40 64.26 74.97 83.59 63.58 69.17 80.31 85.59 92.13

196 different models. The first 98 models (8,054 images)

are allocated for training, while the remaining 98 models

(8,131 images) are used for testing. We set the dimensional-

ity of the embedding space to the number of training classes

for both datasets; that is, the dimensionality of the embed-

ding space for CUB-200-2011 and CARS196 datasets are

set to 100 and 98, respectively. Moreover, the categories for

training and testing are disjoint (although they still belong

to the same meta-class, i.e. birds or cars). To avoid overfit-

ting, we performed early stopping similar to [36, 21].

We used MatConvnet1 [39] to implement our pro-

posed methods. We used the Inception [37] network

with batch normalization pretrained on ImageNet/ILSVRC

2012-CLS [32] dataset. We further finetuned the network

on the fine-grained training datasets. All the input images

have been first resized to 256 × 256 and cropped to 224 ×
224. During training, we augmented the images by per-

forming random cropping and horizontal flipping. How-

ever, the test images are cropped from the center. We fol-

lowed the protocol of [36] and used a single crop for every

image. We fixed the mini-batch size to 120 and made sure

that there are at least two examples of the same category

in each mini-batch. The metric learning experiments are

performed in the ”Zero-shot” learning context where train

and test instances have disjoint identities. Being fundamen-

tally different from classification experiments, we did not

cross-validate any parameters and chose parameters (e.g.,

learning rate) by observing the convergence behavior of the

objective. We performed the standard K-Means and Spec-

tral Clustering (SC) [40] on our test samples and used (a)

Normalized Mutual Information (NMI) and (b) Recall@K

(R@K) [27] to evaluate our method. The results for both

datasets are reported in Table 1. We have borrowed the re-

1https://github.com/sumo8291/cRMSProp.git

sults reported in the baseline papers [36, 21] in our com-

parison without performing any finetuning of their meth-

ods on our own. Moreover, for a fair comparison we have

only compared against the end-to-end results of of Law et

al. [21] for both KMeans and SC. Similar to previous obser-

vations, cRMSProp had superior performance against all

the baselines and cSGD-M. We also observe that cSGD-

M performs almost as well as the two baseline methods

used for our comparisons. This in turn suggests that one

can achieve competitive results by incorporating geometri-

cal constraints in the standard triplet loss and optimizing it

with the Riemannian versions of the SGD algorithms. We

also acknowledge that the best results in Law et al. [21] are

obtained by finetuning only the last layer, followed by SC.

Likewise, we also fine-tune the last Stiefel layer with triplet

loss, followed by SC and obtain competitive results in the

various evaluation metrics. (For e.g., Law et al. [21] achieve

a NMI of 64.25% on the CARS196 dataset whereas we ob-

tain 64.20% by just finetuning the last layer.)

5. Conclusion

In this paper, we introduced novel extensions of SGD-
M and RMSProp which allow can directly be applied
to constrained problems. Our experimental evaluations
demonstrated the benefit of using our approach across sev-
eral key constrained optimization problems. In particu-
lar, we obtained state-of-the art results for metric learn-
ing on two challenging fine-grained objection recognition
datasets. In the future, we plan to extend our proposed
method to several other optimization algorithms such as
Adam [18], ADAGRAD [11] and also cover other prob-
lems with geometrical constraints not considered in this
work.

4467

https://github.com/sumo8291/cRMSProp.git

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization al-

gorithms on matrix manifolds. Princeton University Press,

2009. 3

[2] M. Belkin and P. Niyogi. Semi-supervised Learning on Rie-

mannian Manifolds. Machine learning, 56(1-3):209–239,

2004. 2

[3] A. Bellet, A. Habrard, and M. Sebban. A Survey on Met-

ric Learning for Feature Vectors and Structured Data. arXiv

preprint arXiv:1306.6709, 2013. 7

[4] C. M. Bishop. Pattern Recognition and Machine Learning.

springer, 2006. 1, 5

[5] S. Bonnabel. Stochastic Gradient Descent on Rieman-

nian Manifolds. IEEE Transactions on Automatic Control,

58(9):2217–2229, 2013. 2, 3

[6] W. M. Boothby. An Introduction to Differentiable Manifolds

and Riemannian Geometry, volume 120. Gulf Professional

Publishing, 2003. 3, 4

[7] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah.

Signature Verification using a” Siamese” Time Delay Neu-

ral Network. In Advances in Neural Information Processing

Systems, pages 737–744, 1994. 7

[8] A. Cherian, P. Stanitsas, M. Harandi, V. Morellas, and N. Pa-

panikolopoulos. Learning discriminative αβ-divergences for

positive definite matrices. In Computer Vision (ICCV), 2017

IEEE International Conference on, pages 4280–4289. IEEE,

2017. 6

[9] J. P. Cunningham and Z. Ghahramani. Linear Dimensional-

ity Reduction: Survey, Insights, and Generalizations. Jour-

nal of Machine Learning Research, 16:2859–2900, 2015. 5

[10] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Opti-

mal Distributed Online Prediction using Mini-Batches. Jour-

nal of Machine Learning Research, 13(Jan):165–202, 2012.

1

[11] J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient

Methods for Online Learning and Stochastic Optimization.

Journal of Machine Learning Research, 12(Jul):2121–2159,

2011. 2, 8

[12] P. T. Fletcher and S. Joshi. Riemannian Geometry for the

Statistical Analysis of Diffusion Tensor Data. Signal Pro-

cessing, 87(2):250–262, 2007. 6

[13] M. Harandi, M. Salzmann, and R. Hartley. Joint Dimension-

ality Reduction and Metric Learning: a Geometric Take. In

Proc. Int. Conference on Machine Learning (ICML), pages –,

2017. 5, 7

[14] M. Harandi, M. Salzmann, and F. Porikli. Bregman Diver-

gences for Infinite Dimensional Covariance Matrices. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1003–1010, 2014. 7

[15] G. Hinton, N. Srivastava, and K. Swersky. Neural Networks

for Machine Learning-lecture 6a-Overview of Mini-Batch

Gradient Descent. 2

[16] Z. Huang, J. Wu, and L. Van Gool. Building Deep Networks

on Grassmann Manifolds. arXiv preprint arXiv:1611.05742,

2016. 4

[17] R. Johnson and T. Zhang. Accelerating Stochastic Gradient

Descent using Predictive Variance Reduction. In Advances

in neural information processing systems, pages 315–323,

2013. 1, 2

[18] D. Kingma and J. Ba. Adam: A Method for Stochastic Opti-

mization. arXiv preprint arXiv:1412.6980, 2014. 2, 8

[19] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D Object Rep-

resentations for Fine-Grained Categorization. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion Workshops, pages 554–561, 2013. 7, 8

[20] G. Kylberg. Kylberg Texture Dataset v. 1.0. Centre for Image

Analysis, Swedish University of Agricultural Sciences and

Uppsala University, 2011. 7

[21] M. T. Law, R. Urtasun, and R. S. Zemel. Deep Spectral Clus-

tering Learning. In International Conference on Machine

Learning, pages 1985–1994, 2017. 7, 8

[22] G. Lebanon et al. Riemannian Geometry and Statistical Ma-

chine Learning. PhD thesis, 2005. 2

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 6

[24] K.-C. Lee, J. Ho, and D. J. Kriegman. Acquiring Linear Sub-

spaces for Face Recognition under Variable Lighting. IEEE

Transactions on pattern analysis and machine intelligence,

27(5):684–698, 2005. 6

[25] T. Lin and H. Zha. Riemannian Manifold Learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

30(5):796–809, 2008. 2

[26] B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre. Fixed-

rank Matrix Factorizations and Riemannian Llow-rank Opti-

mization. Computational Statistics, 29(3-4):591–621, 2014.

7

[27] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

Metric Learning via Lifted Structured Feature Embedding.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4004–4012, 2016. 1, 7, 8

[28] X. Pennec, P. Fillard, and N. Ayache. A Riemannian Frame-

work for Tensor Computing. Int. Journal of Computer Vi-

sion, 66(1):41–66, 2006. 4

[29] N. Qian. On the Momentum Term in Gradient Descent

Learning Algorithms. Neural networks, 12(1):145–151,

1999. 1

[30] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola. On

Variance Reduction in Stochastic Gradient Descent and its

Asynchronous Variants. In Advances in Neural Information

Processing Systems, pages 2647–2655, 2015. 1

[31] S. Ruder. An overview of gradient descent optimization al-

gorithms. arXiv preprint arXiv:1609.04747, 2016. 2

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 8

[33] J. Schmidhuber. Deep Learning in Neural Networks: An

Overview. Neural networks, 61:85–117, 2015. 1

[34] M. Schmidt, N. Le Roux, and F. Bach. Minimizing Finite

Sums with the Stochastic Average Gradient. Mathematical

Programming, 162(1-2):83–112, 2017. 2

4468

[35] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A Uni-

fied Embedding for Face Recognition and Clustering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 815–823, 2015. 7

[36] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy. Deep

Metric Learning via Facility Location. In Computer Vision

and Pattern Recognition (CVPR), 2017. 8

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going Deeper with Convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015. 8

[38] O. Tuzel, F. Porikli, and P. Meer. Region Covariance: A

Fast Descriptor for Detection and Classification. Computer

Vision–ECCV 2006, pages 589–600, 2006. 7

[39] A. Vedaldi and K. Lenc. Matconvnet – Convolutional Neu-

ral Networks for MATLAB. In Proceeding of the ACM Int.

Conf. on Multimedia, 2015. 8

[40] U. Von Luxburg. A tutorial on spectral clustering. Statistics

and computing, 17(4):395–416, 2007. 8

[41] K. Q. Weinberger and L. K. Saul. Distance Metric Learning

for Large Margin Nearest Neighbor Classification. Journal

of Machine Learning Research, 10(Feb):207–244, 2009. 1,

7

[42] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD birds 200. 2010. 7,

8

[43] Y. Xian, B. Schiele, and Z. Akata. Zero-Shot Learning-

The Good, the Bad and the Ugly. arXiv preprint

arXiv:1703.04394, 2017. 7

[44] S. Xiang, F. Nie, and C. Zhang. Learning a Mahalanobis Dis-

tance Metric for Data Clustering and Classification. Pattern

Recognition, 41(12):3600–3612, 2008. 7

[45] M. D. Zeiler. Adadelta: An Adaptive Learning Rate Method.

arXiv preprint arXiv:1212.5701, 2012. 2

[46] H. Zhang and P. Koniusz. Zero-shot kernel learning. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018. 7

[47] H. Zhang, S. J. Reddi, and S. Sra. Riemannian SVRG:

Fast Stochastic Optimization on Riemannian Manifolds. In

Advances in Neural Information Processing Systems, pages

4592–4600, 2016. 2, 3

[48] P. Zhao and T. Zhang. Accelerating Minibatch Stochastic

Gradient Descent using Stratified Sampling. arXiv preprint

arXiv:1405.3080, 2014. 2

4469

