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Abstract

Interaction and collaboration between humans and intel-

ligent machines has become increasingly important as ma-

chine learning methods move into real-world applications

that involve end users. While much prior work lies at the

intersection of natural language and vision, such as image

captioning or image generation from text descriptions, less

focus has been placed on the use of language to guide or im-

prove the performance of a learned visual processing algo-

rithm. In this paper, we explore methods to flexibly guide a

trained convolutional neural network through user input to

improve its performance during inference. We do so by in-

serting a layer that acts as a spatio-semantic guide into the

network. This guide is trained to modify the network’s acti-

vations, either directly via an energy minimization scheme

or indirectly through a recurrent model that translates hu-

man language queries to interaction weights. Learning the

verbal interaction is fully automatic and does not require

manual text annotations. We evaluate the method on two

datasets, showing that guiding a pre-trained network can

improve performance, and provide extensive insights into

the interaction between the guide and the CNN.

1. Introduction

Convolutional neural networks (CNNs) continue to grow

in their breadth of application and in their performance on

challenging computer vision tasks, such as image classifi-

cation, semantic segmentation, object detection, depth pre-

diction and human pose estimation. To date, the majority of

the techniques proposed for these applications train specific

network architectures once and subsequently deploy them

as static components inside an algorithm. However, it is

unlikely that any static network will be perfect at the task

it was designed for. If the deployed CNN were adaptable

to feedback or specifications provided by a human user on-

line, this interaction would hold the potential to improve the

model’s performance and benefit real-world applications.

For example, in photo editing, when a CNN is used to

segment the foreground of an image from the background,

the user might notice that the network has made a mis-

take. Instead of manually repairing the segmentation output

or developing a post-processing algorithm based on some

heuristics, a simpler and more effective way would be for

the user to interact directly with the network through a di-

rected hint, e.g. pointing out that “the child on the bot-

tom left of the image is in the foreground, not in the back-

ground”. The user that was previously presented with a

fixed, black-box prediction is now able to influence and alter

the outcome according to his needs. This property is partic-

ularly useful in high risk domains such as medical image

analysis and computer-assisted diagnosis, where fully auto-

mated segmentation is not always robust in clinical appli-

cations and the experience of trained practitioners matters.

Another relevant example is speeding up labor-intensive

and repetitive labeling tasks, such as those needed to cre-

ate datasets for semantic segmentation, especially those for

which annotations are scarce and expensive to obtain.

We propose a novel idea to allow user-network feedback-

based interaction that aims at improving the performance of

a pre-trained CNN at test time. The core idea is the defini-

tion of a spatio-semantic guiding mechanism that translates

user feedback into changes in the internal activations of the

network, thus acting as a means of re-thinking the inference

process. The user input is modeled via a language-based ap-

proach, that enables interaction with a trained model in the

form of a dialog. The user receives a first estimate, inputs a

text query and the network replies with an updated predic-

tion. Most previous interactive approaches place the user on

the input/data side which means user input is required for

the method to operate. In contrast, in our method, the user’s

input is optional and modifies the network, this means that

the network does not depend on human interaction but can

be adjusted by it.

We showcase this interactive module on the task of se-

mantic image segmentation. One advantage of our method

is that it does not depend on any explicit annotation for text-
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Figure 1. Overview. We introduce a system that is able to refine predictions of a CNN by injecting a guiding block into the network. The

guiding can be performed using natural language through an RNN to process the text. In this example, the original network had difficulties

to differentiate between the sky and the cloud classes. The user indicates that there is no sky and the prediction is updated, without any

CNN weight updates and thus without additional training.

region correspondences. Yet, results indicate that the mod-

ule can successfully transfer semantic information from the

natural language domain to the visual domain, such that the

network eventually produces a more accurate segmentation.

As a side effect, this provides interesting insights into how

CNNs structure their inference with respect to natural cat-

egories, providing an avenue for exploring the relationship

between language and imagery.

2. Related Work

Interaction with neural networks Human-machine in-

teraction is an extensively researched field. In [9] the user

and an algorithm work together to solve fine grained recog-

nition tasks, leveraging analytic strengths of the system and

visual recognition power of the human. Prior to deep learn-

ing, several systems have been proposed for semi-automatic

segmentation, that allowed the user to interfere with the

result or to provide hints to the system via seed points

[8, 52], bounding boxes [24, 37, 54], contours or scribbles

[7, 23, 58], eye gaze [26] or in the form of binary yes/no

answers to a set of questions [11, 55].

Most deep learning based segmentation methods, how-

ever, do not have an interface for human input during in-

ference. The model and thus the attainable performance is

fixed after the training phase. Directly integrating a human

into a training loop with thousands of images is challenging.

Nonetheless, some methods towards interactive deep learn-

ing have been proposed, such as weakly-supervised seman-

tic segmentation from scribbles [38], user-provided clicks

and Euclidean distance maps [61] or bounding boxes used

as region initialization [17, 53]. Additionally, a method for

sparse, user-guided colorization of grayscale images is pro-

posed in [63]. In the field of medical imaging, [2] proposes

to interactively improve segmentation by updating a seed-

map given by the user and [57] uses a second network oper-

ating both on the previous prediction and human feedback.

In our system, we integrate online interaction into the

training by substituting the human input with an algorithm

that dynamically generates hints from different modalities

based on previous predictions. The CNN is already trained

and only asks for the user’s directions for the purpose of

conditioned (on-demand) adjustments of an initial estimate.

The intersection of vision and language To enable user

interaction in a natural and intuitive way, we propose a

novel idea that lies in the joint domain of natural language

and vision. A relevant line of work in this field is Visual

Question Answering (VQA). A question is posed and the

answer is based on the image context [1, 45, 64]. Spe-

cialized systems for VQA ground the question in the in-

put image and focus on the relevant parts to answer com-

plex queries with text responses [4, 5, 27, 32, 43, 46].

Other examples include generation of referring expres-

sions [36, 44, 47, 62], segmentation or object retrieval

from referring expressions [19, 29, 28], image captioning

[16, 21, 33, 34, 48, 56] and visual dialog [18]. Most works

focus on the combination of CNN and RNN models, often

building attention mechanisms [3, 42, 59, 60]. Most related

to our approach is the recent method from [20, 50] that pro-

poses the use of a conditional batch normalization layer [30]

and feature-wise adjustment for visual reasoning.

A key distinction between our approach and most of the

summarized literature is that our system’s output is visual

and not textual, i.e. it is neither an answer nor an image

caption. The output of the interactive CNN is in the same

domain as the initial one. Another major difference is that

we do not rely on vision-text correspondences with paired

questions-answers or captions; user interaction is simulated

via textual expressions that we generate automatically.
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Semantic segmentation In this paper, we focus on the ap-

plication of semantic image segmentation, which is widely

studied in the computer vision literature and significantly

boosted by the success of deep learning methods [6, 12, 31,

39, 41, 51]. Our goal is to deploy out-of-the-box, state-of-

the-art models [12, 41] as estimators, that are then guided

by our module to improve their former predictions with the

help of a human user (or any given priors as hints).

3. Methods

In this section, we describe how our interaction mod-

ule is integrated into a fixed CNN following two different

approaches: guiding with user clicks and back-propagation

(Section 3.2) or natural language inputs (Section 3.3). A

general overview for the latter case is shown in Figure 1.

We first define the main elements of our framework,

which we refer to throughout this paper. The module we

insert into the CNN is called the guide. The guide inter-

acts with the guided CNN through a guiding block, which

is built to adjust activation maps of the CNN to improve the

final prediction for the given input. The guided CNN is thus

split into two parts: the head, which processes the input un-

til it reaches the guiding block, and the tail, that is the rest

of the guided network up to the final prediction layer. More

formally, by decomposing the network into a head h and a

tail function t, the output prediction ỹ given input x can be

written as t(h(x)) = ỹ . We refer to the information that

the guide uses to modify the guided network as the hint.

The split position is chosen manually. However, a rea-

sonable choice is the (spatially) smallest encoding that the

network produces, as this layer likely contains the most

high-level information in a compact representation.We val-

idate the choice of layers in the Section 4.2.

3.1. Guiding Block

The guiding block is the integral piece of our approach,

it enables feedback to flow from the guide into the guided

network. Essentially, the guide must be able to modify a

set of activations in the guided network. Since activation

maps usually consist of a large number of elements (e.g.

32× 32× 1024 ≈ 1 million), element-wise control is prone

to over-fitting. The intuition behind our guiding block is

that the network encodes specific features in each chan-

nel of a given layer. Thus, a guide that has the ability to

strengthen or weaken the activations per channel, can em-

phasize or suppress aspects of the image representation and

thus adapt the prediction in a semantically meaningful way.

The head predicts a feature representation h(x) = A ∈

R
H×W×C with width W , height H and number of channels

C. Then, guiding can be expressed as a per feature map

multiplication with a vector γ(s) ∈ R
C and bias γ(b) ∈ R

C ,

A′

c = (1 + γ(s)
c )Ac + γ(b)

c , (1)

where c ∈ [1, . . . , C] indexes the channels of the feature

volume A and the corresponding elements of the guiding

vector γ = (γ(s), γ(b)). Given this formulation, we are able

to adjust a set of feature maps by emphasizing or hiding in-

formation per channel. Equation (1) can also be interpreted

as the guide predicting a residual update (similar to ResNets

[25]) for the activation map Ac. γ plays the role of a filter

on the feature maps. When γ = 0, our guiding block re-

produces the input feature map and thus has no effect in

guiding the network. When γ
(s)
c = −1, channel c would

become suppressed as all its units would be set to 0. Con-

versely, for γ
(s)
c = 1, the activation strength of that feature

channel is doubled. Values smaller than −1 invert a feature

map, emphasizing aspects that would have been otherwise

cut-off by the ReLU unit that typically follows the weight

layer (or vice versa).

While this approach, which is similar to the condition-

ing layer in [20, 50], supports per-channel updates and fea-

ture re-weighting via γ, it is not flexible enough to adjust

features spatially since it modifies the whole feature map

with the same weight. In other words, it is impossible for

this module to encourage spatially localized changes in each

feature map (“On the top left you missed ...”). To overcome

this limitation, we extend the approach to the spatial dimen-

sions H and W of the feature map, i.e. we introduce two

additional guiding vectors α ∈ R
H and β ∈ R

W to modify

the feature map A with spatial attention. In the following,

we will index A with h, w and c to uniquely identify a single

element Ah,w,c ∈ R of A

A′

h,w,c = (1 + αh + βw + γ(s)
c )Ah,w,c + γb

c (2)

The overall function that the guided network computes is

thus modified to

y∗ = t
[

(1⊕ α⊕ β ⊕ γ(s))⊙ h(x)⊕ γ(b)
]

, (3)

where the tiling of the vectors α, β, γ along their appropri-

ate dimensions is denoted with ⊕ and the Hadamard prod-

uct with ⊙. This way α and β have spatial influence and

γ controls the semantic adjustment. Guiding with Equation

3 reduces the number of parameters from H × W × C to

H + W + C = 1088 in the previous example, which is

manageable to predict with a small guiding module.

Since fully convolutional architectures are a common

choice for image prediction tasks, we employ linear inter-

polation of α and β when the feature map spatial resolution

varies. This choice reflects two properties of the guiding

block. First, α and β do not depend on fixed H and W .

Second, one can select the granularity of the spatial resolu-

tion by changing the dimensionality of α and β to match the

spatial complexity of the hints that the guide follows.

We describe two fundamentally different ways to em-

ploy the guiding block. The first one – guiding by back-
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propagation (Section 3.2) – can be directly applied on a pre-

trained CNN that is kept constant. The second one aims at

online interaction with neural networks via user feedback.

The network should be able to deal with hints from differ-

ent modalities, such as natural language – “the dog was mis-

taken for a horse”. We describe how the guiding parameters

α, β and γ can be predicted with an appropriate module

given a hint from a different input domain in Section 3.3,

which also speeds up processing.

3.2. Guiding by Back­propagation

In this setup, our goal is to optimize the guiding param-

eters such that the network revises its decision making pro-

cess and, without further learning, improves its initial pre-

diction for the current input. The guiding block is placed

between head and tail, and the guiding parameters are ini-

tialized to 0. For a given sample x, we formulate an en-

ergy minimization task to optimize α, β and γ. The hint

will be given as a sparse input ŷ associated to a mask m̂.

ŷ and m̂ have the same dimensionality as the prediction ỹ

and the ground truth y. m̂ is a binary mask that indicates

the locations where a hint (i.e. prior knowledge) is given.

Prior knowledge can be either directly given by the user or

it could be a prior computed by another source.

In semantic segmentation, one can think of the hint as

a single (or more) pixel(s) for which the user provides the

true class – “this [pixel] is a dog” as additional informa-

tion. Prior to guiding, a certain loss L(t(h(x)), y) has been

minimized during training of the network for a given task.

We now optimize towards the same objective, e.g. per-pixel

cross entropy for segmentation, but use the mask m̂ to only

consider the influence of the hint and minimize for the guid-

ing parameters, as opposed to the network’s parameters, i.e.

α∗, β∗, γ∗ = argmin
α,β,γ

[m̂⊙ L(y∗, ŷ)] . (4)

In this case, we only update the guiding variables for the

current specific input x and hint ŷ, whereas the network’s

weights are not trained further. The minimization finds the

best parameters α∗, β∗, γ∗ conditioned on the hint. The key

insight is that this results in an overall adjusted prediction.

Since the guiding block and the network t(h(x)) are

differentiable, we can minimize (4) using standard back-

propagation and gradient descent with momentum. Intu-

itively, the tendency of gradient descent to fall into local

optima is desirable here. We are looking for the smallest

possible α, β and γ that brings the guided prediction closer

to the hint while avoiding degenerate solutions such as pre-

dicting the whole image as the hinted class.

3.3. Learning to Guide with Text

While the previous idea is straightforward and simple to

apply to any network, it requires the hint to be given in the

initial prediction

ground truth

 bottom left 

 right error mask

 a remote is missing on the right 
category operation location

-

Query Generator

Figure 2. Query Generator. We illustrate the process to automat-

ically generate queries to substitute the user during training.

same domain as the network’s output. We now explore a

more natural way of human-machine interaction, in which

the user can give hints to the network in natural language

and the guiding mechanism is trained to update its parame-

ters after parsing the user’s inputs. To the best of our knowl-

edge, this is a topic that has not been previously studied.

Training with queries Similar to prior work in related

fields, we use a recurrent neural network (RNN) for pro-

cessing natural language inputs. We first encode the in-

put query using a word embedding matrix, pre-trained on

a large corpus, to acquire a fixed-length embedding vector

per word. The embedded words are fed as inputs to a Gated

Recurrent Unit (GRU) [14, 15] at each time step. We freeze

and do not further train the word embedding alongside our

guiding module, to retain a meaningful word representation.

The guiding parameters α, β and γ are predicted as a linear

mapping from the final hidden state of the GRU.

The language-guided module is trained as follows. We

first generate an initial prediction with the fixed, task-

specific CNN, without influence from the guide. We then

feed prediction and ground truth into a hint generator, which

produces a query (e.g. “the sky is not visible in this image”,

thus mimicking the user. The query is then encoded into a

representation that becomes responsible for estimating α, β

and γ that will guide the feature map using (3) and sub-

sequently update the prediction. The standard loss for the

given task (pixel-wise cross entropy loss for semantic seg-

mentation) is re-weighted giving positive weight (1) to the

class(es) mentioned in the query to encourage changes in

the prediction that coincide with the given hint. All wrongly

predicted pixels are given a zero weight to prevent hints

from being associated with other visual classes. Initially

correct pixels are weighted 0.5 to discourage corrupting cor-

rectly classified regions.

Generating queries Previous work mostly relies on

human-annotated queries, which make them rich in variety;
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however, in this case they would limit the model to a single

interaction, since new annotations cannot be recorded adap-

tively during training. Instead, our approach uses vision-

only datasets and does not require visual/textual annota-

tions, such as captions [40], referring expressions [28, 35]

and region-description correspondences [47]. Our method

aims at aiding the network to correct predictions with var-

ious mistakes, rather than producing a segmentation result

on demand given an input expression. Therefore, it requires

textual expressions that are synthesized on-the-fly from vi-

sual categories, by comparing the initial prediction and the

ground truth segmentation map.

For the generation of the queries we use a combination

of functionality, semantic categories and spatial layouts (see

Figure 2). Functional categories are defined by a set of op-

erations that can be carried out on the output to improve

it, such as discovering missing semantic classes, suppress-

ing noise or replacing wrongly predicted pixels with another

class. The set we used in our experiments consists of two

operations, i.e. find to handle classes missing in the initial

prediction and remove to correct wrongly predicted labels.

Each query is built by its function and two placeholders,

the entries of which are randomly selected at each training

step from a set of plausible combinations based on predic-

tion and the ground truth. We first divide the output of the

network into a N × N grid. In each grid cell, we search

for all erroneous classes, either missing or mistaken, while

ignoring tiny spurious regions comprised of only a few pix-

els. Next, we randomly sample a class from the generated

list of possible choices and use its semantic name for the

textual expression (e.g. “find the person”). The sampling

probability is proportional to the potential improvement in

the prediction. We then track the class position in the image

based on the cells where it was found. Different combina-

tions of cells define different spatial attention areas which

can be then converted into text phrases such as “on the top

left”, “on the bottom”, “in the middle”.

Eventually, the proposed approach can generate textual

phrases automatically and online. The guide is thus trained

to understand language using vision-only annotations, i.e.

segmentation masks. The guiding block is able to discover

semantic and spatial correspondences between the text in-

put and the visual feature representation. During testing the

guide can then interpret the commands of a real user.

4. Experiments

We evaluate our guiding framework under multiple as-

pects. First, we guide semantic segmentation by back-

propagation. This allows us to directly evaluate the per-

formance of the guiding and show how it can be deployed

into a model without any additional training. Second, we

thoroughly investigate guiding with textual hints.

#questions 0 1 5 10 15 20

FCN-8s

mIoU 62.6 65.3 73.1 76.9 77.3 81.0

p.accuracy 91.1 91.8 94.1 95.3 96.0 96.3

Table 1. Performance after a number of questions. We guide

a pre-trained FCN-8s [41] on PascalVOC 2012 val set [22] di-

rectly, using back-propagation. We report the mean intersection

over union (mIoU) score and pixel accuracy. Every interaction

with the user improves the result.

4.1. Guiding by Backpropagation

We investigate the performance gain by employing our

guiding block directly on a fixed, pre-trained CNN. The task

is semantic segmentation on the PascalVOC 2012 dataset

[22]. We use a pre-trained FCN-8s network [41] and insert

a guiding block in the smallest encoding layer.

A user interaction scheme similar to the 20-question

game of [55] is set up. After an inference step, the network

is allowed to ask the user for the class of a single pixel and

the guiding layer updates the feature representation using

(4). The queried pixel is the one with the smallest poste-

rior probability difference between the two most confident

classes. This pixel has the highest interclass uncertainty,

meaning that it is the most likely to flip. After each ques-

tion the prediction is updated and the mean intersection over

union (mIoU) is computed.

We have intentionally chosen a somewhat “outdated” ar-

chitecture since we believe that user interaction is mostly

necessary in tasks in which the performance is not close

to optimal. We list the performance after 0, 1, 5, 10, 15

and 20 questions in Table 1, where 0 denotes the initial

performance of FCN-8s without guiding. Over the course

of 20 interactions with the user, a significant improvement

of the performance from 62.6% to 81.0% is recorded. It

is noteworthy that the top entry on the PascalVOC leader-

board (DeepLab-v3 [13]) currently scores 86.9% mIoU,

when trained with additional data. This demonstrates the

benefit of guiding by back-propagation: it can be directly

incorporated into a pre-trained CNN and, without any fur-

ther training, it boosts a comparably low performance to

reach the state of the art.

4.2. Guiding with Text Inputs

Due to the high accuracy of current methods on the Pas-

calVOC semantic segmentation task, bringing a human into

the loop to request improvements was not found to be mean-

ingful with state-of-the-art models. We wish to evaluate our

guiding module under a more challenging setting, in which

even the performance of a state-of-the-art model is not sat-

isfactory and interaction with a user can be beneficial.

For this purpose, we have chosen to use a dataset with
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guiding module mIoU mIoU

w/ res-blk w/o res-blk

FiLM [50] 33.08 33.31

ours 33.11 33.56

Table 2. Guiding Block Variants. We evaluate mIoU perfor-

mance when guiding res4a using find queries, in comparison to

the conditioning layer of [50].

res3a res4a res5a res5c

mIoU 32.21 33.56 35.97 36.50

Table 3. Location of the guiding block. We evaluate mIoU per-

formance when guiding different layers inside the CNN using

find queries.

a limited number of images but rich categorical context.

COCO-Stuff [10] is a subset of the popular MS Common

Objects in Context (COCO) dataset [40] and consists of 10k

images from the train 2014 set, further split into 9k training

and 1k testing images. The images are labeled with pixel-

level annotations of 91 “things” and 91 “stuff” classes.

Implementation Details. We first split the training set

into two halves and use the first part for pre-training a

DeepLab model [12] with a ResNet-101 [25] as back-end.

The input dimensions are 320 × 320 × 3. On this small,

challenging dataset, this model scores only 30.5% mIoU.

Next, we keep the weights of the semantic segmentation

model fixed and only train the guiding mechanism using

the remaining 4,500 images that were unseen during the

pre-training phase. The guide is trained to translate em-

bedded text queries through a recurrent model into relevant

guiding parameters, as described in Section 3.3. For the

word embedding we used a pre-trained matrix based on the

GloVe implementation [49] that projects each word into a

50-dimensional vector space. The GRU consists of 1024

hidden units. A dense weight layer maps the last state to

the vectors α and β, that match respectively the height and

width of the succeeding activations of the semantic segmen-

tation model, and the weights and biases that are used as the

scale and offset update for each activation map. We have

experimented with two ways of applying the guide. The

first one alters the CNN’s activations directly, therefore the

weight vector size depends on the CNN layer that is being

guided. The second wraps the predicted weights inside a

residual block with 256 channels, as in [50]. For the hint

generation process, instead of uniquely defining an oper-

ation as “find the . . . ” we randomly select from a set of

variations with similar meaning such as “the . . . is missing”,

or “there is a . . . in the image”. The grid size N is set to 3,

resulting in 9 cells that specify the spatial location for the

query. All experiments are averaged over five evaluation

guiding location

hint complexity res4a res5a

remove 31.53 32.56

find or rmv 32.22 33.73

find 33.56 35.97

Table 4. Complexity of Hints. We show performance of the

method using two different types of hints.

# hints 0 1 2 3 4

mIoU 30.53 34.04 35.01 34.24 31.44

Table 5. Guiding multiple times. We guide iteratively with mul-

tiple find or rmv hints. After three hints performance de-

creases due to the guide over-amplifying certain features.

runs to account for the randomness in the queries.

Our best guided model improves the overall score from

30.5% to 36.5% with a single hint. We note that training

DeepLab on the full train set is only marginally better than

on the half, reaching 30.8% mIoU. Exemplary CNN predic-

tions before and after guidance are shown in Figure 3. The

guiding module was trained with find queries and does not

modify the original CNN permanently, but only conditioned

on the hints. We observed that our method helped resolving

typical problems with the initial predictions, such as con-

fusions between classes (columns 1, 2), partially missing

objects (column 3, 4) and only partially visible objects in

the background (column 6).

In the following, we compare our guiding block to the

conditional batch normalization layer of [50]. Then, we ex-

plore the effect of guiding location by inserting the guide at

different layers of the CNN. Further, we evaluate hint com-

plexity using different query operations and apply repeated

guiding to further improve the result. Finally, we provide

some insights, by analyzing failure cases through heat map

visualization and embeddings of the guiding vectors.

Guiding Block Evaluation. In a set of experiments we

investigate different variants of the guiding block. The per-

formance can be seen in Table 2. We analyze variants with

and without an encompassing res-block around the guiding

layer. We compare to the FiLM layer from Perez et al. [50].

The difference to our guiding block are the guiding compo-

nents α and β, that translate location information from the

text to spatial attention in image space.

Guiding Location. Due to the flexibility of the guiding

block, it can be plugged into the network at any location.

In general, in our experiments we observe that a location

that is very late - close to the prediction - inside the network

often results in small, local changes in the output. Moving

the block earlier results in more global changes that affect

a bigger region and sometimes multiple classes. When the
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Figure 3. Qualitative Results. We show qualitative results using find hints for missing classes. In the first example, we resolve a

confusion between ground and playing field. In the second example, we show that the often occurring spurious predictions can

also be handled. The third column shows that the network get the hint to find the banner, although it bleeds slightly into the building

below. In the fourth and the last column, classes that are heavily occluded can be discovered too after guiding. The black ground truth label

stands for unlabeled thus any prediction is allowed there. Please see the supplementary material for additional examples.

guide is placed too early in the network the feature maps

that it guides do not contain enough high-level information

to guide appropriately. This can be observed in Table 3,

where we compute the mIoU score for guides in different

locations inside the network.

Complexity of Hints. Automatically generating hints

during training alleviates the need for manual vision-text

annotations and also enables direct control of the query

complexity. We differentiate between two distinct hints:

find and remove. A find hint tells the network that it

had missed a class: ”There is a person in the top right”.

remove is the opposite problem - the network had pre-

dicted a class that is not there or incorrect.

In Table 4 we show the performance for the different

hint types. We observe that remove generally yields a

lower performance gain than find. This is explained

by the fact that remove is a more ambiguous query

than find. When the network is told to remove a class

from the prediction it does not know what to replace it

with. Training with both queries simultaneously(find or

remove), randomly selecting one each time, achieves av-

erage performance between the two types.

Guiding multiple times. We have conducted an experi-

ment, similar to the one in Section 4.1 and Table 1, to show-

case an interesting property of the guiding module. Since it

is trained to adjust the feature space in a way that improves

the prediction, we hypothesize that the guided network can

be guided repeatedly. The insight is that the guiding block

will still result in a valid feature map. We iteratively direct

the network (guided at layer res5a) to correct its mistakes

via find or rmv queries, although it is not trained with

subsequent hints, and report prediction accuracy in Table

5. We observe that the performance has further increased

with a second hint. With three or more the guide starts

to over-amplify certain features, causing noise in the pre-

dictions and decreasing performance. Nonetheless, we still

observe a good gain over the non-guided model.

4.3. Insights into the Model

We provide further insight into learned models by exam-

ining failure cases and the learned joint embedding.

Failure Cases. When the initial prediction is particularly

noisy, the guide has difficulties to fully repair the mistakes,

as shown in Figure 4. Given a hint that a building is

missing, the network can partly recover it, but a lot of spu-

rious regions remain. We assume that the relevant features

that would be needed for successful guiding, cannot be fully

recovered from the noise in the guided activation map or are
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Figure 4. Failure case.. Hint: ”there is a building in the top” When

the initial prediction fails, our method has difficulties recovering

the mistakes. The refinement includes the building only par-

tially and it bleeds into stone-wall below.

Figure 5. Failure Case Visualization. In the first example a) the

refined prediction is correct. In b) the heatmap indicates that the

guide has the right focus but it is not enough to change the output.

not present at all.

To understand how the activation map is influenced by

the guide, we visualize a heatmap for different queries in the

same image and investigate a failure case in Figure 5. In this

visualization we can see that the system understands the hint

about the sky (a). However, given the refined prediction

for the surfboard hint (b), we would assume that it did

not understand the query correctly. The heatmap shows that

the guide indeed does emphasize the right parts of the im-

age, but not strong enough to overpower the sea label. Po-

tentially more precise queries during training could fix this

problem. ”There is a surfboard where you predicted sea”

would let the guide not only emphasize surfboard re-

lated activations but simultaneously dampen the sea class,

leading to better results in these cases.

Semantic Analysis of the Learned γ-vectors. We ana-

lyze the mapping from text to guiding vectors. To this end,

we predict a γ vector for each class using a find query.

Figure 6. Visualizing γ. We visualize the learned γ vector for

every class using t-SNE. The colors correspond to the higher level

categories which are present in the dataset but not used in training.

Best viewed in digital version.

In Figure 6 we display the t-SNE projection of these 256 di-

mensional vectors. The color categories that the 182 classes

are grouped into, are set from higher level categories. The

grouping into categories was never used during training.

This space is the intersection between features learned from

the CNN for segmentation and text representation learned

by the RNN. The fact that semantically similar words clus-

ter means that the joint embedding successfully correlates

text and image features. A stronger clustering would mean

that the γ-vectors are very similar inside the cluster, thus the

network would have more difficulties guiding these classes.

This can still be seen in a few cases such as the very close

sand and mud classes, which are visually very similar and

often do not improve after guiding.

5. Conclusion

In this paper, we have presented a system that allows for

natural interaction of a human user with neural networks.

The idea is to enable feedback from the user to guide the

network by updating its feature representations on-the-fly,

conditioned by the user’s hint, without further training the

network’s parameters. An intuitive way of interaction is via

text queries, sent by the human to the network, which aim

at improving some initial estimation on a specific task.

We have created queries automatically with a special-

ized algorithm. In the future we would like to explore the

possibility of generating queries with a second network that

learns the role of the user, giving hints to the first. Further,

image-guided attention mechanism can be incorporated into

the RNN to improve the interaction mechanism.
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