
From source to target and back: Symmetric Bi-Directional Adaptive GAN

Paolo Russo1,2, Fabio M. Carlucci1,2, Tatiana Tommasi2 and Barbara Caputo1,2

1Department DIAG, Sapienza University of Rome, Italy
2Italian Institute of Technology

{Paolo.Russo, Fabio.Carlucci, Tatiana.Tommasi, Barbara.Caputo}@iit.it

Abstract

The effectiveness of GANs in producing images ac-

cording to a specific visual domain has shown potential

in unsupervised domain adaptation. Source labeled im-

ages have been modified to mimic target samples for

training classifiers in the target domain, and inverse map-

pings from the target to the source domain have also been

evaluated, without new image generation.

In this paper we aim at getting the best of both worlds

by introducing a symmetric mapping among domains.

We jointly optimize bi-directional image transformations

combining them with target self-labeling. We define a

new class consistency loss that aligns the generators in

the two directions, imposing to preserve the class identity

of an image passing through both domain mappings. A

detailed analysis of the reconstructed images, a thorough

ablation study and extensive experiments on six different

settings confirm the power of our approach.

1. Introduction

The ability to generalize across domains is challenging

when there is ample labeled data on which to train a deep

network (source domain), but no annotated data for the

target domain. To attack this issue, a wide array of meth-

ods have been proposed, most of them aiming at reducing

the shift between the source and target distributions (see

Sec. 2 for a review of previous work). An alternative is

mapping the source data into the target domain, either by

modifying the image representation [10] or by directly

generating a new version of the source images [4]. Sev-

eral authors proposed approaches that follow both these

strategies by building over Generative Adversarial Net-

works (GANs) [13]. A similar but inverse method maps

the target data into the source domain, where there is

already an abundance of labeled images [39].

We argue that these two mapping directions should

not be alternative, but complementary. Indeed, the main

ingredient for adaptation is the ability of transferring

successfully the style of one domain to the images of the

other. This, given a fixed generative architecture, will

depend on the application: there may be cases where

mapping from the source to the target is easier, and cases

where it is true otherwise. By pursuing both directions in

a unified architecture, we can obtain a system more robust

and more general than previous adaptation algorithms.

With this idea in mind, we designed SBADA-GAN:

Symmetric Bi-directional ADAptive Generative Adver-

sarial Network. Its features are (see Figure 1):

• it exploits two generative adversarial losses that en-

courage the network to produce target-like images

from the source samples and source-like images from

the target samples. Moreover, it jointly minimizes two

classification losses, one on the original source images

and the other on the transformed target-like source

images;

• it uses the source classifier to annotate the source-like

transformed target images. Such pseudo-labels help

regularizing the same classifier while improving the

target-to-source generator model by backpropagation;

• it introduces a new semantic constraint on the source

images: the class consistency loss. It imposes that by

mapping source images towards the target domain and

then again towards the source domain they should get

back to their ground truth class. This last condition

is less restrictive than a standard reconstruction loss

[41, 17], as it deals only with the image annotation and

not with the image appearance. Still, our experiments

show that it is highly effective in aligning the domain

mappings in the two directions;

• at test time the two trained classifiers are used respec-

tively on the original target images and on their source-

like transformed version. The two predictions are inte-

grated to produce the final annotation.
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Our architecture yields realistic image reconstructions

while competing against previous state-of-the-art classi-

fiers and exceeding them on four out of six different unsu-

pervised adaptation settings. An ablation study showcas-

ing the importance of each component in the architecture,

and investigating the robustness with respect to its hy-

perparameters, sheds light on the inner workings of the

approach, while providing further evidence of its value.

2. Related Work

GANs Generative Adversarial Networks are composed

of two modules, a generator and a discriminator. The

generator synthesizes samples whose distribution closely

matches that of real data, while the discriminator distin-

guishes real from generated samples. GANs are agnostic

to the training samples labels, while conditional GAN

variants [24] exploit the class annotation as additional

information to both the generator and the discriminator.

Some works used multiple GANs: in CoGAN [21] two

generators and two discriminators are coupled by weight-

sharing to learn the joint distribution of images in two

different domains without using pair-wise data. Cycle-

GAN [41], Disco-GAN [17] and UNIT [20] encourage

the mapping between two domains to be well covered

by imposing transitivity: the mapping in one direction

followed by the mapping in the opposite direction should

arrive where it started. For this image generation process

the main performance measure is either a human-based

quality control or scores that evaluate the interpretability

of the produced images by pre-existing models [31, 41].

Domain Adaptation A widely used strategy consists

in minimizing the difference between the source and

target distributions [38, 36, 7]. Alternative approaches

minimize the errors in target samples reconstruction [12]

or impose a consistency condition so that neighboring

target samples assigned to different labels are penalized

proportionally to their similarity [33]. Very recently,

[15] proposed to enforce associations between source

and target samples of the same ground truth or predicted

class, while [30] assigned pseudo-labels to target samples

using an asymmetric tri-training method.

Domain invariance can be also treated as a binary clas-

sification problem through an adversarial loss, which en-

courages mistakes in domain prediction [10]. For all the

methods adopting this strategy, the described losses are

minimized jointly with the main classification objective

function on the source task, guiding the feature learning

process towards a domain invariant representation. Only

in [39] the two objectives are kept separated and recom-

bined in a second step. In [5] the feature components that

differentiate two domains are modeled separately from

those shared among them.

Image Generation for Domain Adaptation In the

first style transfer methods [11, 16] new images were

synthesized to maintain a specific content while replicat-

ing the style of one or a set of reference images. Similar

approaches have been used to generate images with dif-

ferent visual domains. In [34] realistic samples were

generated from synthetic images and the produced data

could work as training set for a classification model on

real images. [4] proposed a GAN-based approach that

adapts source images to appear as if drawn from the target

domain; the classifier trained on such data outperformed

several domain adaptation methods. [37] introduced a

method to generate source images that resemble the target

ones, with the extra consistency constraint that the same

transformation should keep the target samples identical.

All these methods focus on the source-to-target image

generation, not considering the inverse procedure, from

target to source, which we show instead to be beneficial.

3. Method

Model We focus on unsupervised cross domain classi-

fication. Let us start from a dataset Xs = {xi
s, y

i
s}

Ns

i=0

drawn from a labeled source domain S, and a dataset

Xt = {xj
t}

Nt

j=0
from a different unlabeled target domain

T , sharing the same set of categories. The task is to

maximize the classification accuracy on Xt while train-

ing on Xs. To reduce the domain gap, we propose to

adapt the source images such that they appear as sampled

from the target domain by training a generator model Gst

that maps any source samples xi
s to its target-like version

xi
st = Gst(x

i
s) defining the set Xst = {xi

st, y
i
s}

Ns

i=0
(see

Figure 1, bottom row). The model is also augmented with

a discriminator Dt and a classifier Ct. The former takes

as input the target images Xt and target-like source trans-

formed images Xst, learning to recognize them as two

different sets. The latter takes as input each of the trans-

formed images xi
st and learns to assign its task-specific

label yis. During the training procedure for this model,

information about the domain recognition likelihood pro-

duced by Dt is used adversarially to guide and optimize

the performance of the generator Gst. Similarly, the gen-

erator also benefits from backpropagation in the classifier

training procedure.

Besides the source-to-target transformation, we also

consider the inverse target-to-source direction by using a

symmetric architecture (see Figure 1, top row). Here any

target image x
j
t is given as input to a generator model Gts

transforming it to its source-like version x
j
ts = Gts(x

j
t ),

8100



Figure 1: SBADA-GAN, training: the data flow starts from the Input Data arrows. The bottom and top row show

respectively the source-to-target and target-to-source symmetric directions. The generative models Gst and Gts

transform the source images to the target domain and vice versa. Ds and Dt discriminate real from generated images of

source and target. Finally the classifiers Cs and Ct are trained to recognize respectively the original source images

and their target-like transformed versions. The bi-directional blue arrow indicates that the source-like target images

are automatically annotated and the assigned pseudo-labels are re-used by the classifier Cs. The red arrows describe

the class consistency condition by which source images transformed to the target domain through Gst and back to the

source domain through Gts should maintain their ground truth label.

defining the set Xts = {xj
ts}

Nt

j=0
. As before, the model

is augmented with a discriminator Ds which takes as

input both Xts and Xs and learns to recognize them as

two different sets, adversarially helping the generator.

Since the target images are unlabeled, no classifier can

be trained in the target-to-source direction as a further

support for the generator model. We overcome this issue

by self-labeling (see Figure 1, blue arrow). The original

source data Xs is used to train a classifier Cs. Once it

has reached convergence, we apply the learned model

to annotate each of the source-like transformed target

images x
j
ts. These samples, with the assigned pseudo-

labels y
j
tself

= argmaxy(Cs(Gts(x
j
t )), are then used

transductively as input to Cs while information about the

performance of the model on them is backpropagated

to guide and improve the generator Gts. Self-labeling

has a long track record of success for domain adapta-

tion: it proved to be effective both with shallow models

[6, 14, 26], as well as with the most recent deep archi-

tectures [33, 38, 30]. In our case the classification loss

on pseudo-labeled samples is combined with our other

losses, which helps making sure we move towards the

optimal solution: in case of a moderate domain shift,

the correct pseudo-labels help to regularize the learning

process, while in case of large domain shift, the possible

mislabeled samples do not hinder the performance (see

Sec. 4.5 for a detailed discussion on the experimental

results).

Finally, the symmetry in the source-to-target and

target-to-source transformations is enhanced by align-

ing the two generator models such that, when used in

sequence, they bring a sample back to its starting point.

Since our main focus is classification, we are interested

in preserving the class identity of each sample rather than

its overall appearance. Thus, instead of a standard image-

based reconstruction condition we introduce a class con-

sistency condition (see Figure 1, red arrows). Specifically,

we impose that any source image xi
s adapted to the target

domain through Gst(x
i
s) and transformed back towards

the source domain through Gts(Gst(x
i
s)) is correctly

classified by Cs. This condition helps by imposing a

further joint optimization of the two generators.

Learning Here we formalize the description above. To

begin with, we specify that the generators take as input a

noise vector z ∈ N (0, 1) besides the images, this allows

some extra degree of freedom to model external varia-

tions. We also better define the discriminators as Ds(x),
Dt(x) and the classifiers as Cs(x), Ct(x). Of course

each of these models depends from its parameters but we

do not explicitly indicate them to simplify the notation.

For the same reason we also drop the superscripts i, j.

The source-to-target part of the network optimizes the

following objective function:

min
Gst,Ct

max
Dt

αLDt
(Dt, Gst) + βLCt

(Gst, Ct) , (1)
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where the classification loss LCt
is a standard softmax

cross-entropy

LCt
(Gst, Ct) = E{xs,ys}∼S

zs∼noise

[−ys · log(ŷs)] , (2)

evaluated on the source samples transformed by the gen-

erator Gst, so that ŷs = Ct(Gst(xs, zs)) and ys is the

one-hot encoding of the class label ys. For the discrimi-

nator, instead of the less robust binary cross-entropy, we

followed [23] and chose a least square loss:

LDt
(Dt, Gst) =Ext∼T [(Dt(xt)− 1)2]+

E xs∼S
zs∼noise

[(Dt(Gst(xs, zs)))
2] . (3)

The objective function for the target-to-source part of

the network is:

min
Gts,Cs

max
Ds

γLDs
(Ds, Gts)+

µLCs
(Cs) + ηLself (Gts, Cs) , (4)

where the discriminative loss is analogous to eq. (3),

while the classification loss is analogous to eq. (2) but

evaluated on the original source samples with ŷs =
Cs(xs), thus it neither has any dependence on the genera-

tor that transforms the target samples Gts, nor it provides

feedback to it. The self loss is again a classification

softmax cross-entropy:

Lself (Gts, Cs) = E{xt,ytself
}∼T

zt∼noise

[−ytself · log(ŷtself )] .

(5)

where ŷtself = Cs(Gts(xt, zt)) and ytself is the one-

hot vector encoding of the assigned label ytself . This

loss back-propagates to the generator Gts which is en-

couraged to preserve the annotated category within the

transformation.

Finally, we developed a novel class consistency loss

by minimizing the error of the classifier Cs when applied

on the concatenated transformation of Gts and Gst to

produce ŷcons = (Cs(Gts(Gst(xs, zs), zt))):

Lcons(Gts, Gst, Cs) = E {xs,ys}∼S
zs,zt∼noise

[−ys · log(ŷcons)] .

(6)

This loss has the important role of aligning the generators

in the two directions and strongly connecting the two

main parts of our architecture.

By collecting all the presented parts, we conclude with

the complete SBADA-GAN loss:

LSBADA−GAN (Gst, Gts, Cs, Ct, Ds, Dt) =

αLDt
+ βLCt

+ γLDs
+ µLCs

+ ηLself + νLcons .

(7)

Figure 2: SBADA-GAN, test: the two pre-trained classi-

fiers are applied respectively on the target images and on

the transformed source-like target images. Their outputs

are linearly combined for the final prediction.

Here (α, β, γ, µ, η, ν) ≥ 0 are weights that control the in-

teraction of the loss terms. While the combination of six

different losses might appear daunting, it is not unusual

[5]. Here, it stems from the symmetric bi-directional

nature of the overall architecture. Indeed each directional

branch has three losses as it is custom practice in the

GAN-based domain adaptation literature [39, 4]. More-

over, the ablation study reported in Sec. 4.5 indicates

that the system is remarkably robust to changes in the

hyperparameter values.

Testing The classifier Ct is trained on Xst generated

images that mimic the target domain style, and is then

tested on the original target samples Xt. The classi-

fier Cs is trained on Xs source data, and then tested

on Xts samples, that are the target images modified to

mimic the source domain style. These classifiers make

mistakes of different type assigning also a different con-

fidence rank to each of the possible labels. Overall the

two classification models complement each other. We

take advantage of this with a simple ensemble method

σCs(Gts(xt, zt)) + τCt(xt) which linearly combines

their probability output, providing a further gain in perfor-

mance. A schematic illustration of the testing procedure

is shown in Figure 2. We set the combination weights

σ, τ through cross validation (see Sec. 4.2 for further

details).

4. Evaluation

4.1. Datasets and Adaptation Scenarios

We evaluate SBADA-GAN on several unsupervised

adaptation scenarios , considering the following widely

used datasets and settings:

MNIST → MNIST-M: MNIST [19] contains centered,

28× 28 pixel, grayscale images of single digit numbers

on a black background, while MNIST-M [10] is a variant

where the background is substituted by a randomly ex-

tracted patch obtained from color photos of BSDS500 [3].

We follow the evaluation protocol of [5, 4, 10].
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MNIST→ USPS USPS→MNIST MNIST→MNIST-M SVHN→MNIST MNIST→SVHN Synth Signs→GTSRB

Source Only 78.9 57.1 ± 1.7 63.6 60.1 ± 1.1 26.0 ± 1.2 79.0

CORAL [36] 81.7 - 57.7 63.1 - 86.9

MMD [38] 81.1 - 76.9 71.1 - 91.1

DANN [10] 85.1 73.0 ± 2.0 77.4 73.9 35.7 88.7

DSN [5] 91.3 - 83.2 82.7 - 93.1

CoGAN [21] 91.2 89.1 ± 0.8 62.0 not conv. - -

ADDA [39] 89.4 ± 0.2 90.1 ± 0.8 - 76.0 ± 1.8 - -

DRCN [12] 91.8 ± 0.1 73.7 ± 0.1 - 82.0 ± 0.2 40.1 ± 0.1 -

PixelDA [4] 95.9 - 98.2 - - -

DTN [37] - - - 84.4 - -

TRUDA [33] - - 86.7 78.8 40.3 -

ATT [30] - - 94.2 86.2 52.8 96.2

UNIT [20] 95.9 93.5 - 90.5 - -

DAass fix. par. [15] - - 89.5 95.7 - 82.8

DAass [15] - - 89.5 97.6 - 97.7

Target Only 96.5 99.2 ± 0.1 96.4 99.5 96.7 98.2

SBADA-GAN Ct 96.7 94.4 99.1 72.2 59.2 95.9

SBADA-GAN Cs 97.1 87.5 98.4 74.2 50.9 95.7

SBADA-GAN 97.6 95.0 99.4 76.1 61.1 96.7

GenToAdapt [32] 92.5 ± 0.7 90.8 ± 1.3 - 84.7 ± 0.9 36.4 ± 1.2 -

CyCADA [1] 94.8 ± 0.2 95.7 ± 0.2 - 88.3 ± 0.2 - -

Self-Ensembling [2] 98.3 ± 0.1 99.5 ± 0.4 - 99.2 ± 0.3 42.0 ± 5.7 98.3 ± 0.3

Table 1: Comparison against previous work. SBADA-GAN Ct, Cs reports respectively the accuracies produced by the

classifier trained in the target domain space, and the results produced by training in the source domain space and testing

on the target images mapped to this space. SBADA-GAN reports the results obtained by a weighted combination of the

softmax outputs of these two classifiers. Note that all competitors convert SVHN to grayscale, while we deal with the

more complex original RGB version. The last three rows report results from online available pre-print papers.

MNIST ↔ USPS: USPS [9] is a digit dataset automati-

cally scanned from envelopes by the U.S. Postal Service

containing a total of 9,298 16× 16 pixel grayscale sam-

ples. The images are centered, normalized and show

a broad range of font styles. We follow the evaluation

protocol of [4].

SVHN ↔ MNIST: SVHN [27] is the challenging real-

world Street View House Number dataset. It contains

over 600k 32× 32 pixel color samples. Besides present-

ing a great variety of shapes and textures, images from

this dataset often contain extraneous numbers in addition

to the labeled, centered one. Most previous works simpli-

fied the data by considering a grayscale version, instead

we apply our method to the original RGB images. We

resize the MNIST images to 32× 32 pixels and use the

protocol by [5, 12].

Synth Signs → GTSRB: the Synthetic Signs collec-

tion [25] contains 100k samples of common street signs

obtained from Wikipedia and artificially transformed to

simulate various imaging conditions. The German Traffic

Signs Recognition Benchmark (GTSRB, [35]) consists

of 51, 839 cropped images of German traffic signs. Both

databases contain samples from 43 classes, thus defining

a larger classification task than that on the 10 digits. We

adopt the protocol proposed in [15].

4.2. Implementation details

We composed SBADA-GAN starting from two sym-

metric GANs, each with an architecture1 analogous to

that used in [4]. The model is coded2 in python and we

ran all our experiments in the Keras framework [8]. We

use the ADAM [18] optimizer with learning rates for the

discriminator and the generator both set to 10−4. The

batch size is set to 32 and we train the model for 500
epochs not noticing any overfitting, which suggests that

further epochs might be beneficial. The α and γ loss

weights (discriminator losses) are set to 1, β and µ (clas-

1See all the model details in the supplementary material.
2Code available at https://github.com/engharat/SBADAGAN
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sifier losses) are set to 10, to prevent that generator from

indirectly switching labels (for instance, transform 7’s

into 1’s). The class consistency loss weight ν is set to 1.

All training procedures start with the self-labeling loss

weight, η, set to zero, as this loss hinders convergence

until the classifier is fully trained. After the model con-

verges (losses stop oscillating, usually after 250 epochs)

η is set to 1 to further increase performance. Finally

the parameters to combine the classifiers at test time are

σ ∈ [0, 0.1, 0.2, . . . , 1] and τ = (1 − σ) chosen on a

validation set of 1000 random samples from the target in

each different setting.

4.3. Quantitative Results

Table 1 shows results on our evaluation settings. The

top of the table reports results by thirteen competing

baselines published over the last two years. The Source-

Only and Target-Only rows contain reference results cor-

responding to the no-adaptation case and to the target

fully supervised case. For SBADA-GAN, besides the full

method, we also report the accuracy obtained by the sep-

arate classifiers (Cs,Ct) before the linear combination.

SBADA-GAN improves over the state of the art in

four out of six settings. In these cases the advantage

with respect to its competitors is already visible in the

separate Cs and Ct results and it increases when con-

sidering the full combination procedure. Moreover, the

gain in performance of SBADA-GAN reaches up to +8
percentage points in the MNIST→SVHN experiment.

This setting was disregarded in many previous works:

differently from its inverse SVHN→MNIST, it requires a

difficult adaptation from the grayscale handwritten digits

domain to the widely variable and colorful street view

house number domain. Thanks to its bi-directionality,

SBADA-GAN leverages on the inverse target to source

mapping to produce highly accuracy results.

Conversely, in the SVHN→MNIST case SBADA-

GAN ranks eighth out of the thirteen baselines in terms

of performance. Our accuracy is on par with ADDA’s

[39]: the two approaches share the same classifier archi-

tecture, although the number of fully-connected neurons

of SBADA-GAN is five time lower. Moreover, com-

pared to DRCN [12], the classifiers of SBADA-GAN are

shallower with a reduced number of convolutional lay-

ers. Overall here SBADA-GAN suffers of some typical

drawbacks of GAN-based domain adaptation methods:

although the style of a domain can be easily transferred in

the raw pixel space, the generative process does not have

any explicit constraint on reducing the overall data dis-

tribution shift as instead done by the alternative feature-

based domain adaptation approaches. Thus, methods like

Setting S T map to S S map to T T

MNIST → USPS 0.206 0.219 0.106 0.102

MNIST → MNIST-M 0.206 0.207 0.035 0.032

MNIST → SVHN 0.206 0.292 0.027 0.012

Synth S. → GTSRB 0.105 0.136 0.128 0.154

Table 2: Dataset mean SSIM: this measure of data vari-

ability suggests that our method successfully generates

images with not only the same style of a chosen domain,

but also similar perceptual variability.

DAass [15], DTN [37] and DSN [5] deal better with the

large domain gap of the SVHN→MNIST setting.

Finally, in the Synth Signs → GTSRB experiment,

SBADA-GAN is just slightly worse than DAass, but out-

performs all the other competing methods. The compari-

son remains in favor of SBADA-GAN when considering

that its performance is robust to hyperparameter varia-

tions (see Sec. 4.5 for more details).

4.4. Qualitative Results

To complement the quantitative evaluation, we look

at the quality of the images generated by SBADA-GAN.

First, we see from Figure 3 how the generated images

mimic the style of the chosen domain, even when going

from the simple MNIST digits to the SVHN colorful

house numbers.

Visually inspecting the data distribution before and

after domain mapping defines a second qualitative evalu-

ation metric. We use t-SNE [22] to project the data from

their raw pixel space to a simplified 2D embedding. Fig-

ure 4 shows that the transformed dataset tends to replicate

faithfully the distribution of the chosen final domain.

A further measure of the quality of the SBADA-GAN

generators comes from the diversity of the produced im-

ages. Indeed, GAN’s generators may collapse and out-

put a single prototype that maximally fools the discrim-

inators. To evaluate the diversity of samples generated

by SBADA-GAN we choose the Structural Similarity

(SSIM, [40]) that correlates well with the human per-

ceptual similarity judgments. Its values range between

0 and 1 with higher values corresponding to more simi-

lar images. We follow the same procedure used in [28]

by randomly choosing 1000 pairs of generated images

within a given class. We also repeat the evaluation over

all the classes and calculate the average results. Table

2 shows the results of the mean SSIM metric and indi-

cates that the SBADA-GAN generated images not only

mimic the same style, but also successfully reproduce the

variability of a chosen domain.
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(a) MNIST to USPS (b) USPS to MNIST

(c) MNIST to MNIST-M (d) MNIST-M to MNIST

(e) MNIST to SVHN (f) SVHN to MNIST

(g) Synth S. to GTSRB (h) GTSRB to Synth S.

Figure 3: Examples of generated digits: we show the

image transformation from the original domain to the

paired one as indicated under every sub-figure. For each

of the (a)-(h) cases, the original/generated images are in

the top/bottom row.

(a) MNIST to USPS (b) USPS to MNIST

(c) SVHN to MNIST (d) MNIST to SVHN

Figure 4: t-SNE visualization of source, target and source

mapped to target images. Note how the mapped source

covers faithfully the target space both in the (a),(b) case

with moderated domain shift and in the more challenging

(c),(d) setting.

4.5. Method Analysis

Ablation Study Starting from the core source-to-target

GAN module we analyze the effect of adding all the other

S→T T→S Class Self
Accuracy

GAN GAN Consist. Label.

L
D

t

L
C

t

L
D

s

L
C

s

L
c
o
n
s

L
s
e
lf

MNIST→USPS

X X 94.23

X X 91.55

X X X X 94.90

X X X X X 95.45

X X X X X X 97.60

Table 3: Analysis of the role of each SBADA-GAN com-

ponent. We ran experiments by turning on the different

losses of the model as indicated by the checkmarks.

(a) (b)

(c) (d)

Figure 5: Gts outputs (lower line) and their respective

inputs (upper line) obtained with: (a) no consistency loss,

(b) image-based cycle consistency loss [41, 17], (c) our

class consistency loss. In (d) we show some real SVHN

samples as a reference.

model parts. At first we add the symmetric target-to-

source GAN model. These two parts are then combined

and the domain transformation loop is closed by adding

the class consistency condition. Finally the model is com-

pleted by introducing the target self-labeling procedure.

We empirically test each of these model steps on the

MNIST→USPS setting and report the results in Table 3.

We see the gain achieved by progressively adding the dif-

ferent components, with the largest advantage obtained

by the introduction of self-labeling.

An analogous boost due to self-labeling is also visible

in all the other experimental settings with the exception of

MNIST↔SVHN, where the accuracy remains unchanged

if η is equal or larger than zero. A further analysis reveals

that here the recognition accuracy of the source classifier

applied to the source-like transformed target images is

quite low (about 65%, while in all the other settings

reaches 80 − 90%), thus the pseudo-labels cannot be

considered reliable. Still, using them does not hinder the

overall performance.

The crucial effect of the class consistency loss can be

better observed by looking at the generated images and

comparing them with those obtained in two alternative
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(a) Amazon (b) Webcam

(c) CycleGAN (d) SBADA-GAN

Figure 6: CycleGAN [41] vs SBADA-GAN on the

Amazon-Webcam experiment of the Office Dataset [29].

cases: setting ν = 0, i.e. not using any consistency con-

dition between the two generators Gst and Gts, or substi-

tuting our class consistency loss with the standard cycle

consistency loss [41, 17] based on image reconstruction.

For this evaluation we choose the MNIST→SVHN case

which has the strongest domain shift and we show the

generated images in Figure 5. When the consistency loss

is not activated, the Gts output images are realistic, but

fail at reproducing the correct input digit and provide

misleading information to the classifier. On the other

hand, using the cycle-consistency loss preserves the in-

put digit but fails in rendering a realistic sample in the

correct domain style. Finally, our class consistency loss

allows to preserve the distinct features belonging to a

category while still leaving enough freedom to the gen-

eration process, thus it succeeds in both preserving the

digits and rendering realistic samples.

CycleGAN vs SBADA-GAN To further clarify the dif-

ference between the two methods, we remind that Cy-

cleGAN is unsupervised and works only when trans-

ferring style across similarly shaped categories (e.g.

horses→zebras), not across domains. SBADA-GAN in-

stead deals with domains containing multiple categories.

The images samples in Figure 5(b) are indeed obtained

with CycleGAN: training on them produces an accuracy

of 25.5%, much lower than the corresponding 61.1% of

SBAD-GAN. Moreover, CycleGAN has a single trans-

formed image as output, while SBADA-GAN exploits

a noise vector as input producing multiple outputs for

each input image: this is critical for classification as it

provides variability through data augmentation, it avoids

overfitting and eases generalization. For completeness

we also ran an experiment on the challenging Office

Dataset [29]: here both the images produced by Cycle-

GAN and SBADA-GAN (see Figure 6) are given as input

to a pre-trained AlexNet and the classification accuracy

is respectively 52.0% and 50.7%, both lower than the

reference 61.6% result produced by the baseline without

adaptation. These results confirm the known difficulty

of GAN-based method to deal with domain shifts due to

poses and shapes.

Robustness Study SBADA-GAN is robust to the spe-

cific choice of the consistency loss weight ν, given that

it is different from zero. Changing it in [0.1, 1, 10] in-

duces a maximum variation of 0.6 percentage points in

accuracy over the different settings. An analogous evalu-

ation performed on the classification loss weights (β,µ)
reveals that changing them in the same range used for ν

causes a maximum overall performance variation of 0.2
percentage points. Furthermore SBADA-GAN is mini-

mally sensitive to the batch size used: halving it from 32
to 16 samples while keeping the same number of learn-

ing epochs reduces the performance only of about 0.2
percentage points. Such robustness is particularly rele-

vant when compared to competing methods. For instance

the most recent DAass [15] needs a perfectly balanced

source and target distribution of classes in each batch,

a condition difficult to satisfy in real world scenarios,

and halving the originally large batch size reduces by 3.5
percentage points the final accuracy. Moreover, chang-

ing the weights of the losses that enforce associations

across domains with a range analogous to that used for

the SBADA-GAN parameters induces a drop in perfor-

mance up to 16 accuracy percentage points3.

5. Conclusion

This paper presented SBADA-GAN, an adaptive ad-

versarial domain adaptation architecture that maps simul-

taneously source samples into the target domain and vice

versa with the aim to learn and use both classifiers at

test time. To achieve this, self-labeling is exploited to

regularize the classifier trained on the source, and we

impose a class consistency loss that improves greatly the

stability of the architecture, as well as the quality of the

reconstructed images in both domains.

We explain the success of SBADA-GAN in several

ways. To begin with, thanks to the the bi-directional

mapping we avoid deciding a priori which is the best

strategy for a specific task. Also, the combination of the

two network directions improves performance providing

empirical evidence that they are learning different, com-

plementary features. Our class consistency loss aligns

the image generators, allowing both domain transfers to

influence each other. Finally the self-labeling procedure

boost the performance in case of moderate domain shift

without hindering it in case of large domain gaps.
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