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Abstract

Novelty detection is the process of identifying the ob-

servation(s) that differ in some respect from the training

observations (the target class). In reality, the novelty class

is often absent during training, poorly sampled or not well

defined. Therefore, one-class classifiers can efficiently model

such problems. However, due to the unavailability of data

from the novelty class, training an end-to-end deep network

is a cumbersome task. In this paper, inspired by the success

of generative adversarial networks for training deep models

in unsupervised and semi-supervised settings, we propose an

end-to-end architecture for one-class classification. Our ar-

chitecture is composed of two deep networks, each of which

trained by competing with each other while collaborating to

understand the underlying concept in the target class, and

then classify the testing samples. One network works as the

novelty detector, while the other supports it by enhancing

the inlier samples and distorting the outliers. The intuition

is that the separability of the enhanced inliers and distorted

outliers is much better than deciding on the original sam-

ples. The proposed framework applies to different related

applications of anomaly and outlier detection in images

and videos. The results on MNIST and Caltech-256 image

datasets, along with the challenging UCSD Ped2 dataset

for video anomaly detection illustrate that our proposed

method learns the target class effectively and is superior to

the baseline and state-of-the-art methods.

1. Introduction

Novelty detection is the process of identifying the new or

unexplained set of data to determine if they are within the

norm (i.e., inliers) or outside of it (i.e., outliers). Novelty

refers to the unusual, new observations that do not occur reg-

ularly or is simply different from the others. Such problems

are especially of great interest in computer vision studies,

as they are closely related to outlier detection [47, 52], im-

age denoising [8], anomaly detection in images [10, 23]

and videos [39]. Novelty detection can be portrayed in the

context of one-class classification [30, 13, 18], which aims
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D(R(X)) 0.85 0.91 0.25 0.10

Figure 1. Example outputs of the proposed model, trained to detect

Penguins (a), in response to inlier and outlier samples (b). The

first row of (b) shows some example images, and the second row

contains the output of the R network on them, i.e., R(X). As can

be seen, R enhanced the inlier samples (even in the presence of

noise) but distorted the outliers. Two last rows show the score of

D applied to X and R(X), respectively. R(X) is indeed more

separable than only using the original input image, X .

to build classification models when the negative class is

absent, poorly sampled or not well defined. As such, the

negative class can be considered as the novelty (i.e., out-

lier or anomaly), while the positive (or target) class is well

characterized by instances in the training data.

To accurately chart the intrinsic geometry of the positive

class, the first step is to efficiently represent the data in a

way that can entangle more or less the different explana-

tory factors of variation in the data. Recently, deep learning

approaches have gained immense success in representing

visual data for various vision-based applications [43, 44],

especially in cases that they are trained in an end-to-end
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fashion. However, for novelty detection or one-class classi-

fication applications, due to unavailability of data from the

negative class, training an end-to-end deep network is not

straightforward. Some efforts have been made, in recent

years, to benefit from deep features in learning one-class

classifiers [48, 39, 33, 20, 40, 38], few of which could train

an end-to-end feature learning and classification model.

Inspired by the recent developments in generative ad-

versarial networks (GANs) [14], we propose an end-to-end

model for one-class classification and apply it to different

applications including outlier detection, novelty detection

in images and anomaly event detection in videos. The pro-

posed architecture, similar to GANs, comprises two modules,

which compete to learn while collaborating with each other

for the detection task. The first module (denoted as R) re-

fines the input and gradually injects discriminative material

into the learning process to make the positive and novelty

samples (i.e., inliers, and outliers) more separable for the

detector, the second module (referred to as D).

These two networks are adversarially and unsupervisedly

learned using the training data, which is composed of only

the target class. Specifically, R learns to reconstruct the pos-

itive samples and tries to fool the detector (i.e., D). Whereas,

D learns to distinguish original (positive) samples from the

reconstructed ones. In this way, D learns merely the con-

cept characterized by the space of all positive samples, and

hence it can be used for distinguishing between positive and

novelty classes. On the other hand, R learns to efficiently

reconstruct the positive samples, while for negative (or nov-

elty) samples it is unable to reconstruct the input accurately,

and hence, for negative samples it acts as a decimator (or in-

formally a distorter). In the testing phase, D operates as the

actual novelty detector, while R improves the performance

of the detector by adequately reconstructing the positive or

target samples and decimating (or distorting) any given neg-

ative or novelty samples. Fig. 1 depicts example inputs and

outputs of both R and D networks for a model trained to

detect images of Penguins.

In summary, the main contributions of this paper are as

follows: (1) We propose an end-to-end deep network for

learning one-class classifier learning. To the best of our

knowledge, this article is one of the firsts to introduce an

end-to-end network for one-class classification. (2) Almost

all approaches based on GANs in the literature [31] discard

either the generator or the discriminator (analogous to R and

D, respectively, in our architecture) after training. Only one

of the trained models is used, while our setting is more effi-

cient and benefits from both trained modules to collaborate

in the testing stage. (3) Our architecture learns the model

in the complete absence of any training samples from the

novelty class and achieves state-of-the-art performance in

different applications, such as outlier detection in images

and anomaly event detection in videos.

2. Related Works

One-class classification is closely related to rare event

detection, outlier detection/removal, and anomaly detection.

All these applications share the search procedure for a novel

concept, which is scarcely seen in the data and hence can

all be encompassed by the umbrella term novelty detection.

Consequently, a wide range of real-world applications can

be modeled by one-class classifiers. Conventional research

often models the target class, and then rejects samples not fol-

lowing this model. Self-representation [47, 52, 10, 36] and

statistical modeling [27] are the commonly used approaches

for this task. For data representation, low level features [4],

high level features (e.g., trajectories [29]), deeply learned

features [48, 37, 39] are used in the literature. A brief re-

view of state-of-the-art novelty detection methods especially

the ones based on adversarial learning in deep networks is

provided in this section.

Self-Representation. Several previous works show that

self-representation is a useful tool for outlier or novelty event

detection. For instance, [10, 36] proposed self-representation

techniques for video anomaly detection and outlier detection

through learning a sparse representation model, as a measure

for separating inlier and outlier samples. It is assumed that

outlier or novel samples are not sparsely represented using

the samples from the target class. In some other works

(like [48, 10]), testing samples are reconstructed using the

samples from the target class. The decision if it is an inlier

or outlier (novel) is made based on the reconstruction error,

i.e., high reconstruction error for a sample indicates that it

is more probably an outlier sample. In another work, Liu et

al. [24] proposed to use a low-rank self-representation matrix

in place of a sparse representation, penalized by the sum of

unsquared self-representation errors. This penalization leads

to more robustness against outliers (similar to [2]). Similarly,

auto-encoders are also exploited to model and measure the

reconstruction error for the related tasks of outlier removal

and video anomaly detection, in [36, 48].

Statistical Modeling. More conventional methods tend

to model the target class using a statistical approach. For

instance, after extracting features from each sample, a distri-

bution function is fit on the samples from the target class, and

samples far from this distribution are considered as outliers

or novelty (e.g., [12, 51, 27]). In another work, Rahmani and

Atia [32] proposed an algorithm termed Coherence Pursuit

(CoP) for Robust Principal Component Analysis (RPCA).

They assumed that the inlier samples have high correlations

and can be spanned in low dimensional subspaces, and hence

they have a strong mutual coherence with a large number

of data points. As a result, the outliers either do not accord

with the low dimensional subspace or form small clusters.

Also, a method proposed in [50], OutlierPursuit, used con-

vex optimization techniques to solve the PCA problem with

robustness to corrupted entries, which led to the develop-

23380



ment of many recent methods for PCA with robustness to

outliers. Lerman et al. [22] described a convex optimization

problem for detecting the outliers and called it REAPER,

which can reliably fit a low-dimensional model to the target

class samples.

Deep Adversarial Learning. In the recent years, GANs

[14, 41] have shown outstanding success in generating data

for learning models. They have also been extended to classi-

fication models even in the presence of not enough labeled

training data (e.g., in [20, 42, 34]). They are based on a

two-player game between two different networks, both con-

currently trained in an unsupervised fashion. One network

is the generator (G), which aims at generating realistic data

(e.g., images), while the second network poses as the discrim-

inator (D), and tries to discriminate real data from the data

generated by G. One of the different types of GANs, closely

related to our work, is the conditional GANs, in which G

takes an image X as the input and generates a new image

X ′. Whereas, D tries to distinguish X from X ′, while G

tries to fool D producing more and more realistic images.

Very recently Isola et al. [17] proposed an “Image-to-image

translation” framework based on conditional GANs, where

both G and D are conditioned on the real data. They showed

that a U-Net encoder-decoder [35] with skip connections

could be used as the generator coupled with a patch-based

discriminator to transform images with respect to different

representations. In a concurrent work, [33] proposed to

learn the generator as a reconstructor of normal events, and

hence if it cannot properly reconstruct a chunk of the input

frames, that chunk is considered an anomaly. However, in

our work, the first module (i.e., R) not only reconstructs the

target class, but it also helps to improve the performance for

the model on any given testing image, by refining samples

belonging to the target class, and decimating/distorting the

anomaly or outlier samples.

3. Proposed Approach

The proposed one-class classification framework is com-

posed of two main modules: (1) Network R, and (2) Net-

work D. The former acts as a prepossessing and Refinement

(or Reconstruction) step, while the latter performs the

Discrimination (or Detection). These two networks are

learned in an adversarial and unsupervised manner, within

an end-to-end setting. In this section, we present a detailed

overview of both. The overall schema of the proposed ap-

proach is shown in Fig. 2. It can be seen that R reconstructs

its input, X , generates X ′, and tries to fool D so that it spec-

ulates that the reconstructed sample is the original data, not

a reconstructed sample. On the other hand, D has access

to the original set of data and is familiar with their concept.

Hence it will reject the reconstructed samples. These two

networks play a game, and after the training stage, in which

samples from the target class are presented to the model, R
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Figure 2. Overview of the proposed structure for one-class classifi-

cation framework. R and D are two modules of the model, which

are adversarially learned. R is optimized to reconstruct samples

belonging to the target class, while it works as a decimator func-

tion for outlier inputs, whereas D classifies the input data positive

(target) and negative (outlier or anomaly). D(R(X)) measures the

likelihood of the given input sample belonging to the target class.

will become an expert to reconstruct the samples from the

target class with a minimum error to successfully fool D.

The training procedure leads to a pair of networks, R and D,

which both learn the distribution of the target class. These

two modules are trained in a GAN-style adversarial learning

framework, forming an end-to-end framework for one-class

classification for novelty detection. To make the proposed

method more robust against noise and corrupt input samples,

a Gaussian noise (denoted by η in Fig. 2) is added to the

input training samples and fed to R. Detailed descriptions

of each module and the overall training/testing procedures

are described in the following subsections.

3.1. R Network Architecture

It is previously [47, 36] investigated that the reconstruc-

tion error of an auto-encoder, trained on samples from the

target class, is a useful measure for novelty sample detection.

Since the auto-encoder is trained to reconstruct target class

samples, the reconstruction error for negative (novelty) sam-

ples would be high. We use a similar idea, but in contrast,

we do not use it for the detection or the discrimination task.

Our proposed model uses the reconstructed image to train

another network for the discrimination task.

To implement the R network, we train a decoder-encoder

Convolutional Neural Network (CNN) on samples from the

target class to map any given input sample to the target con-

cept. As a result, R will efficiently reconstruct the samples

that share a similar concept as the trained target class, while

for outlier or novelty inputs, it poorly reconstructs them. In

other words, R enhances the inliers (samples from the target

class), while it destructs or decimates the outliers, making

it easier for the discriminator to separate the outliers from

the vast pool of inliers. Fig. 3 shows the structure of R
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Figure 3. R network architecture, composed of encoding (first part)

and decoding (second part) layers. The properties of each layer are

indicated with four hyperparameters in this order: (first dimension

of the kernel × the second dimension of the kernel × the number

of input channels × the number of output channels).

architecture, which includes several convolution layers (as

the encoder), followed by several deconvolution layers (for

the decoding purpose). For improving the stability of the net-

work similar to [31], we do not use any pooling layers in this

network. Eventually, R learns the concept shared in the tar-

get class to reconstruct its inputs based on that concept. Also,

after each convolutional layer, a batch normalization [16]

operation is exploited, which adds stability to our structure.

3.2. D Network Architecture

The architecture for D is a sequence of convolution lay-

ers, which are trained to eventually distinguish the novel or

outlier sample, without any supervision. Fig. 4 shows the de-

tails of this network’s architecture. D outputs a scalar value,

relative to the likelihood of its input following the distribu-

tion spanned by the target class, denoted by pt. Therefore,

its output can be considered as a target likelihood score for

any given input.
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Figure 4. D network architecture, which determines if its input is

from the target class or it is an outlier or novelty. Properties of the

layers are denoted similarly to Fig. 3.

3.3. Adversarial Training of R+D

As mentioned in section 2, Goodfellow et al. [14] in-

troduced an efficient way for adversarial learning of two

networks (denoted by Generator (G) and Discriminator (D)),

called Generative Adversarial Networks (GANs). GANs aim

to generate samples that follow the same distribution as the

real data, through adversarial learning of the two networks.

G learns to map any random vector, Z from a latent space

following a specific distribution, pz , to a data sample that

follows the real data distribution (pt in our case), and D

tries to discriminate between actual data and the fake data

generated by G. Generator and Discriminator are learned in

a two-player mini-max game, formulated as:

min
G

max
D

(

EX∼pt
[log(D(X))]

+ EZ∼pz
[log(1−D(G(Z)))]

)

.
(1)

In a similar way, we train the R+D neural networks in an

adversarial procedure. In contrast to the conventional GAN,

instead of mapping the latent space Z to a data sample with

the distribution pt, R maps

X̃ = (X ∼ pt) +
(

η ∼ N (0, σ2
I)
)

−→ X ′ ∼ pt, (2)

in which η is the added noise sampled from the normal

distribution with standard deviation σ, N (0, σ2
I). From

now on, the noise model is denoted by Nσ for short. This

statistical noise is added to input samples to make R robust

to noise and distortions in the input images, in the training

stage. As mentioned before, pt is the supposed distribution

of the target class. D is aware of pt, as it is exposed to

the samples from the target class. Therefore, D explicitly

decides if R(X̃) follows pt or not. Accordingly, R+D can

be jointly learned by optimizing the following objective:

min
R

max
D

(

EX∼pt
[log(D(X))]

+ EX̃∼pt+Nσ

[log(1−D(R(X̃)))]
)

,
(3)

Based on the above objective (similar to GAN), network

R generates samples with the probability distribution of

pt, and as a result its own distribution is given by pr ∼
R(X ∼ pt; θr), where θr is the parameter of the R network.

Therefore, we want to maximize pt(R(X ∼ pt; θr)).
To train the model, we calculate the loss LR+D as the

loss function of the joint network R+D. Besides, we need

R’s output to be close to the original input image. As a

result, an extra loss is imposed on the output of R:

LR = ‖X −X ′‖2. (4)

Therefore, the model is optimized to minimize the loss

function:

L = LR+D + λLR, (5)
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where λ > 0 is a trade-off hyperparameter that controls the

relative importance of the two terms. One of the challenging

issues for training R+D is defining an appropriate stopping

criterion. Analyzing the loss functions of R and D modules

to excerpt a stopping criterion based on is a burdensome

task, and hence we use a subjective criterion. The training

procedure is stopped when R successfully maps noisy im-

ages to clean images carrying the concept of the target class

(i.e., favorably fools the D module). Consequently, we have

stopped the training of networks, when R can reconstruct its

input with minimum error (i.e., ‖X −X ′‖2 < ρ, where ρ is

a small positive number).

After a joint training of the R+D network, the behavior

of each single one of them can be interpreted as follows:

• R(X ∼ pt + η) −→ X ′ ∼ pt, where ‖X − X ′‖2 is

minimized. This is because θr is optimized to recon-

struct those inputs that follow the distribution pt. Note

that R is trained and operates similar to denoising auto-

encoders [46] or, denoising CNNs [11], and its output

will be a refined version of the input data. See Figures

1 and 5 for some samples of its reconstructed outputs.

• For any given outlier or novelty sample (denoted by X̂)

that does not follow pt, R is confused and maps it into

a sample, X̂ ′, with an unknown probability distribution,

p?, (i.e., R(X̂ ≁ pt + η) −→ X̂ ′ ∼ p?). In this

case, ‖X̂ − X̂ ′‖2 cannot become very small or close to

zero. This is because R was not trained on the novelty

concept and cannot reconstruct it accordingly (similar

to [33]). Therefore, as a side effect, R decimates the

outliers. As an example, Fig. 6 shows samples of a

different concept being fed to R of a network trained

to detect digit “1”.

• We can expect that D(X ′ ∼ pt) > D(X̂ ′
≁ pt), since

D is trained to detect samples from the distribution pt.

• It is interesting to note that in most cases D(R(X ∼
pt)) − D(R(X̂ ≁ pt)) > D(X ∼ pt) − D(X̂ ≁ pt).
This signifies that the output of R is more separable

than original images. It is because of this fact that R
supports D for better detection. To further explore this,

Fig. 7 shows the score generated as the output of D for

both cases. In some sensitive applications, it is more

appropriate to avoid making decisions on difficult cases

[5], and leave them for human intervention. These hard-

to-decide cases are known to be in the reject region. As

shown in Fig. 7 the reject region of D(X) is larger than

that of D(R(X)).

3.4. R+D: One-Class Classification

In the previous subsection, characteristics of both R and

D networks are explained in details. As discussed, D acts as

the novelty detector, and benefits the support of R. Hence,

the One-Class Classifier (OCC) can be simply formulated

by only using the D network (similar to [33]) as:

OCC1(X) =

{

Target Class if D(X) > τ,

Novelty (Outlier) otherwise,
(6)

where τ is a predefined threshold. Although the above policy

for novelty detection works as well as the state-of-the-art

methods (explained in details in the Section 4), we further

propose to incorporate R in the testing stage. To this end,

R(X, θr) is used as a refinement step for X , in which θr
is the trained model for the R module. θr is trained to

reconstruct and enhance samples that follow pt (i.e., are

from the target class). Consequently, instead of D(X) we

use D(R(X)). Eq. (7) provides a summary of our proposed

once-class classification scheme:

OCC2(X) =

{

Target Class if D(R(X)) > τ,

Novelty (Outlier) otherwise.
(7)

4. Experiment Results

In this section, the proposed method is evaluated on three

different image and video datasets. The performance results

are analyzed in details and are compared with state-of-the-

art techniques. To show the generality and applicability of

the proposed framework for a variety of tasks, we test it for

detection of (1) Outlier images, and (2) Video anomalies.

4.1. Setup

All the reported results in this section are from our imple-

mentation using the TensorFlow framework [1], and Python

ran on an NVIDIA TITAN X. The detailed structures of D
and R are explained in details in Sections 3.2 and 3.1, re-

spectively. These structures are kept fixed for different tasks,

and λ in Eq. (5) is set equal to 0.4. The hyperparameters

of batch normalization (as in [16]) are set as ǫ = 10−6 and

decay= 0.9.

4.2. Outlier Detection

As discussed earlier, many computer vision applications

face considerable amounts of outliers, since they are com-

mon in realistic vision-based training sets. On the other

hand, machine learning methods often experience consider-

able performance degradation in the presence gross outliers,

if they fail to deal with processing the data contaminated by

noise and outliers. Our method can learn the shared concept

among all inlier samples, and hence identify the outliers.

Similar to [25, 52, 47], we evaluate the performance of our

outlier detection method using MNIST1 [21] and Caltech2

[15] datasets.

1Available at http://yann.lecun.com/exdb/mnist/
2Available at http://www.vision.caltech.edu/Image_

Datasets/Caltech256/
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Figure 5. Examples of the output of R for several inlier and outlier samples from the UCSD Ped2 dataset: R is learned on normal patches.

Left and right samples show the inlier (i.e., target) and outlier (i.e., novelty) samples, respectively. As can be seen, the network R enhances

its input and shows to be robust to the noise present in its input. First row: Patch contaminated by some Gaussian noise; Second row:

Original patches; Third row: The output of R on the noisy samples.

Figure 6. Outputs of R trained to detect digit “1” on MNIST dataset.

Samples from classes “6” and “7” are given to the model as outliers.

R failed to reconstruct them and fundamentally distorted them. In

each pair of the images, the first one is the original image and the

second one is the output of R.

 
Reject Region Outlier Class Inlier Class 

0 1

Figure 7. R+D is trained on inlier samples (digit “1”) from MNIST

dataset. Top: D(R(X)) scores; Bottom: D(X) scores. The scores

are generated on 20 inlier and 20 outlier samples. The red squares

indicate inlier samples, while × marks are representatives of the

outliers. Reject region for R(X) is larger than that of D(R(X)).

4.2.1 Outlier Detection Datasets

MNIST: This dataset [21] includes 60,000 handwritten dig-

its from “0” to “9”. Each of the ten categories of digits is

taken as the target class (i.e., inliers), and we simulate out-

liers by randomly sampling images from other categories

with a proportion of 10% to 50%. This experiment is re-

peated for all of the ten digit categories.

Caltech-256: This dataset [15] contains 256 object cate-

gories with a total of 30,607 images. Each category has at

least 80 images. Similar to previous works [52], we repeat

the procedure three times and use images from n ∈ {1, 3, 5}

randomly chosen categories as inliers (i.e., target). The first

150 images of each category are used, if that category has

more than 150 images. A certain number of outliers are ran-

domly selected from the “clutter” category, such that each

experiment has exactly 50% outliers.

4.2.2 Outlier Detection Results

Result on MNIST: The joint network R+D is trained on

images of the target classes, in the absence of outlier samples.

Following [47], we also report the F1-score as a measure

to evaluate the performance of our method and compare it

with others. Fig. 8 shows the F1-score of our method (and

the state-of-the-art methods) as a function of the portion of

outlier samples. As can be seen, our method (i.e., D(R(X)))
operates more efficient than the other two-state-of-the-art

methods (LOF [7] and DRAE [47]). Also, it is important

to note that with the increase in the number of outliers, our

method operates consistently robust and successfully detects

the outliers, while the baseline methods fail to detect the

outliers as their portion increases. Furthermore, one inter-

esting finding of these results is that, based in Fig. 8, D(X)
itself can operate successfully well, and outperform the state-

of-the-art methods. Nevertheless, it is even improved more

when we incorporate R module, as it modifies the samples

(i.e., refines the samples from the target class, and decimates

the ones coming from an outlier concept) and helps distin-

guishability of the samples.

Result on Caltech-256: In this experiment, similar setup

as in [52] is used, and we compare our method with [52]

and 6 other methods therein designed specifically for de-

tecting outliers, including Coherence Pursuit (CoP) [32],

OutlierPursuit [50], REAPER [22], Dual Principal Compo-

nent Pursuit (DPCP) [45], Low-Rank Representation (LRR)

[24], OutRank [28]. The results are listed in Table 1, which

are comprised of F1-score and area under the ROC curve

(AUC). The results of other methods are borrowed from [52].

This table confirms that our proposed method performs at

least as well as others, while in many cases it is superior to
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Table 1. Results on the Caltech-256 dataset: Inliers are taken to be images of one, three, or five randomly chosen categories, and outliers are

randomly chosen from category 257-clutter. Two first rows: Inliers are from one category of images, with 50% portion of outliers; Two

second rows: Inliers are from three categories of images, with 50% portion of outliers; Two last rows: Inliers come from five categories

of images, while outliers compose 50% of the samples. The last two columns have the results or our methods, D(X) and D(R(X)),
respectively. Note that in each row the best result is typeset in bold and the second best in italic typeface.

CoP [32] REAPER [22] OutlierPursuit [50] LRR [24] DPCP [45] R-graph [52] Ours D(X) Ours D(R(X))

AUC 0.905 0.816 0.837 0.907 0.783 0.948 0.932 0.942

F1 0.880 0.808 0.823 0.893 0.785 0.914 0.916 0.928

AUC 0.676 0.796 0.788 0.479 0.798 0.929 0.930 0.938

F1 0.718 0.784 0.779 0.671 0.777 0.880 0.902 0.913

AUC 0.487 0.657 0.629 0.337 0.676 0.913 0.913 0.923

F1 0.672 0.716 0.711 0.667 0.715 0.858 0.890 0.905

10 20 30 40 50

0.6

0.8

1

Percentage of outliers (%)

F
1
-S
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Figure 8. Comparisons of F1-scores on MNIST dataset for different

percentages of outlier samples involved in the experiment.

Normal Patches Anomaly Patches

X

R(X)

D(X) 0.15 0.19 0.32 0.35 0.44

D(R(X)) 0.44 0.64 0.56 0.20 0.30

Figure 9. Examples of patches (denoted by X) and their recon-

structed versions using R (i.e., R(X)): Three left Columns are

normal patches, and two right ones are abnormal. The output of D

is the likelihood of being a normal patch (a scalar in range [0,1]).

them. As can be seen, both proposed methods (i.e., D(X)
and D(R(X))) outperform all other methods in most cases.

Interestingly, as we increase the number of inlier classes,

from 1 to 3 and 5 (first, second and the last two rows, respec-

tively), our method robustly learns the inlier concept(s).

4.3. Video Anomaly Detection

Anomaly event detection in videos or visual analysis of

suspicious events is a topic of great importance in different

computer vision applications. Due to the increased com-

plexity of video processing, detecting abnormal events (i.e.,

anomaly or novelty events) in videos is even a more burden-

some task than image outlier detection. We run our method

on a popular video dataset, UCSD [9] Ped2. The results are

reported on a frame-level basis, as we aligned our experi-

mental setup to previous works for comparison purposes.

4.3.1 Anomaly Detection Dataset

UCSD dataset: This dataset [9] includes two subsets, Ped1

and Ped2, from two different outdoor scenes, recorded with a

static camera at 10 fps and resolutions 158× 234 and 240×
360, respectively. The dominant mobile objects in these

scenes are pedestrians. Therefore, all other objects (e.g.,

cars, skateboarders, wheelchairs, or bicycles) are considered

as anomalies. We evaluate our algorithm on Ped2.

4.3.2 Anomaly Detection Results

Result on UCSD Ped2: For this experiment, we divide the

frames of the video into 2D patches of size 30×30. Training

patches are only composed of frames with normal behav-

iors. In the testing phase, test patches are given to the joint

network R+D, and the results are recorded. Fig. 9 shows

examples of the output of R on the testing patches. As it

is evident, normal patches (i.e., left part of the figure) are

successfully refined and reconstructed by the R network,

while the abnormal ones (i.e., the right part of the figure)

are distorted and not adequately reconstructed. The last two

rows in the figure show the likelihood score identified by our

methods (D(X) and D(R(X)), respectively). D(R(X))
shows to yield more distinguishable results, leading to a

better model for one-class classification and hence video

anomaly detection. It is fascinating to note that one of the
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Table 2. Frame-level comparisons on Ped2

Method EER Method EER

IBC [6] 13% RE [36] 15%

MPCCA [19] 30% Ravanbakhsh et al. [34] 13%

MDT [26] 24% Ravanbakhsh et al. [33] 14%

Bertini et al. [4] 30% Dan Xuet al. [48] 17%

Dan Xu et al. [49] 20% Sabokrou et al. [37] 19%

Li et al. [23] 18.5% Deep-cascade [39] 9%

Ours - D(X) 16% Ours - D(R(X)) 13%

most critical dilemmas for video anomaly detection meth-

ods is their high false positives. That is, algorithms often

detect many of the ‘normal’ scenes as anomalies. In Fig. 9,

three left columns are three tough ‘normal’ examples, as the

human subject is not completely visible in the patch. We

deliberately visualized these cases to illustrate how using

D(R(X)) can effectively increase the discriminability of

the system, compared to only D(X).
Similar to [26], we also report frame-level Equal Er-

ror Rate (EER) of our method and the compared methods.

For this purpose, in any frame, if a pixel is detected as an

anomaly, that frame is so labeled as ‘anomaly.’ Table 2 shows

the result of our method in comparison to the state-of-the-art.

The right column in Table 2 lists the results from methods

based on variations of deep-learning. This table confirms

that our method is comparable to all these approaches, while

we are solving a more general problem that can be used

for any outlier, anomaly or novelty detection problem. It is

worth noting that other methods (especially Deep-cascade

[39]) benefit from both spatial and temporal complex fea-

tures, while our method operates on a patch-based basis,

considering only spatial features of the frames. Our goal

was to illustrate that the proposed method operates at least

as well as the state-of-the-art, in a very general setting with

no further tuning to the specific problem type. Simply, one

can use spatiotemporal features and even further improve

the results for anomaly event detection or related tasks.

4.4. Discussion

The experimental results confirmed that R+D detects

the novelty samples at least as well as the state-of-the-art

or better than them in many cases, but finding the optimal

structure and conducting the proper training procedure for

these networks can be tedious and cumbersome tasks. The

structure used in this paper proved well enough for our ap-

plications, while it can still be improved. We observed that

achieving better performance is possible by modifying the

structure, e.g., by some modification in the size and the order

of convolutional layers of R+D, we achieved better results

by margins of 0.02 to 0.04 compared to the results reported

in Table 1. Another important point is that it is very criti-

cal when to stop the training procedure of the joint network

R+D. Stopping the training too early leads to immature

learned network weights, while overtraining the networks

confuses the R module and yields undesirable outputs. The

stopping criterion outlined in Section 3.3 provides a right bal-

ance for the maturity of the joint network in understanding

the underlying concept in the target class.

In addition, it is important note is that training a model

in absence of the novelty/outlier class can be considered as

weak supervision. For many problems this is acceptable,

as all the samples we have are often inliers. When dealing

with outlier detection problems, we can assume that number

samples from the target class is much larger than the outlier

samples. However, if we train the model at the presence of

small number of outlier samples, the model still works. In a

followup experiment, we mixed data from target (90%) and

outlier (10%) classes in the training phase of the Ped2 ex-

periment, and observed that the EER only dropped by 1.3%,

which is still comparable to the state-of-the-art methods.

One of the major concerns in GANs is the mode collapse

issue [3], which often occurs when the generator only learns

a portion of real-data distribution and outputs samples from

a single mode (i.e., it ignores other modes). For our case, it

is a different story as R directly sees all possible samples

of the target class data and implicitly learns the manifold

spanned by the target data distribution.

5. Conclusion

In this paper, we have proposed a general framework

for one-class classification and novelty detection in images

and videos, trained in an adversarial manner. Specifically,

our architecture consists of two modules, Reconstructor and

Discriminator. The former learns the concept of a target class

to reconstruct images such that the latter is fooled to consider

those reconstructed images as real target class images. After

training the model, R can reconstruct target class samples

correctly, while it distorts and decimates samples that do

not have the concept shared among the target class samples.

This eventually helps D discriminate the testing samples

even better. We have used our models for a variety of related

applications including outlier and anomaly detection in im-

ages and videos. The results on several datasets demonstrate

that the proposed adversarially learned one-class classifier is

capable of detecting samples not belonging to the target class

(i.e., they are novelty, outliers or anomalies), even though

there were no samples from the novelty class during training.
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