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Abstract

Designing a logo for a new brand is a lengthy and te-

dious back-and-forth process between a designer and a

client. In this paper we explore to what extent machine

learning can solve the creative task of the designer. For this,

we build a dataset – LLD – of 600k+ logos crawled from

the world wide web. Training Generative Adversarial Net-

works (GANs) for logo synthesis on such multi-modal data

is not straightforward and results in mode collapse for some

state-of-the-art methods. We propose the use of synthetic

labels obtained through clustering to disentangle and sta-

bilize GAN training, and validate this approach on CIFAR-

10 and ImageNet-small to demonstrate its generality. We

are able to generate a high diversity of plausible logos and

demonstrate latent space exploration techniques to ease the

logo design task in an interactive manner. GANs can cope

with multi-modal data by means of synthetic labels achieved

through clustering, and our results show the creative poten-

tial of such techniques for logo synthesis and manipulation.

Our dataset and models are publicly available at https:

//data.vision.ee.ethz.ch/sagea/lld/.

1. Introduction and related work

Logo design Designing a logo for a new brand usually is

a lengthy and tedious process, both for the client and the

designer. A lot of ultimately unused drafts are produced,

from which the client selects his favorites, followed by mul-

tiple cycles refining the logo to match the clients needs and

wishes. Especially for those clients without a specific idea

of the end product, this results in a procedure that is not only

time, but also cost intensive.

The goal of this work is to provide a framework towards

a system with the ability to generate (virtually) infinitely

Figure 1: Original and generated images from four selected

clusters from our LLD-icon-sharp dataset. The top three

rows consist of original logos, followed by logos generated

using our iWGAN-LC trained on 128 RC clusters.

many variations of logos (some examples are shown in Fig-

ure 1) to facilitate and expedite such a process. To this end,

the prospective client should be able to modify a prototype

logo according to specific parameters like shape and color,

or shift it a certain amount towards the characteristics of

another prototype. Such a system could help both designer

and client to get an idea of a potential logo, which the de-

signer could then build upon, even if the system itself was

not (yet) able to output production-quality designs.

Logo image data Existing research literature focused

mostly on retrieval, detection, and recognition of a re-

duced number of logos [14, 17, 31, 33, 35, 43] and, con-

sequently, a number of datasets were introduced. The most

representative large public logo datasets are shown in Ta-

ble 1. Due to the low diversity of the contained logos, these

datasets are not suitable for learning and validating auto-

matic logo generators. At the same time a number of web

pages allow (paid) access to a large number of icons, such

as iconsdb.com (4135+ icons), icons8.com (59900+), icon-

finder.com (7473+), iconarchive.com (450k+) and thenoun-

project.com (1m+). However, the diversity of these icons is

limited by the number of sources, namely designers/artists,
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themes (categories) and design patterns (many are black and

white icons). Therefore, we crawl a highly diverse dataset –

the Large Logo Dataset (LLD) – of real logos ‘in the wild’

from the Internet. As shown in Table 1 our LLD proposes

thousands of times more distinct logos than the largest pub-

lic logo dataset to date, WebLogo-2M [35].

In contrast to popularly used natural image datasets such

as ImageNet [32], CIFAR-10 [21] and LSUN [42], face

datasets like CelebA [23] and the relatively easily modeled

handwritten digits of MNIST [22], logos are: (1) Artificial,

yet strongly multimodal and thus challenging for generative

models; (2) Applied, as there is an obvious real-world de-

mand for synthetically generated, unique logos since they

are expensive to produce; (3) Hard to label, as there are

very few categorical properties which manifest themselves

in a logo’s visual appearance. While the logos are easily

obtainable in large quantities, they are specifically designed

to be unique, which ensures the diversity of a large logo

dataset. We argue that all these characteristics make logos

a very attractive domain for machine learning research in

general, and generative modeling in particular.

Generative models Recent advances in generative mod-

eling have provided viable frameworks for making such a

system possible. The current state-of-the-art is made up

mainly of two types of generative models, namely Varia-

tional Autoencoders (VAEs) [16, 19, 20] and Generative

Adversarial Networks (GANs) [2, 10, 11]. Both of these

models generate their images from a high-dimensional la-

tent space that can act as a sort of “design space” in which a

user is able to modify the output in a structured way. VAEs

have the advantage of directly providing embeddings of any

given image in the latent space, allowing targeted modifi-

cations to its reconstruction, but tend to suffer from blurry

output owed to the nature of the pixel-wise L2 loss used

during training. GANs on the other hand, which consist of

a separate generator and discriminator network trained si-

multaneously on opposing objectives in a competitive man-

ner, are known to provide realistic looking, crisp images but

are notoriously unstable to train. To address this difficulty,

a number of improvements in the architecture and training

methods of GANs have been suggested [34], such as using

deep convolutional layers [29] or modified loss functions

e.g. based on least-squares [24] or the Wasserstein distance

between probability distributions [3, 4, 12].

Conditional models The first extension of GANs with

class-conditional information [25] followed shortly after its

inception, generating MNIST digits conditioned on class la-

bels provided to both generator and discriminator during

training. It has since been shown for supervised datasets,

that class-conditional variants of generative networks very

often produce superior results compared to their uncondi-

tional counterparts [12, 15, 26]. By adding an encoder to

Dataset Logos Images

FlickLogos-27 [18] 27 1080

FlickLogos-32 [31] 32 8240

BelgaLogos [17] 37 10000

LOGO-Net [14] 160 73414

WebLogo-2M [35] 194 1867177

LLD-icon (ours) 486377 486377

LLD-logo (ours) 122920 122920

LLD (ours) 486377+ 609297

Table 1: Logo datasets. Our LLD provides orders of mag-

nitude more logos than the existing public datasets.

map a real image into the latent space, it was proven to be

feasible to generate a modified version of the original im-

age by changing class attributes on faces [6, 28] and other

natural images [37]. Other notable applications include the

generation of images from a high-level description such as

various visual attributes [40] or text descriptions [30].

Our contributions In this work we train GANs on our

own highly multi-modal logo data as a first step towards

user-manipulated artificial logo synthesis. Our main contri-

butions are:

• LLD - a novel dataset of 600k+ logo images.

• Methods to successfully train GAN models on multi-

modal data.

• An exploration of GAN latent space for logo synthesis.

• A demonstration how our presented methods can be

combined to a feasible interface for an application aid-

ing logo design.

The remainder of this paper is structured as follows. We

introduce a novel Large Logo Dataset (LLD) in Section 2.

We describe the proposed clustered GAN training, the clus-

tering methods, as well as the GAN architectures used and

perform quantitative experiments in Section 3. Then we

demonstrate logo synthesis by latent space exploration op-

erations in Section 4. Finally, we draw the conclusions in

Section 5.

2. LLD: Large Logo Dataset

In the following we introduce a novel dataset based

on website logos, called the Large Logo Dataset (LLD).

It is the largest logo dataset to date (see Table 1). The

LLD dataset consists of two parts, a low resolution (32×32

pixel) favicon subset (LLD-icon) and the higher-resolution

(400×400 pixel) twitter subset (LLD-logo). In the follow-

ing we will briefly describe the acquisition, properties and

possible use-cases for each.

2.1. LLD­icon: Favicons

For generative models like GANs, the difficulty of keep-

ing the network stable during training increases with image
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resolution. Thus, when starting to work with a new type of

data, it makes sense to start off with a variant which is inher-

ently low-resolution. Luckily, in the domain of logo images

there is a category of such inherently low-resolution, low-

complexity images: Favicons, the small icons representing

a website e.g. in browser tabs or favorite lists. We decided

to crawl the web for such favicons using the largest resource

of high quality website URLs we could find: Alexa’s top 1-

million website list1. To this end we use the Python package

Scrapy2 in conjunction with our own download script which

directly converts all icons found to a standardized 32 × 32

pixel resolution and RGB color space, discarding all non-

square images.

After acquiring the raw data from the web, we remove

all exact duplicates (of which there are a surprisingly high

number of almost 20 %). Visual inspection of the raw data

reveals a non-negligible number of images that do not com-

ply to our initial dataset criteria and often are not even re-

motely logo-like, such as faces and other natural images. In

an attempt to get rid of this unwanted data, we (i) sort all

images by PNG-compressed file size – an image complex-

ity indicator; (ii) manually inspect and partition the result-

ing sorted list into three sections: clean and mostly clean

data which are kept, and mostly unwanted data which is

discarded; (iii) discard the mostly clean images containing

the least amount of white pixels.

The result of this process is a clean set of 486,377 images

of uniform 32×32 pixel size, making it very easy to use.

The disadvantage of this standardized size is that 54 % of

images appear blurry because they where scaled up from a

lower resolution. For this reason we will also be providing

(the indices for) a subset of the data containing only sharp

images, which we will refer to as icons-sharp.

2.2. LLD­logo: Twitter

For training generative networks at an increased resolu-

tion, additional high-resolution data is needed, which favi-

cons cannot provide. One possible option would be to crawl

the respective websites directly to look for the website or

company logo. However, (a) it might not always be straight-

forward to find the logo and distinguish it from other images

on the website and (b) the aspect ratio and resolution of lo-

gos obtained in this way will be very varied, which would

necessitate extensive cropping and resizing, potentially de-

grading the quality of a large portion of logos.

By crawling twitter instead of websites, we are able to

acquire standardized square 400×400 pixel profile images

which can easily be downloaded through the twitter API

without the need for web scraping. We use the Python

wrapper tweepy to search for the (sub-) domain names con-

1now officially retired, formerly available at https://www.

alexa.com
2https://scrapy.org/

tained in the alexa list and match the original URL with

the website provided in the twitter profile to make sure that

we have found the right twitter user. The images are then

run through a face detector to reject any personal twitter ac-

counts and the remaining images are saved together with

the twitter meta data such as user name, number of follow-

ers and description. For this part of the dataset, all original

resolutions are kept as-is, where 80% are at 400×400 pix-

els and the rest at some lower resolution (details given in

supplementary material).

The acquired images are analyzed and sorted with a com-

bination of automatic and manual processing in order to get

rid of unwanted and possibly sensitive images, resulting in

122,920 usable high-resolution logos of consistent quality

with rich meta data from the respective twitter accounts.

These logo images form the LLD-logo dataset.

3. Clustered GAN Training

We propose a method for stabilizing GAN training and

gaining additional control over the generator output by

means of clustering (a) in the latent space of an autoencoder

trained on the same data or (b) in the CNN feature space of

a ResNet classifier trained on ImageNet. With both meth-

ods we are able to produce semantically meaningful clusters

that improve GAN training.

In this Section we review the GAN architectures used in

our study, describe the clustering methods based on Autoen-

coder latent space and ResNet features and discuss some

quantitative experimental results.

3.1. GAN architectures

Our generative models are based on Deep Convolu-

tional Generative Adversarial Networks (DCGAN) of Rad-

ford et al. [29] and improved Wasserstein GAN with gradi-

ent penalty (iWGAN) as proposed by Gulrajani et al. [12].

DCGAN For our DCGAN experiments, we use Taehoon

Kim’s TensorFlow implementation 3. We train DCGAN ex-

clusively on the low-resolution LLD-icon subset, for which

it proved to be inherently unstable without using our clus-

tering approach. We use the input blurring explained in the

next section in all our DCGAN experiments. For details on

hyper-parameters used, we refer the interested reader to the

supplementary material.

iWGAN All our iWGAN experiments are based on the

official TensorFlow repository by Gulrajani et al. [12]4. We

kept the default settings as provided by the authors. We

exclusively use the 32- and 64-pixel ResNet architectures

3https://github.com/carpedm20/DCGAN-tensorflow
4https://github.com/igul222/improved_wgan_

training
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provided in the repository with the only major modifications

being our conditioning method as described below. We also

use linear learning rate decay (from the initial value to zero

over all training iterations) in all our experiments.

3.2. Clustering

We found DCGAN to be unstable with our icon dataset

(LLD-icon) for resolutions higher than 10×10, and where

able to stabilize it by introducing synthetic labels as de-

scribed in this section. In addition to stabilizing GAN train-

ing, in Section 3.4 we are able to achieve a significant im-

provement on Inception scores (as proposed by Salimans et

al. [34]) using iWGAN with our synthetic labels produced

by RC clustering as described below, on both CIFAR-10 and

ImageNet-Small [27]. Furthermore, the cluster labels sub-

sequently provide additional control over the generated lo-

gos by generating samples from individual clusters or trans-

forming a particular logo to inherit the specific attributes of

another cluster as demonstrated in Section 4.

We propose two distinct methods for producing synthetic

data labels on our training data:

• AutoEncoder Clustering (AE): After training an Au-

toencoder, with a similar architecture as our GAN net-

work, on our training data, we cluster the images in

the latent space z of that Autoencoder. Since this la-

tent space relates directly to the learned high-level AE

features, the resulting clusters are both semantically

meaningful and easy to pick up on by the GAN (due

to the similar network architecture). Details on this

method are given in Figure 2.

• ResNet Classifier Clustering (RC): For this cluster-

ing method we take advantage of the learned features

from an ImageNet classifier, namely ResNet-50 by

He et al. [13]. As in the AE clustering, we use PCA

to reduce the dimensionality of the feature vector from

the final pooling layer of the ResNet network before

clustering the features with (minibatch) k-means.

We found our RC method to give considerably superior re-

sults on CIFAR-10 (which is not surprising given its similar-

ity to ImageNet) while still working very well for very dif-

ferent image data like our LLD dataset. To account for the

fact that we use a classifier that was trained in a supervised

fashion while not requiring any annotations on the data used

to train the GAN itself, we will refer to this method as semi-

supervised.

3.3. Conditional GAN Training Methods

In this section we describe the conditional GAN mod-

els used to leverage our synthetic data labels and the input

blurring applied to DCGAN.

E Gz

L = ‖x− o‖2

k-means

x o

PCA

Figure 2: Autoencoder used for AE clustering. The gen-

erator G is equivalent to the one used in the GAN, while

the encoder E consists of the GAN discriminator D with a

higher number of outputs to match the dimensionality of the

latent space z. It is trained using a simple L2 loss function.

2048

4
4

8

8
16

16

32

32

64

64

1024
512

256

100

100
100

100

100

512

z (latent space) y (labels, one-hot)

attached to each layer's output

Tensor Y derived from vector y:

Y[j, :, :] = y[i] if i==j, else 0

fract. str. conv.

linear projection

(fully connected)

3

Figure 3: Generator network as used for our layer condi-

tional DCGAN (DCGAN-LC). 100 labels y are appended

as a one-hot vector to the latent vector. It is also projected

onto a set of feature maps consisting of all zeros except for

the map corresponding to the class number, where all ele-

ments have value one. These additional feature maps are

then appended to the input of each convolutional layer.

3x3

3x3

+

1x1

Input

Labels

Residual Block

Figure 4: Layer Conditional Residual block as used in our

iWGAN-LC. The label information is appended to the con-

volutional layer input in the same way as described in Fig-

ure 3. The skip connections remain unconditional.

LC: Layer Conditional GAN Feeding the cluster label

for each training sample is fed to all convolutional and lin-

ear layers of both generator and discriminator is a method

employed in previous works to create conditional GAN net-

works. We will refer to such models as layer-conditional
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models. For linear layers, the label is simply appended to

the input as a one-hot vector. For convolutional layers the

labels are projected onto “one-hot feature maps” with as

many channels as there are clusters, where the one corre-

sponding to the cluster number is filled with ones, while the

rest are zero. These additional feature maps are appended

to the input of every convolutional layer, such that every

layer can directly access the label information. This is illus-

trated in Figure 3 for DCGAN and Figure 4 for ResNet as

used in our iWGAN model. Even though the labels are pro-

vided to every layer, there is no explicit mechanism forcing

the network to use this information. In case the labels are

random or meaningless, they can simply be ignored by the

network. However, as soon as the discriminator starts ad-

justing its criteria for each cluster, it forces the generator to

produce images that comply with the different requirements

for each class. Our experiments confirm that visually mean-

ingful clusters are always picked up by the model, while the

network simply falls back to the unconditional state for ran-

dom labels.

AC: Auxiliary Classifier GAN With iWGAN we also

use the Auxiliary Classifier proposed by Odena et al. [26]

as implemented by Glurajani et al. [12]. While this method

does not easily allow us to interpolate between clusters and

is thus slightly more limited from an application perspec-

tive, it does avoid adding parameters to the convolutional

layers, which in general results in a network with fewer

parameters. iWGAN-AC was our method of choice for

CIFAR-10, as it delivers the highest Inception scores.

D

Gz

real

fake

data

Figure 5: Generative Adversarial Net with blurred Discrim-

inator input. Both original and generated images are blurred

using a Gaussian filter of fixed strength.

Gaussian Blur During our experiments we noticed how

blurring the input image helps the network remain stable

during training, which in the end lead us to apply a Gaussian

blur on all images presented to the discriminator (training

data as well as samples from the Generator), like it has been

previously implemented by Susmelj et al. [36]. The method

is schematically illustrated in Figure 5.

3.4. Quantitative evaluation and state­of­the­art

In order to quantitatively assess the performance of our

solutions on the commonly used CIFAR-10 dataset we re-

port Inception scores [34] and diversity scores based on

MS-SSIM [38] as suggested in [26] over a set of 50,000 ran-

domly generated images. In Table 2 we summarize results

for different configurations in supervised (using CIFAR la-

bels) and unsupervised settings in LC and AC conditional

modes, including reported scores from the literature.

Method Clusters
Inception Diversity

score (MS-SSIM)

u
n
su

p
er

v
is

ed

Infusion training[5] 4.62±0.06

ALI [9](from[39]) 5.34±0.05

Impr.GAN(-L+HA)[34] 6.86±0.06

EGAN-Ent-VI [7] 7.07±0.10

DFM [39] 7.72±0.13

iWGAN [12] 7.86±0.07

iWGAN 7.853±0.072 0.0504±0.0017

iWGAN-LC with AE clustering 32 7.300±0.072 0.0507±0.0016

iWGAN-AC with AE clustering 32 7.885±0.083 0.0504±0.0014

se
m

i-
su

p
er

v. iWGAN-LC with RC clustering 32 7.831±0.072 0.0491±0.0015

iWGAN-LC with RC clustering 128 7.799±0.030 0.0491±0.0015

iWGAN-AC with RC clustering 10 8.433±0.068 0.0505±0.0016

iWGAN-AC with RC clustering 32 8.673±0.075 0.0500±0.0016

iWGAN-AC with RC clustering 128 8.625±0.109 0.0465±0.0015

su
p
er

v
is

ed

iWGAN-LC 7.710±0.084 0.0510±0.0013

Impr.GAN [34] 8.09±0.07

iWGAN-AC [12] 8 .42±0.10

AC-GAN [26] 8.25±0.07

SGAN [15] 8.59±0.12

CIFAR-10 (original data) 11.237±0.116 0.0485±0.0016

Table 2: Comparison of Inception and diversity scores

on CIFAR-10. The unsupervised methods do not use the

CIFAR-10 class labels. Note that our unsupervised meth-

ods achieve state-of-the-art performance comparable to the

best supervised approaches.

Method Inception score

iWGAN unconditional 10.11±0.20

iWGAN-AC 128 RC clusters 14.42±0.21

ImageNet-small (original data) 75.29±1.40

Table 3: Inceptions scores on ImageNet-small.

Performance and state-of-the-art On CIFAR-10, our

best Inception score of 8.67 achieved with iWGAN-AC and

32 RC clusters is significantly higher than 8.09 by Sali-

mans et al. [34] with their Improved GAN method, the best

score reported in the literature for unsupervised methods.

Surprisingly, our best result, achieved with purely synthetic

labels provided by RC clustering, is comparable to 8.59

of the Stacked GANs approach by Huang et al. [15], the

best score reported for supervised methods. For ImageNet-

small, there is also a very significant improvement when

using our synthetic labels versus no labels. While these re-

sults could point to a general improvement of output im-

age quality when using data clustering, we believe that the

higher score is owed to fact that AC-GAN enforces the gen-

eration of images which can easily be classified to the pro-

vided clusters, which in turn could raise the classifier-based
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Figure 6: The first four (random) clusters of LLD-icon as attained with our AE-Clustering method using 100 cluster centers.

The top half of each example contains a random selection of original images, while the bottom half consists of samples

generated by DCGAN-LC for the corresponding cluster. The very strong visual correspondence demonstrates the network’s

ability to capture the data distributions inherent the classes produced by our clustering method.

Inception score. Subjectively, there does not seem to be any

obvious improvement in the produced output, further sup-

porting this hypothesis.

Image quality Complementary to the Inception and di-

versity scores we also measured the image quality using

CORNIA, a robust no-reference image quality assessment

method proposed by Ye and Doermann [41]. On both

CIFAR-10 and LLD-icon our generative models obtained

CORNIA scores equivalent to those of the original images

from each dataset. This result is in-line with the findings

in [36], where the studied GANs also converge in terms

of CORNIA scores towards the data image quality at GAN

convergence.

LC vs. AC for conditional GANs Our AC-GAN variants

are better than their LC counterparts in terms of Inception

scores, but comparable in terms of diversity for CIFAR-10.

Even though the numbers indicate a qualitative advantage

of AC- over LC-GAN, we prefer the latter for our logo ap-

plication as it natively allows smooth interpolations even

in-between different clusters. This is not the case for the

reference implementation of AC-GAN where the cluster la-

bels consist of discrete integer values and thus constrain all

latent space operations to a specific data cluster, which does

not match our intended use.

4. Logo synthesis by latent space exploration

As mentioned in the previous section, layer condition-

ing allows for smooth transitions in the latent space from

one class to another, which is critical for logo synthesis and

manipulation by exploration of the latent space. Therefore,

we work with two configurations for these experiments:

iWGAN-LC with 128 RC clusters and DCGAN-LC with

100 AE clusters. Their Inception, diversity and CORNIA

scores are comparable on the LLD-icon dataset.

4.1. Sampling

In generative models like GANs [11] and VAEs [20],

images are generated from a high-dimensional latent vec-

tor (with usually somewhere between 50 and 1000 dimen-

sions), also commonly referred to as z-vector. During train-

ing, each component of this vector is randomly sampled

from a Uniform or Gaussian distribution, so that the gen-

erator is trained to produce a reasonable output for any ran-

dom vector sampled from the same distribution. The space

spanned by these latent vectors, called the latent space, is

often highly structured, such that latent vectors can be de-

liberately manipulated in order to achieve certain properties

in the output [6, 8, 29].

Using DCGAN-LC with 100 AE clusters on the same

data, Figure 6 contains samples from a specific cluster next

to a sample of the respective original data. This shows how

the layer conditional DCGAN is able to pick up on the data

distribution and produce samples which are very easy to at-

tribute to the corresponding cluster and are often hard to dis-

tinguish from the originals at first glance. For comparison

we also show results for iWGAN-LC with 128 RC clusters

trained on the LLD-icon-sharp dataset in Figure 1.

Figure 7: Interpolation between 4 selected logos of distinct

classes using DCGAN-LC with 100 AE clusters on LLD-

icon, showcasing smooth transitions and interesting inter-

mediate samples in-between all of them.
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Figure 8: Continuous interpolation between 4 logos within

one cluster (top) and 3 logos from different clusters (bot-

tom) in latent space using iWGAN-LC with 64 RC clusters

on LLD-logo at 64 pixel resolution. We observe reasonably

smooth transitions (given the large steps size) and logo-like

samples in all of the sampled subspace.

4.2. Interpolations

To show that a generator does not simply learn to repro-

duce samples from the training set, but is in fact able to

produce smooth variations of its output images, it is com-

mon practice [10] to perform interpolations between two

points in the latent space and to show that the outcome is a

smooth transition between the two corresponding generated

images, with all intermediate images exhibiting the same

distribution and quality. Interpolation also provides an ef-

fective tool for a logo generator application, as the output

image can be manipulated in a controlled manner towards a

certain (semantically meaningful) direction in latent space.

For all our interpolation experiments we use the distri-

bution matching methods from [1] in order to preserve the

prior distribution the sampled model was trained on. An ex-

ample with 64 interpolation steps to showcase the smooth-

ness of such an interpolation is given in Figure 7 where we

interpolate between 4 sample points, producing believable

logos at every step. As it is the case in this example, the

interpolation works very well even between logos of differ-

ent clusters, even though the generator was never trained for

mixed cluster attributes.

Some more interpolations between different logos both

within a single cluster and between logos of different clus-

ters are shown in Figure 8, this time between 2 endpoints

and with only 4 interpolation steps.

4.3. Class transfer

As the one-hot class vector representing the logo cluster

is separate from our latent vector, it is also possible to keep

the latent space representation constant and only change the

cluster of a generated logo. Figure 9 contains 11 logos (top

Figure 9: Logo class transfer using DCGAN-LC on LLD-

icon with 100 AE clusters. The logos of the 1st row get

transferred to the class (cluster) of the logos in the 1st col-

umn (to the left). Hereby the latent vector is kept con-

stant within each column and the class label is kept constant

within each row (except for the 1st ones, resp.). The original

samples have been hand-picked for illustrative purposes.

row) that are being transformed to a particular cluster class

in each subsequent row. This shows how the general ap-

pearance such as color and contents are encoded in the z-

vector while the cluster label transforms these attributes into

a form that conforms with the contents of the respective

cluster. Here, again, interpolation could be used to create

intermediate versions as desired.

4.4. Vicinity sampling

Figure 10: Vicinity Sampling using iWGAN-LC on LLD-

icon-sharp with 128 RC clusters.

Another powerful tool to explore the latent space is

vicinity sampling, where we perturb a given sample in ran-

dom directions of the latent space. This could be useful

to present the user of a logo generator application with a

choice of possible variants, allowing him to modify his logo

step by step into directions of his choice. In Figure 10 we

present an example of a 2-step vicinity sampling process,
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where we interpolate one-third towards random samples to

produce a succession of logo variants.

4.5. Vector arithmetic 1: Sharpening

For models trained on our LLD-icon data, some of the

generated icons are blurry since roughly half of the logos

in this dataset are upscaled from a lower resolution. How-

ever, by averaging over the z-vector of a number of blurry

samples and subtracting from this the average of a number

of sharp samples, it is possible to construct a “sharpening”

vector which can be added to blurry logos to transform them

into sharp ones. This works very well even if the direc-

tional vector is calculated exclusively from samples in one

cluster and then applied samples of another, showing that

the blurriness is in fact nothing more than a feature embed-

ded in latent space. The result of such a transformation is

shown in Figure 11, where such a sharpening vector was

calculated from 40 sharp and 42 blurry samples manually

selected from two random batches of the same cluster. The

resulting vector is then applied equally to all blurry samples.

The quality of the result, while already visually convincing,

could be further optimized by adding individually adjusted

fractions of this sharpening vector to each logo.

(a) Original samples (b) Sharpened samples

Figure 11: Sharpening of logos in the latent space by adding

an offset calculated from the latent vectors of sharp and

blurry samples. We used DCGAN-LC and 100 AE clusters.

4.6. Vector arithmetic 2: Shapes

As a further example of performing vector arithmetic

in latent space with a direct application for our logo gen-

erator, we demonstrate a transformation in shape towards

round logos. This experiment was performed analogous

to the sharpening, but this time using the high-res logos

from LLD-logo and picking round vs square logos instead

of blurry vs sharp ones. The result on 9 random samples

is shown in Figure 12, more examples can be found in the

supplementary material.

4.7. Supplementary material

Due to page length limit we invite the reader to check the

supplementary material (available at https://arxiv.

org/abs/1712.04407) for more visual results of our

approaches as well as an example for a user interface for

a logo generator application which implements latent space

operations for an easy manipulation of logo attributes.

(a) Original samples (b) Transformed samples

Figure 12: Transformation towards round logos through a

constructed directional vector in latent space using WGAN-

LC trained on LLD-logo with 64 RC clusters.

5. Conclusions

In this paper we tackled the problem of logo design by

synthesis and manipulation with generative models:

(i) We introduced a Large Logo Dataset (LLD) crawled

from the Internet with orders of magnitude more logos

than the existing datasets.

(ii) In order to cope with the high multi-modality and

to stabilize GAN training on such data we proposed

clustered GANs, that is GANs conditioned with syn-

thetic labels obtained through clustering. We per-

formed clustering in the latent space of an Autoen-

coder or in the CNN features space of a ResNet clas-

sifier and conditioned DCGAN and improved WGAN

utilizing either an Auxiliary Classifier or Layer Condi-

tional model.

(iii) We quantitatively validated our clustered GAN ap-

proaches on a CIFAR-10 and ImageNet, showcasing

the benefits of meaningful synthetic labels obtained

through clustering in the CNN feature space of a

ResNet classifier.

(iv) We showed that the latent space of the networks trained

on our logo data is smooth and highly structured, thus

having interesting properties exploitable by perform-

ing vector arithmetic in that space.

(v) We showed that the synthesis and manipulation of (vir-

tually) infinitely many variations of logos is possi-

ble through latent space exploration equipped with a

number of operations such as interpolations, sampling,

class transfer or vector arithmetic in latent space like

our sharpening example.

Our solutions ease the logo design task in an interactive

manner and are significant steps towards a fully automatic

logo design system.
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