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Abstract

In this paper, we propose a novel method for measur-

ing the temporal modulation of lights by using off-the-shelf

cameras. In particular, we show that the invisible flicker

patterns of various lights such as fluorescent lights can be

measured by a simple combination of an off-the-shelf cam-

era and any moving object with specular reflection. Unlike

the existing methods, we do not need high speed cameras

nor specially designed coded exposure cameras. Based on

the extracted flicker patterns of environment lights, we also

propose an efficient method for deblurring motion blurs in

images. The proposed method enables us to deblur images

with better frequency characteristics, which are induced by

the flicker patterns of environment lights. The real image

experiments show the efficiency of the proposed method.

1. Introduction

Our life environments are brimming over with lights, and

these lights seem to illuminate us continuously. However,

most artificial lights are blinking at very high speed. For

example, fluorescent lights are turning on and off in ac-

cordance with the alternating current (AC) of the electric

power [20]. Also, many LED lights are controlled to turn on

and off for adjusting the intensity and reducing their elec-

tric power consumptions. These flicker patterns are very

fast, and human vision cannot perceive them.

Usually, these flicker patterns are controlled so that they

are invisible to human vision, since visible flicker is a nui-

sance. However, if we use these flicker patterns efficiently,

we may be able to achieve brand new visual measurement

methods.

Quite recently, Sheinin et al. [17] have proposed an ef-

ficient method for measuring the flicker patterns of various

lights and identifying the type of lights from their flicker

patterns. They developed a new coded imaging system that

observes scene intensity by synchronizing with the AC elec-

tric power cycle. By measuring the flicker patterns of light,

they showed a new possibility of using them. Unfortunately,

their method requires a very special coded imaging system,

Figure 1. Motion blur of specular reflection is observed as dashed

line since light on road was flickering at very high speed.

which controls the input light by using a digital micromirror

device (DMD) synchronized with the AC electric power cy-

cle. Since such a very special imaging system is not avail-

able for general users, it is not easy to obtain the flicker

patterns of lights. Also, their method can only measure

periodic light signals, and the change in intensity of non-

periodic light signals cannot be captured.

Thus, in this paper, we propose a novel method for mea-

suring the flicker patterns of various lights easily without

using special sensors. Our method uses an off-the-shelf

camera and a moving object with specular reflection on its

surface. Such moving objects can be vehicles on a road,

rolling metal balls on desks, etc. The fundamental idea of

our method is to decode the temporal flicker pattern of light

into a spatial intensity pattern in a single image.

For example, Fig. 1 is an image of a moving vehicle

taken by a standard camera with an exposure time of 40

msec. As we can see in this figure, the specular reflections

are observed as dashed lines in the image, and these dashed

lines are the motion blur of the specular reflections. The

motion blur was recorded as dashed lines since the light on

the road was flickering at very high speed. In other words,

the dashed lines in the image roughly show the temporal

flicker patterns of the light. Thus, by eliminating the distor-
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tions caused by object properties and sensor properties, we

can derive the original flicker patterns of light directly from

the static patterns in the image.

Once the temporal flicker patterns are obtained, we can

use them for various applications. In this paper, we use the

flicker patterns obtained from the image for deblurring mo-

tion blurs in the image. As we can see in Fig. 1, the charac-

ters on the number plate of the vehicle are heavily blurred

because of the high speed motion of the vehicle and are un-

readable.

Although many methods have been proposed for deblur-

ring motion blurs up to now [2, 16, 7, 11, 3, 24, 12], im-

age deblurring is an ill-posed problem, and the estimation

of unblurred images is unstable in general. In this paper,

we show that by using the specular reflections in images,

we can recover the point spread functions (PSFs) of motion

blurs under flickering light accurately, and hence we can

deblur motion blurs stably. Moreover, because of the good

frequency characteristics of the flickering light, the motion

deblurring becomes more stable than in usual cases. Since

our method requires only an off-the-shelf camera, it is very

efficient and useful.

2. Related Work

In this paper, we estimate the temporal properties of light

sources that illuminate the scene. When we obtain an image

with a camera, the imaging device of the camera accumu-

lates the input light within a certain period of time. This is

called the exposure time. If the object moves relative to the

camera during the exposure time, we will have motion blurs

in the observed image. Thus, if the intensity of the input

light changes during the exposure time, its effect appears

in the motion blur in the observed image. Thus, the mea-

surement of the change in intensity of input light is strongly

related to the motion blur and its deblurring.

Many methods have been proposed for deblurring depth

and motion blurs [2, 16, 7, 11, 3, 24, 12]. If we know the

PSF of the image blur, spectral based methods such as the

Wiener filter [22] or optimization-based methods such as

the Richardson-Lucy algorithm [14] can often be used for

deblurring images. If we do not know the PSF, the prob-

lem becomes more difficult since we need to recover PSFs

as well as unblurred images. This is called blind decon-

volution [2, 16, 7]. In general, blind deconvolution is an

ill-posed problem, and we need to combine some additional

assumptions and priors. Image priors such as the distribu-

tion of natural images are often used [15, 21, 2, 16, 3]. In

recent works, the sparseness in deconvolution has also been

studied extensively [7, 11, 24]. Although single image blind

deconvolution has progressed a great deal, the physical cor-

rectness of the deblurred images depends on the conformity

of these priors and the assumptions for individual images.

Recently, Queiroz et al. [12] showed an intuitive method

for deblurring images without using heavy priors. They

showed that the specularity can be used for obtaining PSFs

directly from images. Our method is closely related to their

method, but it is different in various aspects. In particular,

our paper analyzes the relationship between the temporal

property of a flickering light and the specularity of a moving

object. Based on this analysis, we show that the temporal

flicker pattern of light can be recovered from a single static

image, and motion blurs in the image can be recovered more

accurately.

For recovering more accurate unblurred images, it is im-

portant to obtain more information from the scene. For this

objective, coded imaging has been developed [13, 6, 19, 1,

18, 25, 5]. Coded apertures [6, 19, 25] and coded expo-

sures [13, 1] enable us to obtain missing information in the

standard aperture and exposure, and thus ill-posed prob-

lems can be transformed into well-posed problems or less

ill-posed problems. Coded imaging can be achieved by us-

ing specially designed imaging systems that combine image

sensors with some spatial light modulators, such as LCOS

and DMD. Coded imaging can also be achieved by coding

lights that illuminate the scene [23, 4, 8, 10]. Coded light

images can also be obtained by controlling the spatial light

modulators put in front of the light sources. Although these

coded imaging techniques are very efficient for obtaining

physically correct unblurred images, they require accurate

high speed control of spatial light modulators.

In this research, we consider coded imaging by using the

existing lights in our usual environments, i.e. the flicker

of lights, such as fluorescent lights. Since the flicker pat-

terns of lights are generally unknown, we propose a method

for estimating the flicker patterns of light. Since the flicker

of light is very fast, we need to use high speed cameras to

capture the changes in intensity of lights. Quite recently,

Sheinin et al. [17] have proposed a new method for captur-

ing flicker patterns by synchronizing the image capture with

the AC electric power cycles. They also showed that the

scene intensity can be decomposed into single light source

intensities. Unfortunately, their method requires synchro-

nizing the image capture with the AC electric power cycles,

and hence only periodic lights can be measured. Also, it re-

quires special pieces of equipment to synchronize the image

sensing with the AC electric power cycles.

In this paper, we propose a novel method for obtaining

arbitrary high speed light flicker patterns in our environ-

ments. Unlike Sheinin’s method [17], our method does not

require synchronization with periodic signals, such as AC

electric power cycles. Thus, even non-periodic changes in

intensity can be measured and used by using the proposed

method. For example, high speed visible light communica-

tion among vehicles and traffic signals can be achieved just

by using standard cameras. The proposed method is thus

quite efficient and can be applied to various fields.

6403



(a) (b) (c)

Figure 2. Rolling metal ball (a) and observed images (b) and (c). We use these spatial intensity patterns in a single image for estimating

the temporal flicker patterns of light.
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Figure 3. First row shows sharpness of specularities in images, and second row shows rank of matrix M, which changes according to

sharpness of specular reflection. Third row shows recovered flicker patterns of light. Red lines show estimated flicker patterns, and blue

lines show their ground truth. Note, rank of M also depends on velocity of object.

3. Estimating Temporal Flicker Patterns of

light from Single Image

In this paper, we estimate the temporal flicker patterns of

light from spatial intensity patterns in a single image. For

this objective, we consider the case where a curved object

moves linearly with a constant speed under distant isotropic

lights. The rolling ball shown in Fig. 2 (a) is a good exam-

ple of such an object. If the object has specular reflection,

the lights in the environment are reflected on the object sur-

face, and the specular reflections are observed by a camera.

Now, if the object moves during a single exposure time of

the image, the reflections of light sources are extended in

a single image. Then, if the light source is flickering in the

single exposure time, its temporal flicker pattern is recorded

as a spatial intensity pattern in a single image, as shown in

Fig. 2 (b). We use these spatial intensity patterns in a single

image for estimating the temporal flicker patterns of light.

Consider a temporal flicker pattern of a light in the scene,

which is represented by a function L(t) with respect to time

t. We also consider a spatial reflection function K(x) of the

scene, which represents the relationship between the input

light intensity and the image intensity at an image point x.

The spatial reflection function K(x) consists of the sensi-

tivity of the camera and the reflection properties, such as

the specular and diffuse reflection coefficients, of an object

at an image point x. Then, if the object moves at speed v

in the image, the irradiance E(x, t) of an image point x at

time t can be described as follows:

E(x, t) = L(t)K(x− vt) (1)

Since the image sensor accumulates the input light dur-

ing a single exposure time τ , the image intensity at an image

point x can be described as follows:

I(x) =

∫ τ

0

L(t)K(x− vt)dt (2)

By discretizing Eq. (2), we have:

I(x) = K
⊤
L (3)

where L = [L1, · · · , LT ]
⊤ and K = [K1, · · · ,KT ]

⊤ are

the discretized vector of L(t) and K(x− vt) along the ex-

posure time t = 1, · · · , T .
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Then, if we consider N pixels along the motion blur of

a specular reflection in the image, their image intensities

I = [I1, · · · , IN ]⊤ can be described as follows:

I = ML (4)

where M is an N ×T matrix that consists of the reflectance

vector Ki of the ith image pixel as follows:

M =
[

K1 · · · KN

]⊤
(5)

Thus, if we know M, the temporal flicker pattern L of the

light can be computed from the spatial image intensity I by

using the relationship shown in Eq. (4).

It seems that the temporal flicker pattern L of the light

can be recovered from Eq. (4), if T ≤ N . However, the

rank of M becomes smaller than T , if the specular reflection

is not sharp and has some extent. Thus, we compute L by

adding a regularization term L(L) and solving the following

minimization problem:

L̂ = argmin
L

∥I−ML∥2 + α∥L(L)∥2 (6)

where L(·) denotes the Laplacian for smoothness con-

straints, and α is its weight. Eq. (6) is a linear problem

and can be solved easily by a simple matrix operation.

If the moving object is a sphere, we can observe the

flicker patterns of many lights in a single image, as shown

in Fig. 2 (c), and the flicker patterns of all these lights can

be computed from the single image. Since we only need

a standard camera and a moving object for obtaining the

flicker patterns of light, the proposed method is very simple

and efficient.

4. Sharpness of Specular Reflection

In the previous section, we briefly mentioned the rank

deficiency of matrix M. In this section, we consider it in

more detail.

The accuracy of decoding of flicker patterns depends

on the sharpness of specular reflection on moving objects.

The sharpness of specular reflection corresponds to the fre-

quency characteristics of the reflection function K, i.e. a

sharp reflection function includes high frequency compo-

nents, and a spread reflection function consists of low fre-

quency components.

Suppose we have a flat surface with perfect diffuse re-

flection, i.e. no specular reflection on the surface. Then,

the spatial intensity pattern that describes the temporal in-

tensity pattern of light does not appear in a captured image,

and hence we cannot recover the flicker pattern of light from

the captured images. If we have a weak specularity on the

moving object, our method can be used for recovering the

flicker patterns. However, because of the limited rank of

matrix M, we cannot recover accurate temporal flicker pat-

terns of light.

The degradation of the rank of M occurs because the ma-

trix M is a circulant matrix that consists of shifted signals.

It is known that the eigen values of a circulant matrix cor-

respond to the Fourier spectrum of a column vector of the

circulant matrix. Since a sharp reflection function has flat

frequency characteristics, the eigen values of M are non-

zero, and the rank of M increases. If the reflection function

is spread out, the high frequency components are lost, and

some eigen values vanish causing rank deficiency in matrix

M. Therefore, the rank of M depends on the sharpness of

the reflection function K.

Fig. 3 shows the temporal flicker patterns of light com-

puted from the proposed method under various speculari-

ties. As we can see in this figure, if the specularity is not

sharp, the recovered flicker pattern is not accurate, but if

we have sharp specularities, very accurate flicker patterns

can be obtained from the proposed method. The rank of

matrix M in this figure shows the loss of information in

spread specularities. Thus, it is desirable in our method to

use objects that have strong specular reflections if they are

available.

5. Estimating Flicker Patterns and Reflection

Functions Simultaneously

Up to now, we have shown a method for estimating the

temporal flicker patterns of light from a single image ob-

tained from an off-the-shelf camera. In this method, we as-

sumed that the reflection function K is known. However, in

most cases, the reflection function is not known in advance.

Thus, in this section, we propose a method for estimating

the reflection functions K and the flicker patterns L(t) si-

multaneously from a single image.

In general, the reflection of a light on an object surface

consists of a specular reflection and a diffuse reflection. Al-

though the ideal specular reflection appears at a single point

on the curved surface at which the viewpoint direction co-

incides with the direction of the mirror reflection, the actual

specular reflection has some extent because of the surface

roughness, etc. The spread of specular reflection is often

modeled by a power of the cosine function in the computer

graphics field. However, in this paper, we model the spread

by using an isotropic 2D Gaussian function, since the co-

sine function is periodic and is not suitable in this research.

We also assume that the diffuse reflection is constant in the

observation area. Such an assumption is reasonable when

the object surface does not have a texture in the observation

area. Based on these assumptions, the reflection function K

can be described as follows:

K(x) = G(x,x0, σ) +Kd (7)
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where G(x,x0, σ) denotes an isotropic 2D Gaussian func-

tion, whose center is at x0 and standard deviation is σ, and

Kd denotes the magnitude of diffuse reflection. Since we

have a scale ambiguity between the magnitude of light and

the magnitude of the reflection function, the magnitude of

the Gaussian function is fixed to 1, and the diffuse reflection

Kd is defined relative to the specular reflection in Eq. (7).

By substituting K(x) into Eq. (2), the reflectance matrix

M can be described by x0, v, σ and Kd, where x0 is the

center of the Gaussian function at time t = 0 in the image.

Since the position x0 and the motion v can be obtained eas-

ily from the position and the interval of the specular reflec-

tion in the image, our only unknowns in matrix M are σ and

Kd. Therefore, we estimate L, σ and Kd simultaneously by

solving the following minimization problem:

{L̂, σ̂, K̂d} = arg min
{L,σ,Kd}

∥I−ML∥2 + α∥L(L)∥2 (8)

Since Eq. (8) is a non-linear problem, we used the Nelder-

Mead method [9] for estimating the global minimum. The

weight α was chosen empirically in our experiments.

It seems that the flicker pattern L(t) and the reflection

function K(x) are inseparable in Eq. (8). However, this is

not the case since the flicker pattern L(t) is a 1D signal,

while the reflection function K(x) is an isotropic 2D Gaus-

sian function. The distribution of image intensity along the

object motion includes both the flicker pattern L(t) and the

reflection function K(x). However, the distribution of im-

age intensity across the object motion is affected only by the

reflection function K(x), since the flicker pattern L(t) is a

1D signal along the object motion. Therefore, the flicker

pattern L(t) and the reflection function K(x) are separable,

and they can be estimated from Eq. (8).

In this way, we can estimate the flicker pattern L(t) of

light from a single image that observes an unknown moving

object.

6. Passive Coded Exposure

We next consider the application of flicker pattern esti-

mation. Here, we consider deblurring of motion blurs by

using coded exposure caused by the flicker patterns of light.

Rasker et al. showed that the frequency characteristics

of image observation can be improved drastically, if we ob-

serve the scene by coding the exposure [13]. Thus, motion

blurs in images can be recovered more accurately when we

observe the dynamic scene by using coded exposure. For

realizing coded exposure, we generally need special imag-

ing systems that can control the temporal exposure patterns

in a single image shot. This requires a very fast light mod-

ulator such as DMD, and it must be synchronized with the

image capture.

Coded exposure can also be realized by controlling the

temporal intensity patterns of lights that illuminate the

flicker

constant
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Figure 4. Frequency characteristics of standard constant exposure

and coded exposure caused by flicker light shown in Fig. 3. Hor-

izontal axis shows frequency and vertical axis shows log power

spectrum of exposure. There are many zero crossings in standard

constant exposure, which cause instability in deblurring process.

On the contrary, frequency characteristics of flicker light are much

more flat and stable.

scene. By controlling the temporal intensity patterns of

light, the motion blurs in the observed images can be recov-

ered by deconvolution with respect to the temporal coded

light patterns. For obtaining better frequency characteris-

tics in images, we need to control the intensity patterns of

light in a single image capture.

In this paper, we consider coded exposure imaging by

using the existing lights in our environments. As we have

seen, a lot of lights in our environment are flickering, and

these flickers of light can be considered as natural coded

lights in our environments. We call them passive coded ex-

posure. Unlike the existing coded exposure imaging, the

coded patterns of the exposure are unknown in the passive

coded exposure imaging.

Fig. 4 shows the comparison of the frequency charac-

teristics of the standard constant exposure and the coded

exposure caused by the flicker of light. As shown in this

figure, the frequency characteristics of the coded exposure

are flat, while the standard exposure has many zero cross-

ings that induce instability in deconvolution. Thus, if we

know the coded pattern of these environment lights, we can

deblur motion blurs more accurately with better frequency

characteristics.

Unfortunately, these temporal coded patterns of environ-

ment lights are generally unknown. However, as we have

seen in this paper, the specular reflection of a moving ob-

ject provides us with the accurate temporal coded patterns

of the environment lights. Thus, the motion blurs in im-

ages can be deblurred accurately by using the coded light

patterns estimated by the method described in section 5.

If an object moves relative to the camera in a scene, mo-

tion blur occurs in the captured images. Suppose we have

a blurred image g(x) and its unblurred image f(x). If the

motion blur is homogeneous throughout the image, the rela-
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Figure 5. Estimation of flicker patterns of various lights. First row shows results from indoor fluorescent light, in which flicker patterns

in R, G and B channels were estimated separately from proposed method. Second row shows results from outdoor scene, where red LED

traffic light, green LED traffic light and unknown white road light exist. Second, third and fourth columns show flicker patterns of these

lights estimated from proposed method.

Figure 6. Changes in scene color and intensity in a single flicker of fluorescent light, which were synthesized by using flicker patterns

estimated in Fig. 5.

tionship between the blurred image and the unblurred image

is described as follows:

g(x) = f(x) ∗ h(x) (9)

where, h(x) denotes the point spread function (PSF) of the

motion blur, and ∗ denotes the convolution.

If we know the PSF h(x) of the motion blur, the un-

blurred image f(x) can be recovered from the observed im-

age g(x) as follows:

f(x) = g(x)⊘ h(x) (10)

where, ⊘ denotes the deconvolution. It can be executed

by using various methods, such as the Wiener filter and

Richardson-Lucy algorithm.

In our case, the scene is illuminated by flicker lights, and

their flicker patterns can be considered as the PSF of mo-

tion blur. Since the flicker patterns can be computed by

the method described in section 5, we can recover the un-

blurred images from Eq. (10). In this research, we used

the Richardson-Lucy algorithm [14] for the deconvolution

in Eq. (10).

7. Experiments

We next evaluate our method by using real images taken

under flickering lights.

We first show the estimation of flicker patterns of light

from the proposed method. The upper left image in Fig. 5

shows an image of a rolling metal ball with a specular re-

flection, which was taken under a fluorescent light. The

fluorescent light was flickering at 120 Hz, and the exposure

time of the camera was 40 msec. As we can see in this im-

age, the intensity of the specular reflection changes in the

locus of specular reflection. Also, we can observe that the

color of light changes to reddish at low intensity, which is a

known property of fluorescent lights. By using our method,

we can visualize not only the change in intensity, but also

the change in color of the light in a single flicker cycle. In

this experiment, we computed the flicker patterns of R, G

and B separately. The flicker patterns estimated from the

proposed method are shown in the second, third and fourth

columns in Fig. 5 . The estimated result agrees with the re-

sult of Sheinin et al. [17], and we find that our method can

estimate the flicker patterns of light just from a single image

taken by a standard camera.

The second low in Fig. 5 shows the results from an out-

door scene. Again, we used a rolling metal ball as the mov-

ing object. The lower left figure shows the captured image,
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scene 1 number plate specular
scene 2 number plate specular

(a) Observed image

(b) Proposed method

(c) Blind Deconvolution (Fergus [2])

Figure 7. Deblurring motion blurs in images taken under flickering road lights. (a) shows observed images with motion blurs, and (b)

shows deblurred images from proposed method. For comparison, (c) shows results from standard blind deconvolution method proposed

by Fergus [2]. From left to right, we show image of scene 1, magnified image of number plate and magnified image of specular reflection

respectively. Exposure time of scene 1 was 40 msec, and exposure time of scene 2 was 33 msec.

in which we can observe the flicker patterns of a red traf-

fic light, a green traffic light and a white road light. As

shown in the second, third and fourth columns, the esti-

mated flicker patterns of these lights are very different, and

our method can visualize the difference. From these results,

we find that the proposed method is very efficient and use-

ful.

The estimated flicker patters can be used for visualizing

the high speed changes of illuminated scenes. For example,

the fluorescent light changes its color as well as intensity

in each flicker cycle. Since it is very fast, it is invisible to

human observers, but we can visualize the change in color

and intensity under the fluorescent light by using flicker pat-

ters estimated from the proposed method. Fig. 6 shows the

changes in color and intensity of a scene in a single flicker

of the fluorescent light, which were synthesized by using the

flicker patterns estimated in Fig.5. We find that the color of

our environment is changing at very high speed.

The estimated flicker patterns can also be used for de-

blurring images. Fig. 7 (a) shows images of moving vehi-

cles taken at nighttime. The exposure time of the camera

was 40 msec in scene 1 and 33 msec in scene 2. The vehi-

cles were illuminated by a sodium light on the road. As we

can see in the magnified images of the specular reflection,

the sodium light was flickering at 120 Hz. Also, we find

that the numbers and characters on the number plates of the

vehicles suffer from heavy motion blurs and are unreadable

in the observed images in Fig. 7 (a).

We estimated the flicker patterns of light from the spec-

ular reflections, and used them for deblurring the images.

The unblurred images obtained from the proposed method

are shown in Fig. 7 (b). As shown in the magnified images

with green frames, we can read the numbers on the number

plate in the deblurred images. Also, the specular reflections

shown by red frames in Fig. 7 (b) became single points, and

we find that the image deblurring was conducted properly

in the proposed method. For comparison, we conducted the

image deblurring by using the blind deconvolution method

proposed by Fergus [2]. As we can see in Fig. 7 (c), we

cannot properly deblur the motion blur using that method.

These results show that the estimation of blur kernels is very

difficult and unstable in the blind deconvolution method.

On the contrary, the proposed method uses specular reflec-

tions efficiently for estimating blur kernels and deblurring

images accurately.

We next show the effect of the light flicker in image de-
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(a) image under flickering light (b) image under constant light

(c) deblurred image under

flickering light

(d) deblurred image under

constant light

(e) ground truth

Figure 8. Comparison of motion deblurring under a flickering light and a constant light. (a) and (b) show images captured under a flickering

light and a constant light respectively. (c) and (d) show deblurred images obtained from (a) and (b) respectively.

convolution. Since the frequency characteristics of the flick-

ering light are better than those of the constant light, we can

expect better results in the case of flickering light. Fig. 8 (a)

and (b) show images captured under a flickering light and

a constant light respectively. The specular reflection on the

moving vehicle in Fig. 8 (a) shows that the light is flickering

in a single exposure, while it is not flickering in Fig. 8 (b).

Fig. 8 (c) and (d) show the deblurred images obtained from

(a) and (b). As shown in these images, the result from the

flickering light image is much better than the result from the

constant light. For example, the characters on the flag are

sharp and easy to read in Fig. 8 (c), while they are unread-

able in Fig. 8 (d). From these results, we find that passive

coded exposure is very useful for image deblurring, and the

proposed method is very efficient.

8. Conclusion

In this paper, we proposed a simple and efficient method

for measuring the temporal modulation of lights and deblur-

ring motion blurs in images.

We first showed that the invisible flicker patterns of var-

ious lights such as fluorescent lights can be measured by a

simple combination of an off-the-shelf camera and various

moving objects with specular reflections. The basic idea of

our method is to decode the temporal modulation of a flick-

ering light into a static pattern in a single image. Unlike the

existing methods, we do not need to use high speed cam-
eras nor special devices for synchronizing the periodic light

signals. As a result, the proposed method can be applied to

non-periodic lights as well as periodic lights.

Based on the extracted flicker patterns of environment

lights, we also proposed an efficient method for deblurring

motion blurs in images. The proposed method enables us to

deblur images with better frequency characteristics by using

the flicker patterns of environment lights as the coded lights

in coded imaging.

We showed the efficiency of the proposed method by us-

ing real images taken under flickering lights in our environ-

ment. The experimental results show that our method can

estimate flicker patterns of various lights just from a single

image taken by an off-the-shelf camera. The results also

show that our method is very useful for deburring motion

blurs accurately and efficiently.

Our method can also be applied to various other fields.

As we increase the image motion of the moving object in

a single exposure, we can observe higher frequency com-

ponents of light modulations in a single static image in our

method. Therefore, for example, high speed visible light

communication among moving vehicles and traffic signals

may be achieved just by using standard cameras mounted on

moving vehicles by using our method. Thus, the proposed

method has a great impact on various fields.
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