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Abstract

Domain Adaptation is an actively researched problem in

Computer Vision. In this work, we propose an approach

that leverages unsupervised data to bring the source and

target distributions closer in a learned joint feature space.

We accomplish this by inducing a symbiotic relationship be-

tween the learned embedding and a generative adversarial

network. This is in contrast to methods which use the ad-

versarial framework for realistic data generation and re-

training deep models with such data. We demonstrate the

strength and generality of our approach by performing ex-

periments on three different tasks with varying levels of dif-

ficulty: (1) Digit classification (MNIST, SVHN and USPS

datasets) (2) Object recognition using OFFICE dataset and

(3) Domain adaptation from synthetic to real data. Our

method achieves state-of-the art performance in most ex-

perimental settings and by far the only GAN-based method

that has been shown to work well across different datasets

such as OFFICE and DIGITS.

1. Introduction

The development of powerful learning algorithms such

as Convolutional Neural Networks (CNNs) has provided

an effective pipeline for solving many classification prob-

lems [30]. The abundance of labeled data has resulted in

remarkable improvements for tasks such as the Imagenet

challenge: beginning with the CNN framework of AlexNet

[12] and more recently ResNets [9] and its variants. An-

other example is the steady improvements in performance

on the LFW dataset [29]. The common theme across all

these approaches is the dependence on large amounts of la-

beled data. While labeled data is available and getting la-

beled data has been easier over the years, the lack of uni-

formity of label distributions across different domains re-

sults in suboptimal performance of even the most powerful

CNN-based algorithms on realistic unseen test data. For

example, labeled synthetic data is available in plenty but al-
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gorithms trained only on synthetic data perform poorly on

real data. This is of vital importance in cases where labeled

real data is unavailable. The use of such unlabeled target

data to mitigate the shift between source and target distribu-

tions is the most useful direction among domain adaptation

approaches. Hence this paper focuses on the topic of un-

supervised domain adaptation. In this work, we learn an

embedding that is robust to the shift between source and

target distributions. We achieve this by using unsupervised

data sampled from the target distribution to guide the super-

vised learning procedure that uses data sampled from the

source distribution. We propose an adversarial image gen-

eration approach to directly learn the shared feature embed-

ding using labeled data from source and unlabeled data from

the target. It should be noted that while there have been a

few approaches that use an adversarial framework for solv-

ing the domain adaptation problem, the novelty of the pro-

posed approach is in using a joint generative discriminative

method: the embeddings are learned using a combination of

classification loss and an image generation procedure that

is modeled using a variant of Generative Adversarial Net-

works (GANs) [7].

Figure 1 illustrates the pipeline of the proposed ap-

proach. During training, the source images are passed

through the feature extraction network (encoder) to obtain

an embedding which is then used by the label prediction

network (classifier) for predicting the source label and also

used by the generator to generate a realistic source image.

The realistic nature of the images from the generator (G) is

controlled by the discriminator (D). The encoder is updated

based on the discriminative gradients from the classifier and

generative gradients from the adversarial framework. Given

unlabeled target images, the encoder is updated using only

gradients from the adversarial part, since the labels are un-

available. Thus, the encoder learns to discriminate better

even in the target domain using the knowledge imparted by

the generator-discriminator pair. By using the discriminator

as a multi-class classifier, we ensure that the gradient sig-

nals backpropagated by the discriminator for the unlabeled

target images belong to the feature space of the respective

classes. By sampling from the distribution of the generator
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Figure 1: Illustration of the proposed approach. In the training phase, our pipeline consists of two parallel streams - (1) Stream

1: classification branch where F-C networks are updated using supervised classification loss and (2) Stream 2: adversarial

branch which is a Auxiliary Classifier GAN (ACGAN) framework (G-D pair). F-G-D networks are updated so that both

source and target embeddings produce source-like images. Note: The auxiliary classifier in ACGAN uses only the source

domain labels, and is needed to ensure that class-consistent images are generated (e.g) embedding of digit 3 generates an

image that looks like 3. In the test phase, we remove Stream 2, and classification is performed using the F-C pair

after training, we show that the network has indeed learned

to bring the source and target distributions closer.

The main contribution of this work is to provide an ad-

versarial image generation approach for unsupervised do-

main adaptation that directly learns a joint feature space in

which the distance between source and target distributions

is minimized. Different from contemporary approaches that

achieve a similar objective by using a GAN as a data aug-

menter, our approach achieves superior results even in cases

where a stand along image generation process is bound to

fail (such as in the OFFICE dataset). This is done by uti-

lizing the GAN framework to address the domain shift di-

rectly in the feature space learnt by the encoder. Our ex-

periments show that the proposed approach yields superior

results compared to similar approaches which update the

embedding based on auto-encoders [5] or disentangling the

domain information from the embedding by learning a sep-

arate domain classifier [4].

This paper is organized as follows: We begin in Section 2

by describing existing approaches for the unsupervised do-

main adaptation problem. In Section 3, we describe in de-

tail the formulation of our approach and the iterative train-

ing procedure. The experimental setups and the results are

discussed in Section 4 using both quantitative and qualita-

tive experiments, followed by discussion and conclusion in

Section 5

2. Related Work

Domain adaptation is an actively researched topic in

many areas of Artificial Intelligence including Machine

Learning, Natural Language Processing and Computer Vi-

sion. In this section, we describe techniques related to vi-

sual domain adaptation. Earlier approaches to domain adap-

tation focused on building feature representations that are

invariant across domains. This was accomplished either

by feature reweighting and selection mechanisms[10] [2],

or by learning an explicit feature transformation that aligns

source distribution to the target distribution ([8], [23], [6]).

The ability to deep neural networks to learn powerful rep-

resentations [[12], [9]] has been harnessed to perform unsu-

pervised domain adaptation in recent works [[4], [33], [16],

[18], [32]]. The underlying idea behind such methods is to

minimize a suitable loss function that captures domain dis-

crepancy, in addition to the task being solved.

Deep learning methods for visual domain adaptation can

be broadly grouped into few major categories. One line of

work uses Maximum Mean Discrepancy(MMD) as a metric

to measure the shift across domains. Deep Domain Con-

fusion (DDC) [33] jointly minimizes the classification loss

and MMD loss of the last fully connected layer. Deep Adap-
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tation Networks (DAN) [16] extends this idea by embed-

ding all task specific layers in a reproducing kernel Hilbert

space and minimizing the MMD in the projected space. In

addition to MMD, Residual Transfer Networks (RTN) [18]

uses a gated residual layer for classifier adaptation. Joint

Adaptation Networks [19] learn a transfer network by align-

ing the joint distributions of multiple domain-specific layers

across domains based on a Joint Maximum Mean Discrep-

ancy (JMMD) criterion.

Another class of methods uses adversarial losses to per-

form domain adaptation. Revgrad [4] employs a domain

classification network which aims to discriminate the source

and the target embeddings. The goal of the feature extrac-

tion network is to produce embeddings that maximize the

domain classifier loss, while at the same time minimizing

the label prediction loss. This is accomplished by negat-

ing the gradients coming from the domain classification

network. Adversarial Discriminative Domain Adaptation

(ADDA) [32] on the other hand learns separate feature ex-

traction networks for source and target, and trains the target

CNN so that a domain classifier cannot distinguish the em-

beddings produced by the source or target CNNs.

While methods discussed above apply adversarial losses

in the embedding space, there has been a lot of interest re-

cently to perform adaptation by applying adversarial losses

in the pixel space. Such approaches primarily use gener-

ative models such as GANs to perform cross-domain im-

age mapping. [31] and [1] use adversarial networks to map

source images to target and perform adaptation in the trans-

ferred space. Coupled GAN (CoGAN) [15] on the other

hand trains a coupled generative model that learns the joint

data distribution across the two domains. A domain invari-

ant classifier is learnt by sharing weights with the discrimi-

nator of the CoGAN network.

Comparison to recent GAN-based DA approaches:

While previous approaches such as [31] and [1] use GANs

as a data augmentation step, we use a GAN to obtain rich

gradient information that makes the learned embeddings do-

main adaptive. Unlike the previous methods, our approach

does not completely rely on a successful image generation

process. As a result, our method works well in cases where

image generation is hard (eg. in the OFFICE dataset where

the number of samples per class is limited). We observed

that in such cases, even though the generator network we

use performs a mere style transfer, yet this is sufficient for

providing good gradient information for successfully align-

ing the domains, as demonstrated by our superior perfor-

mance on the OFFICE dataset.

3. Approach

Problem Description: In this section, we provide a for-

mal treatment of the proposed approach and discuss in de-

tail our iterative optimization procedure. Let X = {xi}
N
i=1

be an input space of images and Y = {yi}
N
i=1 be the la-

bel space. We assume there exists a source distribution,

S(x, y) and target distribution T (x, y) over the samples in

X. In unsupervised domain adaptation, we have access

to the source distribution using labeled data from X and

the target distribution via unlabeled data sampled from X.

Operationally, the problem of unsupervised domain adap-

tation can be stated as learning a predictor that is optimal

in the joint distribution space by using labeled source data

and unlabeled target data sampled from X. We consider

problems where the data from X takes discrete labels from

the set L = {1, 2, 3, ...Nc}, where Nc is the total number

of classes. Our objective is to learn an embedding map

F : X 7→ R
d and a prediction function C : R

d 7→ L.

In this work, both F and C are modeled as deep neural

networks. The predictor has access to the labels only for

the data sampled from the source distribution and not from

the target distribution. By extracting information from the

target data during training, F implicitly learns the domain

shift between S and T . In the rest of this section, we use the

terms source (target) distribution and source (target) domain

interchangeably.

Several approaches including learning entropy-based

metrics [18], learning a domain classifier based on a embed-

ding network [4] or denoising autoencoders [5] have been

used to transfer information between source and target dis-

tributions. In this work, we propose a GAN-based approach

to bridge the gap between source and target domains. We

accomplish this by using both generative and a discrimina-

tive processes thus ensuring a rich information transfer to

the learnt embedding.

Overview of GANs: In a traditional GAN, two com-

peting mappings are learned: the discriminator D and the

generator G, both of which are modeled as deep neural net-

works. G and D play a minmax game where D tries to

classify the generated samples as fake and G tries to fool

D by producing examples that are as realistic as possible.

More formally, to train a GAN, the following optimization

problem is solved in an iterative manner:

min
G

max
D

Ex∼pdata
(log(D(x))

+Ez∼pnoise
log(1−D(G(z)))

(1)

D(x) represents the probability that x came from the real

data distribution rather than the distribution modeled by the

generator G. As an extension to traditional GANs, con-

ditional GANs [20] enable conditioning the generator and

discriminator mappings on additional data such as a class

label or an embedding. They have been shown to gener-

ate images of digits and faces conditioned on the class label

or the embedding respectively [31]. Training a conditional
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GAN involves optimizing the following minimax objective:

min
G

max
D

Ex∼pdata
(log(D(x|y))

+E{z∼pnoise} log(1−D(G(z|y)))
(2)

Proposed Approach: In this work, we employ a variant

of the conditional GAN called Auxiliary Classifier GAN

(AC-GAN) [22] where the discriminator is modeled as a

multi-class classifier instead of providing conditioning in-

formation at the input. We modify the AC-GAN set up for

the domain adaptation problem as follows:

(a) Given a real image x as input to F , the input to the

generator network G is xg = [F (x), z, l], which is a con-

catenated version of the encoder embedding F (x), a ran-

dom noise vector z ∈ R
d sampled from N (0, 1) and a one

hot encoding of the class label, l ∈ {0, 1}(Nc+1) with Nc

real classes and {Nc+1} being the fake class. For all target

samples, since the class labels are unknown, l is set as the

one hot encoding of the fake class {Nc + 1}.

(b) We employ a classifier network C that takes as in-

put the embedding generated by F and predicts a multiclass

distribution C(x) i.e. the class probability distribution of

the input x, which is modeled as a (Nc)-way classifier.

(c) The discriminator mapping D takes the real image x

or the generated image G(xg) as input and outputs two dis-

tributions: (1) Ddata(x): the probability of the input being

real, which is modeled as a binary classifier. (2) Dcls(x):
the class probability distribution of the input x, which is

modeled as a (Nc)-way classifier. To clarify notation, we

use Dcls(x)y to imply the probability assigned by the clas-

sifier mapping Dcls for input x to class y. It should be noted

that, for target data, since class labels are unknown, only

Ddata is used to backpropagate the gradients.

Now, we describe our optimization procedure in de-

tail. To jointly learn the embedding and the generator-

discriminator pair, we optimize the D, G, F and C net-

works in an alternating manner:

1. Given source images as input, D outputs two dis-

tributions Ddata and Dcls. Ddata is optimized by

minimizing a binary cross entropy loss Ldata,src and

Dcls is optimized by minimizing the cross entropy loss

Lcls,src between the source labels and the model pre-

dictive distribution Dcls(x). In the case of source in-

puts, the gradients are generated using the following

loss functions:

Ldata,src + Lcls,src = Ex∼S max
D

log(Ddata(x))

+ log(1−Ddata(G(xg))) + log(Dcls(x)y)
(6)

2. Using the gradients from D, G is updated using a com-

bination of adversarial loss and classification loss to

produce realistic class consistent source images.

LG = min
G

Ex∼S − log(Dcls(G(xg))y)

+ log(1−Ddata(G(xg))),
(7)

3. F and C are updated based on the source images and

source labels in a traditional supervised manner. F is

also updated using the adversarial gradients from D

so that the feature learning and image generation pro-

cesses co-occur smoothly.

LC = min
C

min
F

Ex∼S − log(C(F (x))y),

Lcls,src = min
F

Ex∼S − α log(Dcls(G(xg))y))
(8)

4. In the final step, the real target images are presented

as input to F . The target embeddings output by F

along with the random noise vector z and the fake la-

bel encoding l are input to G. The generated target

images G(xg) are then given as input to D. As de-

scribed above, D outputs two distributions but the loss

function is evaluated only for Ddata since in the un-

supervised case considered here, target labels are not

provided during training. Hence, D is updated to clas-

sify the generated target images as fake as follows:

Ladv,tgt = max
D

Ex∼T log(1−Ddata(G(xg))) (9)

In order to transfer the knowledge of target distribu-

tion to the embedding, F is updated using the gradi-

ents from Ddata that corresponds to the generated tar-

get images being classified as real:

LFadv
= min

F
Ex∼T β log(1−Ddata(G(xg)))

(10)

The proposed iterative optimization procedure is sum-

marized as a pseudocode in Algorithm 1. α and β are the

coefficients that trade off between the classification loss and

the source and target adversarial losses. Based on our ex-

periments, we find that our approach is not overly sensitive

to the cost coefficients α and β. However, the value of the

parameter is dependent on the application and size of the

dataset. Such specifications are mentioned in the supple-

mentary material.

Use of unlabeled target data: The main strength of our

approach is how the target images are used to update the

embedding. Given a batch of target images as input, we

update the embedding F by using the following binary loss

term:

min
F

β log(1−Ddata(G(xg)) (11)
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Algorithm 1 Iterative training procedure of our approach

1: training iterations = N

2: for t in 1:N do

3: Sample k images with labels from source domain S: {si, yi}
k
i=1

4: Let fi = F (si) be the embeddings computed for the source images.

5: Sample k images from target domain T : {ti}
k
i=1

6: Let hi = F (ti) be the embeddings computed for the target images.

7: Sample k random noise samples {zi}
k
i=1 ∼ N (0, 1).

8: Let fgi and hgi be the concatenated inputs to the generator.

9: Update discriminator using the following objectives:

LD = Ldata,src + Lcls,src + Ladv,tgt (3)

• Ldata,src = maxD
1
k

∑k

i=1 log(Ddata(si)) + log(1−Ddata(G(fgi)))

• Lcls,src = maxD
1
k

∑k

i=1 log(Dcls(si)yi
)

• Ladv,tgt = maxD
1
k

∑k

i=1 log(1−Ddata(G(hgi)))

10: Update the generator, only for source data, through the discriminator gradients computed using real labels.

LG = min
G

1

k

k∑

i=1

− log(Dcls(G(fgi))yi
) + log(1−Ddata(G(fgi))) (4)

11: Update the embedding F using a linear combination of the adversarial loss and classification loss. Update the

classifier C for the source data using a cross entropy loss function.

LF = LC + αLcls,src + β LFadv
(5)

• LC = minC minF
1
k

∑k

i=1 − log(C(fi)yi
)

• Lcls,src = minF
1
k

∑k

i=1 − log(Dcls(G(fgi))yi
)

• LFadv
= minF

1
k

∑k

i=1 log(1−Ddata(G(hgi)))

12: end for

where xg is the concatenated input to G as described ear-

lier and β is the weight coefficient for the target adversarial

loss. The use of target data is intended to bring the source

and target distributions closer in the feature space learned

by F . To achieve this, we update the F network to produce

class consistent embeddings for both source and target data.

Performing this update for source data is straightforward

since the source labels are available during training. Since

labels are unavailable for target data, we use the generative

ability of the G-D pair for obtaining the required gradients.

Given source inputs, G is updated to fool D using gradi-

ents from Eq. (7) which provide the conditioning required

for G to produce class consistent fake images. Given tar-

get inputs, the update in Eq. (11) encourages F to produce

target embeddings that are aligned with the source distribu-

tion. As training progresses, the class conditioning infor-

mation learned by G during the source update (Eq. (7)) was

found to be sufficient for it to produce class consistent im-

ages for target embeddings as well. This symbiotic relation-

ship between the embedding and the adversarial framework

contributes to the success of the proposed approach.

4. Experiments and Results

This section reports the experimental validation of our

approach. We perform a thorough study by conducting ex-

periments across three adaptation settings: (1) low domain

shift and simple data distribution: DIGITS dataset, (2) mod-

erate domain shift and complex data distribution: OFFICE

dataset, (3) high domain shift and complex data distribution:

Synthetic to real adaptation. By complex data distribution,

we denote datasets containing images with high variability

and limited number of samples. Our methods performs well

in all three regimes, thus demonstrating the versatility of our

approach.

0Training code: https://goo.gl/zUVeqC
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Table 1: Accuracy (mean ± std%) values for cross-domain recognition tasks over five independent runs on the digits based

datasets. The best numbers are indicated in bold and the second best are underlined. − denotes unreported results. MN:

MNIST, US: USPS, SV: SVHN. MN→US (p) denotes the MN→US experiment run using the protocol established in [17],

while MN→US (f) denotes the experiment run using the entire datasets. (Refer to Digits experiments section for more details)

Method MN → US (p) MN → US (f) US → MN SV → MN

Source only 75.2 ± 1.6 79.1 ± 0.9 57.1 ± 1.7 60.3 ± 1.5

RevGrad [4] 77.1 ± 1.8 - 73.0 ± 2.0 73.9

DRCN [5] 91.8 ± 0.09 - 73.7 ± 0.04 82.0 ± 0.16

CoGAN [15] 91.2 ± 0.8 - 89.1 ± 0.8 -

ADDA [32] 89.4 ± 0.2 - 90.1 ± 0.8 76.0 ± 1.8

PixelDA [1] - 95.9 - -

Ours 92.8 ± 0.9 95.3 ± 0.7 90.8 ± 1.3 92.4 ± 0.9

Table 2: Accuracy (mean ± std%) values on the OFFICE dataset for the standard protocol for unsupervised domain adapta-

tion [6]. Results are reported as an average over 5 independent runs. The best numbers are indicated in bold and the second

best are underlined. − denotes unreported results. A: Amazon, W: Webcam, D: DSLR

Method A → W D → W W → D A → D D → A W → A Average

ResNet - Source only [9] 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1

TCA [23] 72.7 ± 0.0 96.7 ± 0.0 99.6 ± 0.0 74.1 ± 0.0 61.7 ± 0.0 60.9 ± 0.0 77.6

GFK [6] 72.8 ± 0.0 95.0 ± 0.0 98.2 ± 0.0 74.5 ± 0.0 63.4 ± 0.0 61.0 ± 0.0 77.5

DDC [33] 75.6 ± 0.2 76.0± 0.2 98.2 ± 0.1 76.5 ± 0.3 62.2 ± 0.4 61.5 ± 0.5 78.3

DAN [16] 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4

RTN [18] 84.5 ± 0.2 96.8 ± 0.1 99.4 ± 0.1 77.5 ± 0.3 66.2 ± 0.2 64.8 ± 0.3 81.6

RevGrad [4] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.4 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2

JAN [19] 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3

Ours 89.5 ± 0.5 97.9 ± 0.3 99.8 ± 0.4 87.7 ± 0.5 72.8 ± 0.3 71.4 ± 0.4 86.5

4.1. Digit Experiments

The first set of experiments involve digit classification in

three standard DIGITS datasets: MNIST [13], USPS [11]

and SVHN [21]. Each dataset contains digits belonging to

10 classes (0-9). MNIST and USPS are large datasets of

handwritten digits captured under constrained conditions.

SVHN dataset, on the other hand was obtained by cropping

house numbers in Google Street View images and hence

captures much more diversity. We test the three common

domain adaptation settings: SVHN → MNIST, MNIST →
USPS and USPS → MNIST. In each setting, we use the la-

bel information only from the source domain, thus follow-

ing the unsupervised protocol.

For all digit experiments, following other recent works

[4][32], we use a modified version of Lenet architecture as

our F network. For G and D networks, we use architectures

similar to those used in DCGAN [27].

(a) MNIST ↔ USPS

We start with the easy case of adaptation involving MNIST

and USPS. The MNIST dataset is split into 60000 train-

ing and 10000 test images, while the USPS dataset contains

7291 training and 2007 test images. We run our experiments

in two settings: (1) using the entire training set of MNIST

and USPS (MNIST ↔USPS (f)), and (2) using the proto-

col established in [17], sampling 2000 images from MNIST

and 1800 images from USPS (MNIST ↔USPS (p)). Ta-

ble. 1 presents the results of the proposed approach in com-

parison with other contemporary approaches. The reported

numbers are averaged over 5 independent runs with differ-

ent random samplings or initializations. We can observe

that our approach achieves the best performance in all cases

except in the MNIST → USPS full protocol case where our

accuracy is very close to the best performing method.

(b) SVHN → MNIST

Compared to the previous experiment, SVHN → MNIST

presents a harder case of domain adaptation owing to larger
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domain gap. Following other works [4] [32], we use the en-

tire training set (labeled 73257 SVHN images and unlabeled

60000 MNIST images) to train our model, and evaluate on

the training set of the target domain (MNIST dataset). From

Table. 2, we observe that our method significantly improves

the performance of the source-only model from 60.3% to

92.4%, which results in a performance gain of 32.1%. We

also outperform other methods by a large margin, obtain-

ing at least 10.4% performance improvement. A visualiza-

tion of this improvement in performance is done in figure 2,

where we show a t-SNE plot of the features of the embed-

ding network F for the adapted and non-adapted cases.

(a) Non adapted (b) Adapted

Figure 2: TSNE visualization of SVHN → MNIST adapta-

tion. In (a), the source data shown in red is classified well

into distinct clusters but the target data is clustered poorly.

On applying the proposed approach, as shown in (b), both

the source and target distributions are brought closer in a

class consistent manner.

4.2. OFFICE experiments

The next set of experiments involve the OFFICE dataset,

which is a small scale dataset containing images belonging

to 31 classes from three domains - Amazon, Webcam and

DSLR, each containing 2817, 795 and 498 images respec-

tively. The small dataset size poses a challenge to our ap-

proach since we rely on GAN which demands more data for

better image generation. Nevertheless, we perform experi-

ments on the OFFICE dataset to demonstrate that though

our method does not succeed in generating very realistic

images, the approach still results in improved performance

by using the generative process to obtain domain invariant

feature representations.

Training deep networks with randomly initialized

weights on small datasets give poor performance. So, an

effective technique used in practice is to fine-tune networks

trained on a related task having large data [34]. Follow-

ing this rationale, we initialized the F network using a pre-

trained ResNet-50 [9] model trained on Imagenet. For D

and G networks, we used architectures similar to the ones

used in the Digits experiments. It should be noted that even

though the inputs are 224 × 224, the G network is made to

generate a downsampled version of size 64 × 64. Standard

data augmentation steps involving mean normalization, ran-

dom cropping and mirroring were performed.

In all our experiments, we follow the standard unsuper-

vised protocol - using the entire labeled data in the source

domain and unlabeled data in the target domain. Table 2 re-

ports the performance of our method in comparison to other

methods. We observe that our method obtains the state-

of-the-art performance in all the settings. In particular, we

get good performance improvement consistently in all hard

transfer cases: A → W , A → D, W → A and D → A.

4.3. Synthetic to Real experiments

To test the effectiveness of the proposed approach fur-

ther, we perform experiments in the hardest case of do-

main adaptation involving adaptation from synthetic to real

datasets. This setting is particularly interesting because of

its enormous practical implications. In this experiment, we

use CAD synthetic dataset [25] and a subset of PASCAL

VOC dataset [3] as our source and target sets respectively.

The CAD synthetic dataset contains multiple renderings of

3D CAD models of the 20 object categories contained in

the PASCAL dataset. To create the datasets, we follow the

protocol described in [24]: The CAD dataset contains six

subsets with different configurations (i.e. RR-RR, W-RR,

W-UG, RR-UG, RG-UG, RG-RR). Of these, we use im-

ages with white background (W-UG subset) as our training

set. To generate the target set, we crop 14976 patches from

4952 images of the PASCAL VOC 2007 test set using the

object bounding boxes provided. The lack of realistic back-

ground and texture in the CAD synthetic dataset increases

the disparity from the natural image manifold, thus making

domain adaptation extremely challenging.

Due to the high domain gap, we observed that models

trained on the CAD synthetic dataset with randomly initial-

ized weights performed very poorly on the target dataset.

So, similar to the previous set of experiments, we initial-

ized the F network with pretrained models. In particular,

we removed the last fully connected layer from the VGG16

model trained on Imagenet and used it as our F network.

Note that the same F network is used to train all other meth-

ods for fair comparison. Table. 3 reports the results of the

experiments we ran on the Synthetic to real setting. We can

observe that our method improves the baseline performance

from 38.1% to 50.4% in addition to outperforming all other

compared methods.

4.4. VISDA challenge

In this section, we present the results on VISDA

dataset [26] - a large scale testbed for unsupervised domain

adaptation algorithms. The task is to train classification

models on synthetic dataset generated from the renderings

of 3D CAD models and adapt these models to real images
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Table 3: Accuracy (mean ± std%) values over five indepen-

dent runs on the Synthetic to real setting. The best numbers

are indicated in bold.

Method CAD → PASCAL

VGGNet - Source only 38.1 ± 0.4

RevGrad [4] 48.3 ± 0.7

RTN [18] 43.2 ± 0.5

JAN [19] 46.4 ± 0.8

Ours 50.4 ± 0.6

Table 4: Performance (accuracy) of our approach on

VISDA classification dataset

Model
Visda-C: Val

Source-only Adapted Gain

Resnet-18 35.3 63.1 78.7%

Resnet-50 40.2 69.5 72.8%

Resnet-152 44.5 77.1 73.2%

Visda-C: Test

Resnet-152 40.9 72.3 76.7%

which are drawn from Microsoft COCO [14](validation set)

and Youtube Bounding Box dataset [28](test set). We train

our models using the same hyper-parameter settings and

data augmentation scheme as the previous experiment. Ta-

ble. 4 presents the results on the VISDA classification chal-

lenge. We find that our method achieves significant perfor-

mance gains compared to the baseline model.

4.5. Ablation Study

In this experiment, we study the effect of each individual

component to the overall performance. The embedding net-

work F is updated using a combination of losses from two

streams (1) supervised classification stream and (2) adver-

sarial stream, as shown in Figure 1. The adversarial stream

consists of the G-D pair, with D containing two components

- real/fake classifier which we denote as C1, and auxiliary

classifier which we denote as C2. We report the perfor-

mance on the following three settings: (1) using only the

Stream 1 and only using source data to train - this corre-

sponds to the Source-only setting (2) Using stream 1 + C1

classifier from stream 2 - this corresponds to the case where

source and target embeddings are forced to produce source-

like images, but class information is not provided to the dis-

criminator and (3) Using stream 1 + stream2 (C1 + C2) -

this is our entire system. For settings (2) and (3) we uti-

lized labeled source data and unlabeled target data during

training. Table 5 presents the results of this experiment.

Table 5: Ablation study for OFFICE A→W setting

Setting Accuracy(in %)

Stream 1 - Source only 68.4

Stream 1 + Stream 2 (C1 only) 80.5

Stream 1 + Stream 2 (C1 + C2) 89.5

We observe that using only the real/fake classifier C1 in

the discriminator does improve performance, but the auxil-

iary classifier C2 is needed to get the full performance ben-

efit. This can be attributed to the mode collapse problem in

traditional GANs (we observed that training without C2 re-

sulted in missing modes and mismatched mappings where

embeddings get mapped to images of wrong classes), hence

resulting in sub-optimal performance. Use of an auxiliary

classifier objective in D stabilizes the GAN training as ob-

served in [22] and significantly improves the performance

of our approach.

5. Conclusion and Future Work

In this paper, we addressed the problem of unsupervised

visual domain adaptation. We proposed a joint adversarial-

discriminative approach that transfers the information of

the target distribution to the learned embedding using a

generator-discriminator pair. We demonstrated the superi-

ority of our approach over existing methods that address

this problem using experiments on three different tasks,

thus making our approach more generally applicable and

versatile. Some avenues for future work include using

stronger encoder architectures and applications of our ap-

proach to more challenging domain adaptation problems

such as RGB-D object recognition and medical imaging.
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