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Abstract

Visual localization enables autonomous vehicles to navi-

gate in their surroundings and augmented reality applica-

tions to link virtual to real worlds. Practical visual local-

ization approaches need to be robust to a wide variety of

viewing condition, including day-night changes, as well as

weather and seasonal variations, while providing highly ac-

curate 6 degree-of-freedom (6DOF) camera pose estimates.

In this paper, we introduce the first benchmark datasets

specifically designed for analyzing the impact of such fac-

tors on visual localization. Using carefully created ground

truth poses for query images taken under a wide variety

of conditions, we evaluate the impact of various factors on

6DOF camera pose estimation accuracy through extensive

experiments with state-of-the-art localization approaches.

Based on our results, we draw conclusions about the diffi-

culty of different conditions, showing that long-term local-

ization is far from solved, and propose promising avenues

for future work, including sequence-based localization ap-

proaches and the need for better local features. Our bench-

mark is available at visuallocalization.net.

1. Introduction

Estimating the 6DOF camera pose of an image with re-

spect to a 3D scene model is key for visual navigation of

autonomous vehicles and augmented/mixed reality devices.

Solutions to this visual localization problem can also be

used to “close loops” in the context of SLAM or to register

images to Structure-from-Motion (SfM) reconstructions.

Work on 3D structure-based visual localization has fo-

cused on increasing efficiency [30, 33, 39, 52, 66], improv-

ing scalability and robustness to ambiguous structures [32,
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Figure 1. Visual localization in changing urban conditions. We

present three new datasets, Aachen Day-Night, RobotCar Sea-

sons (shown) and CMU Seasons for evaluating 6DOF localization

against a prior 3D map (top) using registered query images taken

from a wide variety of conditions (bottom), including day-night

variation, weather, and seasonal changes over long periods of time.

50,65,73], reducing memory requirements [12,33,50], and

more flexible scene representations [54]. All these methods

utilize local features to establish 2D-3D matches. These

correspondences are in turn used to estimate the camera

pose. This data association stage is critical as pose estima-

tion fails without sufficiently many correct matches. There

is a well-known trade-off between discriminative power and

invariance for local descriptors. Thus, existing localization

approaches will only find enough matches if both the query

images and the images used to construct the 3D scene model

are taken under similar viewing conditions.

Capturing a scene under all viewing conditions is pro-

hibitive. Thus, the assumption that all relevant conditions

are covered is too restrictive in practice. It is more realis-

tic to expect that images of a scene are taken under a sin-

gle or a few conditions. To be practically relevant, e.g., for
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life-long localization for self-driving cars, visual localiza-

tion algorithms need to be robust under varying conditions

(cf . Fig. 1). Yet, no work in the literature actually measures

the impact of varying conditions on 6DOF pose accuracy.

One reason for the lack of work on visual localization

under varying conditions is a lack of suitable benchmark

datasets. The standard approach for obtaining ground truth

6DOF poses for query images is to use SfM. An SfM model

containing both the database and query images is built and

the resulting poses of the query images are used as ground

truth [33, 54, 61]. Yet, this approach again relies on lo-

cal feature matches and can only succeed if the query and

database images are sufficiently similar [49]. The bench-

mark datasets constructed this way thus tend to only include

images that are relatively easy to localize in the first place.

In this paper, we construct the first datasets for bench-

marking visual localization under changing conditions. To

overcome the above mentioned problem, we heavily rely

on human work: We manually annotate matches between

images captured under different conditions and verify the

resulting ground truth poses. We create three complimen-

tary benchmark datasets based on existing data [4, 41, 55].

All consist of a 3D model constructed under one condition

and offer query images taken under different conditions:

The Aachen Day-Night dataset focuses on localizing high-

quality night-time images against a day-time 3D model.

The RobotCar Seasons and CMU Seasons dataset both con-

sider automotive scenarios and depict the same scene under

varying seasonal and weather conditions. One challenge

of the RobotCar Seasons dataset is to localize low-quality

night-time images. The CMU Seasons dataset focuses on

the impact of seasons on vegetation and thus the impact of

scene geometry changes on localization.

This paper makes the following contributions: (i) We

create a new outdoor benchmark complete with ground truth

and metrics for evaluating 6DOF visual localization un-

der changing conditions such as illumination (day/night),

weather (sunny/rain/snow), and seasons (summer/winter).

Our benchmark covers multiple scenarios, such as pedes-

trian and vehicle localization, and localization from single

and multiple images as well as sequences. (ii) We provide

an extensive experimental evaluation of state-of-the-art al-

gorithms from both the computer vision and robotics com-

munities on our datasets. We show that existing algorithms,

including SfM, have severe problems dealing with both day-

night changes and seasonal changes in vegetated environ-

ments. (iii) We show the value of querying with multiple

images, rather than with individual photos, especially under

challenging conditions. (iv) We make our benchmarks pub-

licly available at visuallocalization.net to stimu-

late research on long-term visual localization.

2. Related Work

Localization benchmarks. Tab. 1 compares our bench-

mark datasets with existing datasets for both visual local-

ization and place recognition. Datasets for place recog-

nition [15, 43, 63, 67, 69] often provide query images cap-

tured under different conditions compared to the database

images. However, they neither provide 3D models nor

6DOF ground truth poses. Thus, they cannot be used to

analyze the impact of changing conditions on pose esti-

mation accuracy. In contrast, datasets for visual localiza-

tion [14, 26, 28, 32, 33, 54, 55, 58, 61] often provide ground

truth poses. However, they do not exhibit strong changes

between query and database images due to relying on fea-

ture matching for ground truth generation. A notable ex-

ception is the Michigan North Campus Long-Term (NCLT)

dataset [13], providing images captured over long period of

time and ground truth obtained via GPS and LIDAR-based

SLAM. Yet, it does not cover all viewing conditions cap-

tured in our datasets, e.g., it does not contain any images

taken at night or during rain. To the best of our knowl-

edge, ours are the first datasets providing both a wide range

of changing conditions and accurate 6DOF ground truth.

Thus, ours is the first benchmark that measures the impact

of changing conditions on pose estimation accuracy.

Datasets such as KITTI [23], TorontoCity [71], or the

Málaga Urban dataset [6] also provide street-level image

sequences. Yet, they are less suitable for visual localization

as only few places are visited multiple times.

3D structure-based localization methods [32, 33, 36, 50,

52, 65, 73] establish correspondences between 2D features

in a query image and 3D points in a SfM point cloud via de-

scriptor matching. These 2D-3D matches are then used to

estimate the query’s camera pose. Descriptor matching can

be accelerated by prioritization [16, 33, 52] and efficient

search algorithms [19, 39]. In large or complex scenes, de-

scriptor matches become ambiguous due to locally similar

structures found in different parts of the scene [32]. This

results in high outlier ratios of up to 99%, which can be

handled by exploiting co-visibility information [32, 36, 50]

or via geometric outlier filtering [9, 65, 73].

We evaluate Active Search [52] and the City-Scale Lo-

calization approach [65], a deterministic geometric outlier

filter based on a known gravity direction, as representatives

for efficient respectively scalable localization methods.

2D image-based localization methods approximate the

pose of a query image using the pose of the most simi-

lar photo retrieved from an image database. They are of-

ten used for place recognition [1, 15, 38, 51, 64, 67] and

loop-closure detection [18, 22, 45]. They remain effective

at scale [3, 51, 54, 69] and can be robust to changing condi-

tions [1,15,46,54,64,67]. We evaluate two compact VLAD-

based [27] image-level representations: DenseVLAD [67]
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Image 3D SfM Model # Images Condition Changes 6DOF query

Dataset Setting Capture (# Sub-Models) Database Query Weather Seasons Day-Night poses

Alderley Day/Night [43] Suburban Trajectory 14,607 16,960 X X

Nordland [63] Outdoors Trajectory 143k X

Pittsburgh [68] Urban Trajectory 254k 24k

SPED [15] Outdoors Static Webcams 1.27M 120k X X X

Tokyo 24/7 [67] Urban Free Viewpoint 75,984 315 X

7 Scenes [58] Indoor Free Viewpoint 26,000 17,000 X

Aachen [55] Historic City Free Viewpoint 1.54M / 7.28M (1) 3,047 369

Cambridge [28] Historic City Free Viewpoint 1.89M / 17.68M (5) 6,848 4,081 X(SfM)

Dubrovnik [33] Historic City Free Viewpoint 1.89M / 9.61M (1) 6,044 800 X(SfM)

Landmarks [32] Landmarks Free Viewpoint 38.19M / 177.82M (1k) 204,626 10,000

Mall [61] Indoor Free Viewpoint 682 2296 X

NCLT [13] Outdoors & Indoors Trajectory about 3.8M X X

Rome [33] Landmarks Free Viewpoint 4.07M / 21.52M (69) 15,179 1000

San Francisco [14, 32, 54] Urban Free Viewpoint 30M / 149M (1) 610,773 442 X(SfM)

Vienna [26] Landmarks Free Viewpoint 1.12M / 4.85M (3) 1,324 266

Aachen Day-Night (ours) Historic City Free Viewpoint 1.65M / 10.55M (1) 4,328 922 X X

RobotCar Seasons (ours) Urban Trajectory 6.77M / 36.15M (49) 20,862 11,934 X X X X

CMU Seasons (ours) Suburban Trajectory 1.61M / 6.50M (17) 7,159 75,335 X X X

Table 1. Comparison with existing benchmarks for place recognition and visual localization. ”Condition Changes” indicates that the view-

ing conditions of the query images and database images differ. For some datasets, images were captured from similar camera trajectories.

If SfM 3D models are available, we report the number of sparse 3D points and the number of associated features. Only our datasets provide

a diverse set of changing conditions, reference 3D models, and most importantly ground truth 6DOF poses for the query images.

aggregates densely extracted SIFT descriptors [2, 37] while

NetVLAD [1] uses learned features. Both are robust against

day-night changes [1,67] and work well at large-scale [54].

We also evaluate the de-facto standard approach for

loop-closure detection in robotics [20, 34], where robust-

ness to changing conditions is critical for long-term au-

tonomous navigation [15, 35, 43, 46, 64, 67]: FAB-MAP

[18] is an image retrieval approach based on the Bag-of-

Words (BoW) paradigm [60] that explicitly models the co-

occurrence probability of different visual words.

Sequence-based approaches for image retrieval are used

for loop-closure detection in robotics [40, 43, 47]. Requir-

ing a matched sequence of images in the correct order sig-

nificantly reduces false positive rates compared to single-

image retrieval approaches, producing impressive results in-

cluding direct day-night matches with SeqSLAM [43]. We

evaluate OpenSeqSLAM [63] on our benchmark.

Multiple cameras with known relative poses can be mod-

elled as a generalized camera [48], i.e., a camera with mul-

tiple centers of projections. Approaches for absolute pose

estimation for both multi-camera systems [31] and camera

trajectories [10] from 2D-3D matches exist. Yet, they have

never been applied for localization in changing conditions.

In this paper, we show that using multiple images can sig-

nificantly improve performance in challenging scenarios.

Learning-based localization methods have been proposed

to solve both loop-closure detection [15,42,62,64] and pose

estimation [17, 28, 57, 70]. They learn features with stable

appearance over time [15, 44, 46], train classifiers for place

recognition [11, 24, 35, 72], and train CNNs to regress 2D-

3D matches [7, 8, 58] or camera poses [17, 28, 70].

3. Benchmark Datasets for 6DOF Localization

This section describes the creation of our three new

benchmark datasets. Each dataset is constructed from pub-

licly available data, allowing our benchmarks to cover mul-

tiple geographic locations. We add ground truth poses for

all query images and build reference 3D models (cf . Fig. 3)

from images captured under a single condition.

All three datasets present different challenges. The

Aachen Day-Night dataset focuses on localizing night-time

photos against a 3D model built from day-time imagery.

The night-time images, taken with a mobile phone using

software HDR post-processing, are of high quality. The

dataset represents a scenario where images are taken with

hand-held cameras, e.g., an augmented reality application.

Both the RobotCar Seasons and the CMU Seasons

datasets represent automotive scenarios, with images cap-

tured from a car. In contrast to the Aachen Day dataset, both

datasets exhibit less variability in viewpoints but a larger

variance in viewing conditions. The night-time images from

the RobotCar dataset were taken from a driving car with a

consumer camera with auto-exposure. This results in sig-

nificantly less well-lit images exhibiting motion blur, i.e.,

images that are significantly harder to localize (cf . Fig. 2).

The RobotCar dataset depicts a mostly urban scene with

rather static scene geometry. In contrast, the CMU dataset

contains a significant amount of vegetation. The changing

appearance and geometry of the vegetation, due to seasonal

changes, is the main challenge of this dataset.

3.1. The Aachen Day­Night Dataset

Our Aachen Day-Night dataset is based on the Aachen lo-

calization dataset from [55]. The original dataset contains

4,479 reference and 369 query images taken in the old inner

city of Aachen, Germany. It provides a 3D SfM model but

does not have ground truth poses for the queries. We aug-

mented the original dataset with day- and night-time queries

captured using standard consumer phone cameras.

To obtain ground truth poses for the day-time queries,

we used COLMAP [56] to create an intermediate 3D model
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reference model query images

# images # 3D points # features condition conditions (# images)

Aachen Day-Night 4,328 1.65M 10.55M day day (824), night (98)

RobotCar Seasons 20,862 6.77M 36.15M overcast dawn (1,449), dusk (1,182), night (1,314), night+rain (1,320), rain (1,263),

(November) overcast summer / winter (1,389 / 1,170), snow (1,467), sun (1,380)

CMU Seasons 7,159 1.61M 6.50M sun / no foliage sun (22,073), low sun (28,045), overcast (11,383), clouds (14,481),

(April) foliage (33,897), mixed foliage (27,637), no foliage (13,801)

urban (31,250), suburban (13,736), park (30,349)

Table 2. Detailed statistics for the three benchmark datasets proposed in this paper. For each dataset, a reference 3D model was constructed

using images taken under the same reference condition, e.g., ”overcast” for the RobotCar Seasons dataset.

Figure 2. Example query images for Aachen Day-Night (top),

RobotCar Seasons (middle) and CMU Seasons datasets (bottom).

from the reference and day-time query images. The scale of

the reconstruction is recovered by aligning it with the geo-

registered original Aachen model. As in [33], we obtain

the reference model for the Aachen Day-Night dataset by

removing the day-time query images. 3D points visible in

only a single remaining camera were removed as well [33].

The resulting 3D model has 4,328 reference images and

1.65M 3D points triangulated from 10.55M features.

Ground truth for night-time queries. We captured 98

night-time query images using a Google Nexus5X phone

with software HDR enabled. Attempts to include them in

the intermediate model resulted in highly inaccurate camera

poses due to a lack of sufficient feature matches. To obtain

ground truth poses for the night-time queries, we thus hand-

labelled 2D-3D matches. We manually selected a day-time

query image taken from a similar viewpoint for each night-

time query. For each selected day-time query, we projected

its visible 3D points from the intermediate model into it.

Given these projections as reference, we manually labelled

10 to 30 corresponding pixel positions in the night-time

query. Using the resulting 2D-3D matches and the known

intrinsics of the camera, we estimate the camera poses using

a 3-point solver [21, 29] and non-linear pose refinement.

To estimate the accuracy for these poses, we measure the

mean reprojection error of our hand-labelled 2D-3D corre-

spondences (4.33 pixels for 1600x1200 pixel images) and

the pose uncertainty. For the latter, we compute multiple

poses from a subset of the matches for each image and mea-

sure the difference in these poses to our ground truth poses.

The mean median position and orientation errors are 36cm

and 1◦. The absolute pose accuracy that can be achieved by

minimizing a reprojection error depends on the distance of

the camera to the scene. Given that the images were typi-

cally taken 15 or more meters from the scene, we consider

the ground truth poses to be reasonably accurate.

3.2. The RobotCar Seasons Dataset

Our RobotCar Seasons dataset is based on a subset of the

publicly available Oxford RobotCar Dataset [41]. The orig-

inal dataset contains over 20M images recorded from an au-

tonomous vehicle platform over 12 months in Oxford, UK.

Out of the 100 available traversals of the 10km route, we se-

lect one reference traversal in overcast conditions and nine

query traversals that cover a wide range of conditions (cf .

Tab. 2). All selected images were taken with the three syn-

chronized global shutter Point Grey Grasshopper2 cameras

mounted to the left, rear, and right of the car. Both the in-

trinsics of the cameras and their relative poses are known.

The reference traversal contains 26,121 images taken

at 8,707 positions, with 1m between successive positions.

Building a single consistent 3D model from this data is very

challenging, both due to sheer size and the lack of visual

overlap between the three cameras. We thus built 49 non-

overlapping local submaps, each covering a 100m trajec-

tory. For each submap, we initialized the database camera

poses using vehicle positions reported by the inertial nav-

igation system (INS) mounted on the RobotCar. We then

iteratively triangulated 3D points, merged tracks, and re-

fined both structure and poses using bundle adjustment. The

scale of the reconstructions was recovered by registering

them against the INS poses. The reference model contains

all submaps and consists of 20,862 reference images and

6.77M 3D points triangulated from 36.15M features.

We obtained query images by selecting reference posi-

tions inside the 49 submaps and gathering all images from

the nine query traversals with INS poses within 10m of one

of the positions. This resulted in 11,934 images in total,

where triplets of images were captured at 3,978 distinct lo-

cations. We also grouped the queries into 460 temporal se-

quences based on the timestamps of the images.
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Figure 3. 3D models of the Aachen Day-Night (left, showing database (red), day-time query (green), and night-time query images (blue)),

RobotCar Seasons (middle), and CMU Seasons (right) datasets. For RobotCar and CMU, the colors encode the individual submaps.

Ground truth poses for the queries. Due to GPS drift, the

INS poses cannot be directly used as ground truth. Again,

there are not enough feature matches between day- and

night-time images for SfM. We thus used the LIDAR scan-

ners mounted to the vehicle to build local 3D point clouds

for each of the 49 submaps under each condition. These

models were then aligned to the LIDAR point clouds of

the reference trajectory using ICP [5]. Many alignments

needed to be manually adjusted to account for changes in

scene structure over time (often due to building construction

and road layout changes). The final median RMS errors be-

tween aligned point clouds was under 0.10m in translation

and 0.5◦ in rotation across all locations. The alignments

provided ground truth poses for the query images.

3.3. The CMU Seasons Dataset

The CMU Seasons Dataset is based on a subset of the CMU

Visual Localization Dataset [4], which contains more than

100K images recorded by the Computer Vision Group at

Carnegie Mellon University over a period of 12 months in

Pittsburgh, PA, USA. The images were collected using a

rig of two cameras mounted at 45 degree forward/left and

forward/right angles on the roof of an SUV. The vehicle tra-

versed an 8.5 km long route through central and suburban

Pittsburgh 16 times with a spacing in time of between 2

weeks up to 2 months. Out of the 16 traversals, we selected

the one from April 4 as the reference, and then 11 query

traversals were selected such that they cover the range of

variations in seasons and weather that the data set contains.

Ground truth poses for the queries. As with the Robot-

Car dataset, the GPS is not accurate enough and the CMU

dataset is also too large to build one 3D model from all the

images. The full sequences were split up into 17 shorter

sequences, each containing about 250 consecutive vehicle

poses. For each short sequence, a 3D model was built

using bundle adjustment of SIFT points tracked over sev-

eral image frames. The resulting submaps of the reference

route were merged with the corresponding submaps from

the other traversals by using global bundle adjustment and

manually annotated image correspondences. Reprojection

errors are within a few pixels for all 3D points and the dis-

tances between estimated camera positions and expected

ones (based on neighbouring cameras) are under 0.10m.

The resulting reference model consists of 1.61M 3D points

triangulated from 6.50M features in 7,159 database images.

We provide 75,335 query images and 187 query sequences.

4. Benchmark Setup

We evaluate state-of-the-art localization approaches on our

new benchmark datasets to measure the impact of chang-

ing conditions on camera pose estimation accuracy and to

understand how hard robust long-term localization is.

Evaluation measures. We measure the pose accuracy of

a method by the deviation between the estimated and the

ground truth pose. The position error is measured as the Eu-

clidean distance kcest � cgtk2 between the estimated cest and

the ground truth position cgt. The absolute orientation er-

ror j� j, measured as an angle in degrees, is computed from

the estimated and ground truth camera rotation matrices Rest

and Rgt. We follow standard practice [25] and compute j� j
as 2 cos(j� j) = trace(R−1

gt Rest) � 1, i.e., we measure the min-

imum rotation angle required to align both rotations [25].

We measure the percentage of query images localized

within X m and Y ◦ of their ground truth pose. We de-

fine three pose accuracy intervals by varying the thresh-

olds: High-precision (0.25m, 2◦), medium-precision (0.5m,

5◦), and coarse-precision (5m, 10◦). These thresholds were

chosen to reflect the high accuracy required for autonomous

driving. We use the intervals (0.5m, 2◦), (1m, 5◦), (5m, 10◦)

for the Aachen night-time queries to account for the higher

uncertainty in our ground truth poses. Still, all regimes are

more accurate than consumer-grade GPS systems.

Evaluated algorithms. As discussed in Sec. 2, we

evaluate a set of state-of-the-art algorithms covering the

most common types of localization approaches: From the

class of 3D structure-based methods, we use Active Search

(AS) [54] and City-Scale Localization (CSL) [65]. From

the class of 2D image retrieval-based approaches, we use

DenseVLAD [67], NetVLAD [1], and FAB-MAP [18].

In order to measure the benefit of using multiple images

for pose estimation, we evaluate two approaches: OpenSe-

qSLAM [63] is based on image retrieval and enforces that

the images in the sequence are matched in correct order.

Knowing the relative poses between the query images, we

can model them as a generalized camera [48]. Given 2D-3D
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