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Abstract

We address the problem of depth estimation from light-

field images. Our main contribution is a new way to handle

occlusions which improves general accuracy and quality

of object borders. In contrast to all prior work we work

with a model which directly incorporates both depth and

occlusion, using a local optimization scheme based on the

PatchMatch algorithm. The key benefit of this joint approach

is that we utilize all available data, and not erroneously

discard valuable information in pre-processing steps. We

see the benefit of our approach not only at improved object

boundaries, but also at smooth surface reconstruction, where

we outperform even methods which focus on good surface

regularization. We have evaluated our method on a public

light-field dataset, where we achieve state-of-the-art results

in nine out of twelve error metrics, with a close tie for the

remaining three.

1. Introduction

Depth estimation from multiple images is a central task

in computer vision, with a long-standing history. Depending

on the application area, different types of depth sensors are

utilized, ranging from stereo cameras, over depth cameras, to

light field cameras. If depth accuracy is the most important

factor, compared to e.g. financial budget or portability, then

light field cameras are the best choice. This is true for various

application scenarios, such as special effects for movies.

Light-field imaging allows for highly accurate depth es-

timation, by sampling a scene from many viewpoints. The

oversampling increases depth accuracy and the large number

of viewpoints reduce the chance of encountering a sample

which is occluded in all other views. As for related tasks,

such as stereo and optical flow, proper occlusion handling

is essential for obtaining high-quality depth reconstructions.

An inaccurate occlusion model will immediately reduce the

reconstruction quality, since foreground and background

samples are confused within the data-term around object

boundaries. This is a well-known problem and virtually all

state-of-the-art methods for light-field depth estimation im-

(a) Center view (b) Ground truth disparity

(c) OURS (d) SPO-MO, Sheng et al. [8]

Figure 1: Improved reconstruction through our inline oc-

clusion handling approach, in comparison with Sheng et al.

[8, SPO-MO]. Note the considerably improved reconstruc-

tion of the partially occluded content within the box and on

the right side of the box. The improvement can also be mea-

sured quantitatively by the percentage of bad pixels (error

> 0.07 px), here 10.8 for ours and 15.5 for Sheng et al.

plement some form of occlusion handling. However, they

differ in the way how they perform this. Proper occlusion

handling is the main topic of this work.

One may think of three different paradigms to handle

occlusion, each with a different level of complexity. At

one end of the spectrum there would be approaches which

formulate an elaborate model for jointly estimating depth

and occlusions, ideally for all views jointly. This explicit

joint optimization has been formulated by Kolmogorov and

Zabih [5], however their approach is prohibitively slow with

existing solvers, even when restricting the problem to stereo
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and single pixel accuracy [10]. Hence, we are not aware of

any practical realization of such an approach for light-field

imaging. At the other end of the spectrum, there are all

the existing approaches to light-field depth estimation. In a

nutshell, they employ a pre-processing step to filter out all

potentially occluded pixels in each view. The way to achieve

this differs, however. After this pre-processing step one (or

sometimes multiple) cost volume(s) are derived (explicitly

or implicitly) from the image data. The cost volume(s) are

then used to derive the depth for e.g. the center view of

the camera. The hope is that the cost volume is free of

the influence of occlusion. Obviously, such a two stage

procedure is sub-optimal for various reasons. One major

problem is that wrongly discarded non-occluded pixels are

lost for the remaining computation steps.

The aim of this work is to find a way to handle occlusions

in a more integrated fashion than existing approaches, and

in this way to make the most use of the available data. At

the same time, we obviously need a computationally feasible

procedure which estimates depth in the presence of a model

which contains the complex interactions of occlusion. To

achieve this we borrow from PatchMatch [1], which can

optimize Markov Random Field models where spatial terms

of the objective function do not need to be pre-computed.

In our case these spatial terms involve the traditional data-

term, but subject to the occlusion information of neighboring

pixels. In effect, we continuously update the occlusion infor-

mation during the processing, which means that it is always

consistent with the estimated depth, and by virtue of this

synchronization the occlusion information is implicitly im-

proved during the processing. In PatchMatch the local errors

directly sum up to a global energy which is implicitly min-

imized, as there are no local interactions. However, while

we also perform only local evaluations and updates, because

of the interaction between depth model and occlusion, these

local updates do not give any guarantees with respect to the

global error. By using PatchMatch we are able to achieve our

goal of efficiently estimating a depth model where occlusion

information does not have to be pre-computed. By doing so,

we observe a substantial improvement in reconstruction qual-

ity, both qualitatively and quantitatively. Interestingly, our

improvements are not only located at object boundaries, but

also the quality of interior surface reconstruction improves.

This stems from the fact that we can make better use of the

available data than other methods, even those methods with

a strong focus on regularization.

In the following we summarize our main contributions:

• We present a new way to perform occlusion handling

for light-field depth estimation, by directly integrating

occlusions into the depth model. Compared to all prior

methods, this maximizes the use of the available data.

• Despite the complex occlusion model a PatchMatch [1]

based scheme based on local updates is able give good

estimates on this model, and in competitive processing

time.

• Although the method does not guarantee globally op-

timal solutions, we achieve state-of-the-art results in

nine out of twelve error metrics, for a publicly available

benchmark, with a close tie for the remaining three.

In addition, our approach can easily be extended with

additional depth cues or model constraints. This is demon-

strated by combining our approach with a normals-from-

specular approach [2], resulting in accurate depth recon-

structions for a glossy, untextured object.

2. Related Work

In the following we briefly introduce existing approaches,

focusing our description on the occlusion handling.

Where the methods are also included in the quantitative

evaluation, the abbreviation is noted in square brackets. Ab-

breviations are identical to the ones submitted by the respec-

tive authors to the 4D Lightfield Benchmark [3, 4] and all

method results, including ours, can also be compared on the

benchmark website [3].

Neri et al. [7, RM3DE] perform multi-resolution block

matching, adapting the window size with some local gradient

measure, and performing matching independently for differ-

ent viewpoint directions from the center view. Occlusions

are handled by using only the best match from the directional

EPIs for the final median filter based post-processing.

Lin et al. [6] build a focal stack from the light-field data,

and exploit the symmetry around the true depth in the stack

to provide depth estimates, which are then optimized in a

cost volume. A heuristic is employed to generate a separate

occlusion map which is used to switch to an alternate cost

for occluded pixels prior to the cost volume optimization.

Strecke et al. [9, OFSY 330/DNR] extend on this idea

by improving the occlusion handling using four partial focal

stacks representing the four viewpoint directions of a cross

hair subset of the light field, and using only the minimal cost

from the horizontal and vertical direction, which should be

less affected by occlusions. The method is notable for the

explicit optimization of surface normals in addition to depth,

which improves the surface quality of the reconstruction.

Williem and Park [14] introduce two independent cost

functions. Angular entropy, which is a correspondence cost

based on the entropy of photo-consistency, and an adaptive

defocus cost, both of which show some robustness against

occlusion. Reconstruction is then based on cost-volume

filtering with graph cut. In a later work they improve this

method, [15, CAE] modifying both cost functions to further

improve the robustness against occlusion.

The Spinning Parallelogram Operator by Zhang et al.

[16, SPO] scans the depth volume with a histogram com-
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parison operation, which compares the areas left and right

of the EPI line, defined by the respective disparity. This

histogram comparison is relatively robust to at least single

occlusions, hence no extra occlusion handling is performed

in the guided filter based cost volume processing of the local

cost estimates. Sheng et al. [8, SPO-MO] expand on this

approach and add explicit occlusion handling by regarding

multi-orientation EPIs and selecting a single unoccluded

one for the calculation of the cost volume, according to an

occlusion heuristic.

All of these methods make use of some form of cost

volume optimization [6, 9, 14, 15, 16, 8], if not using a sim-

ple filter based approach [7]. Occlusion handling is always

separated from the cost volume optimization and comes in

several variants: By using cost functions robust against oc-

clusions [14, 15, 16], by using the minimal cost from several

EPI directions [7, 9] or by switching between separate cost

functions for occluded/unoccluded samples [6].

The works focusing on cost functions robust to occlusions

show an interesting pattern. While the original publications

only use the proposed robust cost functions [14, 16]. Later

works mainly focus on the occlusion handling either by

further improving robustness against occlusion or by adding

explicit occlusion handling [9, 8]. It seems that even though

cost functions exist which show some robustness against

occlusion, these cost functions do not return optimal results.

On the other hand, methods that handle occlusions by

selecting the minimal cost from several, possibly partial

EPIs, discard a lot of samples from the input light field. This

reduces the number of samples over which the data cost can

be calculated and hence reduces accuracy.

Common to all methods is the fact that the used occlu-

sion information is independent of the final optimized depth

estimate. The additional scene knowledge available after

optimizing the depth model is not reflected by the used

cost function, which is limited to the initial occlusion esti-

mates. Our proposed method addresses this point by using

the current model to calculate the occlusions inline, during

the processing, and therefore improves the utilization of the

available light-field data.

Note that there are other methods which optimize the

occlusions, like the works by Wanner and Goldlücke [13, 12]

where they filter local depth estimates with a model enforcing

global consistency with respect to occlusion. However, the

accuracy of this approach is limited by the fact that only local

estimates are used as priors in a regularization approach, and

no updates on the cost are performed for updates in the

occlusion model.

3. Method

Given the fact that the depth model which we try to recon-

struct implicitly contains the occlusion information required

for proper occlusion handling, we formulate a cost function

s

tx
y

Figure 2: Epipolar Plane Images (EPIs) are extracted

from a linear 3D subset of the 4D light field, by extracting

all rows (for a horizontal subset) and stacking them together,

shown at the bottom. For the vertical stack the same is done

with columns. Because the apparent motion of scene points

between the different viewpoints depends on the depth of

the point within the scene, the orientation of features in the

EPI encodes the depth of the respective points. Note that

the EPI shown here is pre-shifted so a disparity of 0 is not

at infinity but rather within the scene, hence disparities may

also be negative.

in a way that makes direct use of the occlusion information

encoded within the model. This makes occlusion a first class

citizen of the model.

This cost could in principle be optimized with some

global optimization method. However, as the resultant opti-

mization problem is highly ill-posed, this approach would

probably be extremely slow (compare [5, 10]). Therefore we

base our approach on PatchMatch [1] to perform only local

optimization, and introduce extra constraints into the cost

term to avert suboptimal solutions arising from this fast but

globally suboptimal optimization.

Apart from the implications of the occlusion handling, our

approach is formulated as a standard minimization problem

with a cost based on a regularization term and a data term,

where both are influenced by the occlusion handling.

3.1. Model and Data

The model we are using is the disparity map of the central

view. To simplify occlusion handling we confine the data to
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the subset of viewpoints shifted only horizontally or only ver-

tically from the central viewpoint (cross-hair configuration).

The volume of the horizontal 3D subset can be sliced row-

wise to obtain a set of epipolar plane images (EPIs, compare

fig. 2), which represent the full information content of the

subset. The central row of an EPI corresponds to a row of

the center view, which directly maps to the same row in the

disparity map. The same applies to columns in the vertical

3D subset. A single sample from the disparity map corre-

sponds to a 2D line in the respective EPIs, where the slope of

the line represents the disparity and hence encodes the depth,

compare fig. 3. The cost function Ei(d) for a single sample

i of our model (a pixel of the center view disparity map

D), based on the data term ξi(d) and the regularization term

ζi(d) is formulated as the cost associated with a disparity d,

where the disparity map D is held constant for the evaluation

of the sample:

Ei(d) = ρ · ζi(d) + ξi(d), (1)

where ρ is a regularization weight.

3.2. Occlusion Handling

Compared to the methods in section 2, we obtain occlu-

sion information from our depth model, and not via some

heuristic external to the optimization. This simplifies our

occlusion metric to a simple threshold θd. We consider a

disparity sample d in the disparity map to be potentially

occluded by any other sample di if di − d > θd.

The actual decision whether a sample is occluded or not

is performed during the evaluation of the cost terms, which

means that updates to the model performed during an itera-

tion of the optimization directly affect the costs of all future

evaluations, which speeds up the propagation of locally good

solutions, compare PatchMatch [1].

3.3. Data Term

Because we only consider either horizontal or vertical

camera movement, relative to the central view, only samples

from the same row (or column, respectively), can occlude

any given sample in an EPI, compare fig. 2 and fig. 3. In

the following we will always assume that we are looking

at horizontal EPIs, but all statements apply to vertical EPIs

via a corresponding 90◦ rotation of EPI, view and disparity

map.

To evaluate the data error for some disparity d at location

i in the disparity map, we sample along the corresponding

line Γd,i(s), see fig. 3, by evaluating Γd,i for all rows s of the

EPI. A sample Γd,i(s) = x corresponds to a pixel position

at the image coordinate (x, iy) of view s. While iy is an

integer, x is a fraction, hence the actual pixel value Cs(x, iy)
is derived by interpolation in the horizontal direction. To

actually calculate the data error we generate all intersections

between Γd,i and all other lines Γd,j of the EPI which fulfill

Γd,i
Di

Dj1Dj3

ΓDj3
,j3

θp

x

s

center-
view

Φl

· · ·

Figure 3: Occlusion handling in an EPI: The lines Γ are

defined by the respective disparities Dj in the center view,

represented by a cross (×), while the EPI samples on Γd,i

are shown as star (✳). From the intersections Φl (white dots),

the one closest to the center view is obtained with Γd,j3 ,

hence all samples behind this point minus a safety distance

if one pixel are disabled (grayed out).

the occlusion condition in section 3.2. Note that lines from

samples to the left of i can only intersect above the center

view, while samples to the right can intersect below. Given

these left/right intersections as Φl and Φr, respectively, the

occlusion term nocc(s,Φl,Φr) is set to zero or one.

The occlusion area is extended by one pixel from the inter-

section point, to avoid mixing of foreground and background

when deriving the actual color sample Cs(x, iy) from the

input view s via linear interpolation. Given the occlusion

terms the data error is simply the variance of all visible sam-

ples. We extend the previous definitions by the subscripts

h and v to denote the horizontal and vertical EPI variants

respectively (following terms with respect to a fixed sample

i and a fixed disparity d):

ξ′i(d) =

∑

s(µ − C(Γh, s))
2 · nocch(s,Φh,lΦh,r) +

∑

t(µ− C(Γv, t))
2 · noccv(t,Φv,lΦv,r)

∑

s nocch(s,Φh,lΦh,r)+
∑

t noccv(t,Φv,lΦv,r)

,

(2)

where µ is the mean of all unoccluded samples for (i, d).
To avoid failures due to the local nature of our approach,

we also threshold the data term on the number of unoccluded

samples, and set the error to infinity if less than θo samples

are unoccluded, because otherwise, moving individual sam-

ples (incorrectly) towards the background can reduce the

variance in flat areas, by reducing the number of unoccluded

samples.

Even with this occlusion constraint there is a second case

where the local solution can substantially deviate from the

correct depth. This can be observed on purely horizontal or

vertical structures in the scene. For such structures the data

error is zero for one direction, hence, if e.g. for a vertical
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structure, the vertical component of the data term is zero,

then if a large connected block of the vertical structure is

moved into the background, the remaining horizontal com-

ponent also becomes zero because we observe only a single

sample in that direction. We protect against this by checking,

for each candidate, whether the chosen disparity leads to a

single pixel wide background structure, as measured by θd
over a range of 10 pixels. If such a case is detected the error

is set to infinity.

3.4. Smoothness Term

For a disparity sample d at location i in the disparity map,

the smoothness error is defined by:

ζi(d) = (d− Ωi(d))
2 (3)

Where Ω is a smoothing filter based on the bilateral filter.

This filter smooths the disparity map using a weighted mean,

with weights derived from the color and disparity difference

against a central sample. The filter uses hard thresholds θd
and θc to determine which samples are allowed to influence

the smoothing, which gives well defined borders without

disparity bleeding. Given the color values of the center view

as C, and the current disparity map as D, the smoothing

filter Ω is given by:

Ωi(d) =

∑

j λi,j(d) ·Dj
∑

j λi,j(d)
, (4)

where j indexes a 7× 7 window around i.

The relative weight λi,j(d) of the disparity map sample

Dj is calculated depending on the color difference ∆i,j =
α|Ci − Cj | and the disparity difference δj(d) = β|d−Dj |
between the sample j and the central sample i, with α and

β as parameters which steer the relative weighting of color

and disparity differences. The weights are calculated as

λi,j(d) = max{ǫd,
√

∆2
i,j +∆i,j · δj(d)}

−1, (5)

if ∆i,j ≤ θd and δj ≤ θc, and

λi,j(d) = max{ǫc,
√

∆2
i,j + δ2j (d)}

−1, (6)

if
∆i,j

β
> θd and δj ≤ θc. Otherwise λi,j(d) is set to zero.

The thresholds θd and θc set the maximum difference for

disparity based weighting (if
∆i,j

β
≤ θd and δj ≤ θc) or

color based weighting (if
∆i,j

β
> θd and δj ≤ θc).

The ǫ are used to provide damping against zero differ-

ences, and ǫc also provides some adaption to noise in the

input images, using ǫc = ǫd + θe ·E
′

i(d0), where E′

i is iden-

tical to Ei, aside from changing ǫc to ǫc = ǫd. Hence E′

i(d0)
is the initial error at this iteration, using the initial disparity

d0. This increases the minimal blurring of the smoothing

filter, when no good candidates where found in the previous

0.7

0.8

0.8

0.5 0.8 0.5

0.20.30.80.80.2

0.3

0.4

0.3

0.2 0.2

0.5

1.0

0.9

0.2

0.1

1.0

0.7 0.6

0.8

0.5

0.6

0.7

candidate d1 = candidate d2 =

Figure 4: Switching behavior of the smoothness term.

The two grids represent the identical neighborhood around

a central disparity sample d, indicated by the brightness of

the cells. Depending on the value of a candidate di, the

weights, given as numbers within the cells, change accord-

ing to eqs. (5) and (6), which by design leads to a distribution

which generates a smoothing of those samples most similar

to the central candidate in both color and disparity.

iteration - which after a few iterations is mostly due to noise

in the input images.

The crucial part is the usage of the current disparity candi-

date d within the filter, which lets the smoothing filter adapt

to the value of the candidate. The current disparity at i from

the model, Di is not used during the evaluation. This means

that the smoothness term can switch, for example at an ob-

ject border, from averaging over the foreground to averaging

over the background, depending on the evaluated disparity

candidate, as shown in fig. 4.

The thresholds encourage the smoothing according to the

model (i.e. disparity map) by making the disparity difference

the dominating weight term for small disparity differences

(
∆i,j

β
≤ θd). The color differences play a secondary role

and encourage smoothing along similar colors. At the same

time the hard thresholds mean that the weight is quickly set

to zero if the differences in color and/or disparity become

too large, ensuring that only those samples are taken into

account for which it is likely that they belong to the same

object, both from the color and the disparity similarities.

The simple smoothness term as described above limits the

estimation accuracy in two ways. Firstly, the method tends

to over-smooth at object edges when both sides of the object

are visible, because the edge of the object will be averaged

with the neighbors from both sides. Secondly, planes with

a steep inclination tend to show staircase artifacts, as the

thresholding in the filter encourages areas to be piecewise

planar.

We extend the filter to preserve normals and planes sepa-

rately. In the smoothing filter, consistent normals between

the central sample i and some other sample j are detected by

comparing the local gradients in D. If the gradient difference

is below θg, then Dj is corrected by this normal when it is

used in eq. (4).

For planar surfaces we add an metric which detects purely
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planar surfaces, by taking four samples around the central

sample, located at the corners of a square with a size of

11× 11, and fitting a plane through these four corners. If the

residual from the fit is below θf and the distance between

the plane and disparity candidate are below θd, we evaluate

the plane at i and use this result instead of Ω.

Both of these metrics are applied with a damping factor,

where the correction with normal and plane is weighted with

the original smoothing filter with a weight of 0.5 to prevent

overshooting.

3.5. Local Optimization

Both the data term and the smoothness term are formu-

lated with a strong focus on correct occlusion handling with

hard thresholds in disparity and color differences. While this

encourages well defined borders in the model, it makes the

problem harder to optimize, owing both to the sudden onset

of the influence of samples, and to the complex interaction

between samples due to occlusion. Pre-calculating the error

terms for a number of discrete disparity labels and building

a cost volume is also not possible, as both terms deliber-

ately depend on the current state of the model. Therefore

we base our method on PatchMatch [1]. The method iterates

the disparity map and, at each sample, calculates the local

error Ei for the current disparity d0, as well as for several

disparity candidates. If any of the candidates has a lower

error over the previous solution, the model is immediately

updated, which allows propagation of locally good solution.

We use four predictors to provide the disparity candidates

which are evaluated with the local error term.

Propagation: Depending on the iteration number, the

solver iterates over the disparity map either left-to-right and

top-to-bottom, or the reverse. The disparities of all neigh-

bors (either direct or over the corner) which were already

processed in the current iteration are used as candidates for

evaluation. As the model is always directly updated when

a lower error is found, an improved estimate at one sample

will directly be used in the data and smoothness term of

the next sample, within the same iteration. Hence, as the

improved disparity at a sample is provided as a candidate to

the solver for the next sample, good solutions can quickly

spread over the whole disparity map.

Random improvement: At each iteration, candidates di
are generated by sampling u from a uniform distribution

between −1 and 1 as:

di = d0 + τ sign(u)u2 (7)

where τ is the parameter which steers the max range of the

refinement. The quadratic term ensures that smaller changes

are sampled with a much higher frequency than larger ones.

The following two predictors are only activated if the error

of the current model is above an activation threshold θa.

Random neighbor: For some scenes a feasible candidate

might be not directly adjacent but further away, e.g. when

a surface is partly occluded by some detailed foreground

object, like a smooth background behind the branches of

some plant. For this reason we also use distant neighbors,

by sampling uniformly within a range of ±15 px.

Random Guess: Finally we also sample randomly from

the valid disparity range.

3.6. Initialization

Both data and smoothness term require a model which is

at least approximately correct, as they rely on the model to

determine occlusion. As initialization we use a simple depth

estimation method, based on RANSAC line fits in the EPI.

The fitted line features are the zero crossings of the second

order derivative in the horizontal direction. This method

only detects foreground objects and produces a sparse depth

estimate consisting of object borders and strong features. To

retrieve an initialization of the disparity map, these sparse

estimates are projected into the disparity map and missing

samples are linearly interpolated from the sparse set. The

initialization is very fast, quite smooth, fills flat areas from

samples of the object borders and tends to produce fore-

ground biased estimates.

4. Experimental Results

We have tested our method on several light-field datasets,

including real and synthetic data. In the following we de-

scribe the results in more detail and demonstrate the im-

proved occlusion handling, see figs. 1, 5 and 7, but also the

excellent surface regularization, see figs. 5, 7 and 8, owing

in part to the improved utilization of data from the input

light field, as we discard less information due overzealous

occlusion handling, as well as to the improved detection of

object borders. More results of our method are available on

the website of the 4D Lightfield Benchmark [3]. All results

presented here use 20 iterations and, apart from fig. 5 use

the parameters shown table 1.

4.1. Qualitative Results

In fig. 5 we show our results on the truck scene from the

(new) Stanford Light Field Archive [11]. For comparison we

also show the result of Strecke et al. [9] (OFSY). While the

results leave room for improvement, the detail reconstruc-

tion shows the effectiveness of the occlusion handling. At

the same time the regularization is also improved, which is

otherwise a strength of OFSY (compare fig. 7). We have

also combined our method with a normals-from-specular
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(a) center view (b) OURS (c) OFSY 330/DNR, Strecke et al. [9]

Figure 5: Disparity estimates on the truck dataset [11], which is challenging due to the large amount of noise, therefore (b)

was computed with a version of the dataset scaled down to half size in the spatial domain. Note that although our method uses

half size images, the reconstruction is much more detailed, see for example the rope at the top left, or the structure below the

driver cab. Smoothing is also improved, although some artifacts remain, like the rough ground before and behind the truck, or

the “fireflies” around some object edges. The hole at the back of the cargo area is wrong with both methods because there is a

specular reflection visible from several viewpoints.

(a) Center view of a specular

object

(b) Our approach with color

constancy

(c) Our approach combined

with normals-from-specular

from Gutsche et al. [2]

(d) Ground truth disparity

Figure 6: Disparity estimates when integrating normals-from-specular [2] within our optimization, tested on a synthetic

dataset, where we know the exact location of the light source. In (b) the assumption of color constancy does not allow reliable

depth estimates in the presence of specular reflections. In (c) specularity is exploited to obtain surface normals.

θd 0.05K θg 0.025K θf 0.01K
θc 3 θo 0.25V θa 0.01
α 0.15 β 20 ǫd 0.5
ρ 0.0375I τ 0.2K θe 400

Table 1: List of parameters used for all results but fig. 5,

where V is the total number of views, K the disparity range

of the scene and I the current iteration number.

method [2] to enable depth estimation in the presence of

glossy reflections, shown in fig. 6. For this we exploit our

local optimization approach by exchanging the data term

with the fit error of [2] in glossy regions. We still employ

the same smoothing term, just augmented with the normals

returned by the normals-from-specular solver. The result

still shows some artifacts, but also highlights the gains in

exploiting reflectance information from the light field for

depth reconstruction.

4.2. Quantitative Results

The quantitative evaluation is based on the public 4D

Lightfield Benchmark by Honauer et al. [3]. The bench-

mark does not report a single score, but instead calculates 12

different error metrics, which consider a range of different

failure cases, using well known global metrics like BadPix

and MSE, but also surface quality metrics, and more spe-

cific errors metrics, like fine thinning/fattening. For details

please see their paper [3] and the benchmark survey [4]. The

benchmark is performed by generating disparity maps for

12 scenes, 8 of which have publicly available ground truth

disparity, while for 4 scenes the ground truth is kept secret.

Algorithm results are uploaded to a web-service and all re-
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Figure 7: Mean errors over all twelve benchmark scenes,

evaluated with the twelve error metrics of the 4D Light-

field Benchmark [3] and visualized on a radar chart. The

legend gives the number of viewpoints and the (approxi-

mate) runtime. All metrics are expressed as an average error

over twelve datasets. Lower values are better, and located

closer to the center. As we can see our method (OBER-

cross+ANP) is located closest to the center on average, and

manages an improvement over the previous state of the art

on most metrics, without exposing a specific weakness. The

main challengers which surpass our method in some met-

ric (CAE and OFSY) manage so only by accepting subpar

performance on other metrics.

sults, including ours, are available on the benchmark website

[3] – our method is abbreviated OBER-cross+ANP.

We report our results in comparison to the state of the

art, as represented by the top five published methods, when

sorted by the average BadPix0 .07 score, as of 2017/11/11 .

The averaged errors over all 12 scenes are shown in fig. 7.

Note that our method takes the lead for 9 of the 12 error

metrics, and is close behind for the remaining 3.

This is even more remarkable if we consider that several

of the error metrics are often traded in against each other, as

is the case for bumpiness versus discontinuities and for fine

fattening versus fine thinning, which have a strong tendency

to revert the order of the methods between the respective

error metrics.
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Figure 8: Trade-off between smoothing and object bor-

der preservation, comparing the Discontinuities metric

with the Bumpiness Planes metric [3]. Results are averages

over all 12 benchmark scenes. Note how the good smooth-

ness score for OFSY reflects the focus on the regularization,

while the other methods are optimized towards correct ob-

ject borders. Our method leads both metrics, making the

trade-off obsolete.

Indeed by plotting the Discontinuities metric, which

gives the errors around depth discontinuities, and one of the

smoothness metrics, like Bumpiness Planes, we can directly

evaluate the trade-off between smoothing and preservation of

object boundaries, see fig. 8. As we can see all tested meth-

ods fall into one extreme, favoring either border handling of

smoothing, however our method manages not only to find

a favorable trade-off, but instead completely dominates the

other methods on both of these metrics.

5. Conclusion

In this work we have presented a new method of depth

estimation from light-field images. We inline the occlusion

handling into the depth estimation. This represents an im-

provement over previous methods, which separate occlusion

handling and optimization. In addition to the improved data

terms we show an efficient method for depth estimation with

this type of model, based on PatchMatch. The drawback is

that this does not give any guarantees with respect to the

global energy. Still, by integrating the occlusion handling

we demonstrate a performance increase over the state of the

art for object borders as well as for smooth surface recon-

struction at a very competitive runtime.
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