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Abstract

Convolutional neural networks rely on image texture and

structure to serve as discriminative features to classify the

image content. Image enhancement techniques can be used

as preprocessing steps to help improve the overall image

quality and in turn improve the overall effectiveness of a

CNN. Existing image enhancement methods, however, are

designed to improve the perceptual quality of an image for a

human observer. In this paper, we are interested in learning

CNNs that can emulate image enhancement and restora-

tion, but with the overall goal to improve image classifi-

cation and not necessarily human perception. To this end,

we present a unified CNN architecture that uses a range of

enhancement filters that can enhance image-specific details

via end-to-end dynamic filter learning. We demonstrate the

effectiveness of this strategy on four challenging benchmark

datasets for fine-grained, object, scene, and texture classi-

fication: CUB-200-2011, PASCAL-VOC2007, MIT-Indoor,

and DTD. Experiments using our proposed enhancement

show promising results on all the datasets. In addition, our

approach is capable of improving the performance of all

generic CNN architectures.

1. Introduction

Image enhancement methods are commonly used as pre-

processing steps that are applied to improve the visual qual-

ity of an image before higher level-vision tasks, such as

classification and object recognition [28, 29]. Examples

include enhancement to remove the effects of blur, noise,

poor contrast, and compression artifacts – or to boost image

details. Examples of such enhancement methods include

Gaussian smoothing, anisotropic diffusion, weighted least

squares (WLS), and bilateral filtering. Such enhancement

methods are not simple filter operations (e.g., 3×3 Sobel

filter), but often involve complex optimization. In practice,

the run time for these methods is expensive and can take

seconds or even minutes for high-resolution images.

Several recent works have shown that convolutional neu-

ral networks (CNN) [2, 3, 23, 27, 39, 40] can successfully
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Figure 1: Overview of the proposed unified CNN architecture

using enhancement filters to improve classification tasks. Given

an input RGB image, instead of directly applying the CNN on this

image ([a]), we first enhance the image details by convolving the

input image with a WLS filter (see Sec. 3.1), resulting in improved

classification with high confidence ([b]).

emulate a wide range of image enhancement by training on

input and target output image pairs. These CNNs often have

a significant advantage in terms of run-time performance.

The current strategy, however, is to train these CNN-based

image filters to approximate the output of their non-CNN

counterparts.

In this paper, we propose to extend the training of CNN-

based image enhancement to incorporate the high-level goal

of image classification. Our contribution is a method that

jointly optimizes a CNN for enhancement and image clas-

sification. We achieve this by adaptively enhancing the fea-

tures on an image basis via dynamic convolutions, which

enables the enhancement CNN to selectively enhance only

those features that lead to improved image classification.

Since we understand the critical role of selective feature

enhancement, we propose to use the dynamic convolutional

layer (or dynamic filter) [7] to dynamically enhance the

image-specific features with a classification objective (see

Fig. 1). Our work is inspired by [7]. However, while [7]

applies the dynamic convolutional module to transform an

angle into a filter (steerable filter) using input-output image

pairs, we used the same terminology as in [7]. The dynamic

filters are a function of the input and therefore vary from
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one sample to another during train/test time, which means

when the image enhancement is done in an image-specific

way to enhance the texture patterns or sharpen edges for

discrimination. Specifically, our network learns the amount

of various enhancement filters that should be applied to an

input image, such that the enhanced representation provides

better performance in terms of classification accuracy. Our

proposed approach is evaluated on four challenging bench-

mark datasets for fine-grained, object, scene, and texture

classification respectively: CUB-200-2011 [37], PASCAL-

VOC2007 [12], MIT-Indoor [26], and DTD [4]. We experi-

mentally show that when CNNs are combined with the pro-

posed dynamic enhancement technique (Sec. 3.1 and 3.3),

one can consistently improve the classification performance

of vanilla CNN architectures on all the datasets. In addition,

our experiments demonstrate the full capability of the pro-

posed method, and show promising results in comparison to

the state-of-the-art.

The remainder of this paper is organized as follows. Sec-

tion 2 overviews related work. Section 3 describes our pro-

posed enhancement architecture. Experimental results and

their analysis are presented in Sections 4. Finally, the paper

is concluded in Section 5.

2. Background and Related Work

Considerable progress has been seen in the development for

removing the effects of blur [2], noise [27], and compres-

sion artifacts [38] using CNN architectures. Reversing the

effect of these degradations in order to obtain sharp images

is currently an active area of research [2, 22, 39]. The inves-

tigated CNN frameworks [2, 3, 15, 22, 23, 27, 39, 40] are

typically built on simple strategies to train the networks by

minimizing a global objective function using input-output

image pairs. These frameworks encourage the output to

have a similar structure with the target image. After training

the CNN, a similar approach to transfer details to new im-

ages has been proposed [39]. These frameworks act as a fil-

ter that are specialized for a specific enhancement method.

For example, Xu et al. [39] learn a CNN architecture to

approximate existing edge-aware filters from input-output

image pairs. Chen et al. [3] learn a CNN that approximates

end-to-end several image processing operations using a pa-

rameterization that is deeper and more context-aware. Yan

et al. [40] learn a CNN to approximate image transforma-

tions for image adjustment. Fu et al. [15] learn a CNN ar-

chitecture to remove rain streaks from an image. For CNN

training, the authors use rainy and clean image detail layer

pairs rather than the regular RGB images. Li et al. [22]

propose a learning-based joint filter using three CNN archi-

tectures. In Li et al.’s work, two sub-networks take target

and guidance images, while the third-network selectively

transfers the main content structure and reconstructs the de-

sired output. Remez et al. [27] propose a fully convolutional

CNN architecture to do image denoising using image prior-

that is, class-aware information. The closest work to ours

is by Chakrabarty et al. [2] and Liu et al. [23]. Chakrabarty

et al. propose a CNN architecture to predict the complex

Fourier coefficients of a deconvolution filter which is ap-

plied to individual image patches for restoration. Liu et al.

use CNN+RNNs to learn enhancement filters; here we use

CNNs only for learning filters. Our methods produce one

representative filter per method, while they produce four-

way directional propagation filters per method. Like oth-

ers, their work is meant for low-level vision tasks similar

to [2, 3], while our goal is enhancement for classification. In

contrast to these prior works, our work differs substantially

in scope and technical approach. Our goal is to approximate

different image enhancement filters with a classification ob-

jective in order to selectively extract informative features

from enhancement techniques to improve classification, not

necessarily approximating the enhancement methods.

Similar to our goal are the works [6, 9, 19, 25, 35, 36],

where the authors also seek to ameliorate the degradation

effects for accurate classification. Dodge and Karam [9]

analyzed how blur, noise, contrast, and compression ham-

per the performance of ConvNet architectures for image

classification. Their findings showed that: (1) ConvNets

are very sensitive to blur because blur removes textures in

the images; (2) noise affects the performance negatively,

though deeper architectures’ performance falls off slower;

and (3) deep networks are resilient to compression distor-

tions and contrast changes. A study by Karahan et al. [19]

reports similar results for a face-recognition task. Ullman

et al. [35] showed that minor changes to the image, which

are barely perceptible to humans, can have drastic effects

on computational recognition accuracy. Szegedy et al. [32]

showed that applying an imperceptible non-random pertur-

bation can cause ConvNets to produce erroneous prediction.

To help to mitigate these problems, Costa et al. [6] de-

signed separate models specialized for each noisy version

of an augmented training set. This improved the classifica-

tion results for noisy data to some extent. Peng et al. [25]

explored the potential of jointly training on low-resolution

and high-resolution images in order to boost performance

on low-resolution inputs. Similar to [25] is Vasijevic et

al.’s [36] work, where the authors augment the training set

with degradations and fine-tune the network with a diverse

mix of different types of degraded and high-quality images

to regain much of the lost accuracy on degraded images.

In fact, with this approach the authors were able to learn

to generate a degradation (particularly blur) invariant repre-

sentation in their hidden layers.

In contrast to previous works, we use high-quality im-

ages that are free of artifacts, and jointly learn ConvNet to

enhance the image for the purpose of improving classifica-

tion.
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Figure 2: Dynamic enhancement filters. Input to the network are input-output image pairs, as well as image class labels for training. In

this architecture, we learn a single enhancement filter for each enhancement method individually. The model operates on the luminance

component of RGB color space. The enhancement network (i.e., filter-generating network) generates dynamic filter parameters that are

sample-specific and conditioned on the input of the enhancement network, with the overall goal to improve image classification. The figure

in the upper-right corner shows the whole pipeline workflow.

3. Proposed Method

As previously mentioned, our aim is to learn a dynamic

image enhancement network with the overall goal to im-

prove classification, and not necessarily approximating the

enhancement methods specifically. To this end, we propose

three CNN architectures described in this section.

Our first architecture is proposed to learn a single en-

hancement filter for each enhancement method in an end-

to-end fashion (Sec. 3.1) and by end-to-end we mean each

image will be enhanced and recognized in one unique deep

network with dynamic filters. Our second architecture uses

pre-learned enhancement filters from the first architecture

and combines them in a weighted way in the CNN. There is

no adaptation of weights of the filters (Sec. 3.2). In our third

architecture, we show end-to-end joint learning of multiple

enhancement filters (Sec. 3.3). We also combine them in a

weighted way in the CNN. All these setups are jointly opti-

mized with a classification objective to selectively enhance

the image feature quality for improved classification. In the

network training, image-level class labels are used, while

for testing the input image can have multiple labels.

3.1. Dynamic Enhancement Filters

In this section we describe our model to learn representa-

tive enhancement filters for different enhancement methods

from input and target output enhanced image pairs in the

end-to-end learning approach with a goal to improve classi-

fication performance. Given an input RGB image I , we first

transform it into the luminance-chrominance Y CbCr color

space. Our enhancement method operates on the luminance

component [14] of the RGB image. This allows our filter

to modify the overall tonal properties and sharpness of the

image without affecting the color. The luminance image

Y ∈ R
h×w is then convolved with an image enhancement

method E : Y → T , resulting in an enhanced target output

luminance image T ∈ R
h×w, where h, and w denote the

height and width in the input Y respectively. We generate

target images for a range of enhancement methods E as a

preprocessing step (see Section. 4.2 for more details). For

filter generation, we explicitly use a dataset of only one en-

hancement method at a time for learning the transformation.

The scheme is illustrated in Figure 2.

First stage (enhancement stage): The enhancement

network (EnhanceNet) is inspired by [7, 18, 20], and is

composed of convolutional and fully-connected layers. The

EnhanceNet maps the input to the filter. The enhancement

network takes the one channel luminance image Y and out-

puts filters fΘ, Θ ∈ R
s×s×n, where Θ is the parameters of

the transformation generated dynamically by the enhance-

ment network, s is the filter size, and n is the number of

filters, being equal to 1 for a single generated filter meant

for one channel luminance image. The generated filter is

applied to the input image Y (i, j) at every spatial position

(i,j) to output predicted image Y
′

(i, j) = fΘ(Y (i, j)) with

Y
′

∈ R
h×w. The filters are image-specific, and are condi-

tioned on Y . For generating the enhancement filter param-

eters Θ, the network is trained using mean squared error

(MSE) between the target image T and the network’s pre-

dicted output image Y
′

. Note that, the parameters of the

filter are obtained as the output of a EnhanceNet that maps

the input to a filter and therefore vary from one sample to

another. To compare the reconstruction image Y
′

with the

ideal T , we use MSE loss as a measure of image quality, al-

though we note that more complex loss functions could be

used [10].

The chrominance component is then recombined, and

the image is transformed back into RGB, I
′

. We found that

the filters learned the expected transformation and applied

the correct enhancement to the image. Figure 5 shows qual-

itative results with dynamically enhanced image textures.

Second stage (classification stage): The predicted out-

put image I
′

from Stage 1 is fed as an input to the classifica-

tion network (ClassNet). As the classification network (e.g.,

Alexnet [21]) has fully-connected layers between the last

convolutional layer and the classification layer, the param-
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eters of the fully-connected layer and C-way classification

layer are learned when fine-tuning a pre-trained network.

End-to-end learning: The Stage 1-2 cascade with two

loss functions - MSE (enhancement) and softmax-loss L

(classification) - enables joint optimization by end-to-end

propagation of gradients in both ClassNet and EnhanceNet

using SGD optimizer. The total loss function of the whole

pipeline is given by:

LossFilters = MSE(T, Y
′

) + L(P,y)

Pq =
exp(aq)∑C

r=1
exp(ar)

,L(P,y) = −

C∑

q=1

yqlog(Pq)
(1)

where a is the output of the last fully-connected layer of

ClassNet that is fed to a C-way softmax function, y is the

vector of true labels for image I , and C is the number of

classes.

We fine-tune the whole pipeline until convergence, thus

leading to learned enhancement filters in the dynamic en-

hancement layer. The joint optimization allows the loss gra-

dients from the ClassNet to also back-propagate through the

EnhanceNet, making the filter parameters also optimized

for classification.

3.2. Static Filters for Classification

Here, we show how to integrate the pre-learned enhance-

ment filters obtained from the first approach. For each im-

age in the train set, we obtain a dynamic filter using our first

approach. The static filter is computed by taking a mean

of all these dynamic filters. The extracted static filters are

convolved with the input luminance Y component of the

RGB image I , and the chrominance component is added

and then the image is transformed back to RGB I
′

, which is

then fed into the classification network. Figure 3 shows the

schematic layout of the whole architecture.

First stage (enhancement stage): We begin by ex-

tracting the pre-trained filters for K image enhancement

methods learned from the first approach. Given an in-

put luminance image Y , these fΘ,k filters are convolved

with the input image to generate Y
′

k enhanced images as

Y
′

k = fΘ,k(Y ), k ∈ K. We also include an identity fil-

ter (K+1) to generate the original image, as some learned

enhancements may perform worse than the original image

itself. We then investigate two different strategies to weight

Wk the enhancement methods: (1) giving equal weights

with value equal to 1/K, and (2) giving weights on the basis

of MSE, as discussed in Sec. 3.3.

The output of this stage is a set of enhanced luminance

images and their corresponding weights indicating the po-

tential importance for pushing to the next stage of the clas-

sification pipeline. Chrominance is then recombined, and

the images are transformed back to RGB, I
′

k.

Second stage (classification stage): The enhanced im-

ages I
′

k for K image enhancement methods and original im-

age are fed as an input to the classification network one by

one sequentially, with class labels and their weights Wk in-

dicating the importance of the enhancement method for the

input image. Similar to the last approach, the network pa-

rameters of the fully-connected layer and C-way classifica-

tion layer are fine-tuned using a pre-trained network in an

end-to-end learning approach.

End-to-end training: The loss of the network training

is the weighted Wk sum of the individual softmax losses Lk

term. The weighted loss is given as:

LossStat =
K+1∑

k=1

WkLk(P,y) (2)

where W is the weight indicating the importance of the K
enhancement method, where WK+1 = 1 for original RGB

image, contributing to the total loss of the whole pipeline.

3.3. Multiple Dynamic Filters for Classification

Here, we recycle the architectures from Sections 3.1-3.2.

Figure 4 shows the schematic layout of the whole architec-

ture. Our architecture uses the similar architecture proposed

in Sec. 3.1; we dynamically generate K filters using K en-

hancement networks, one for each enhancement method. In

this proposed architecture, the loss associated with Stage 1

is the MSE between the predicted output images Y
′

k and the

target output images Tk.

For computing the weights of each enhancement method,

the MSE for the enhanced images are transformed to

weights Wk by comparing their relative strengths as:

Wk = MSEk/
∑K

m=1
MSEm, followed by Wk =

(Wk −max(W ))/(min(W ) −max(W )). Since now the

min(W ) is zero, in order to avoid giving zero-weight to

one of the enhancement methods, we subtract the second-

min(W )/2 from W and add the second-min(W ) to the

Wk with min(W ). Finally, we scale the weights Wk =

Wk/
∑K

m=1
Wm with the constraint that the sum of the

weights for all K methods should be equal to 1. The en-

hanced images with the smallest errors obtain the highest

weight, and vice versa. In addition, we also compare against

giving equal weights to all enhancement methods. Of both

weighting strategies, MSE-based weighting yielded the best

results, and was therefore selected as the default. Note that

we also include the original image by simply convolving

it with an identity filter (K+1) similar to approach 2: the

weight for the RGB image is set to 1, i.e. WK+1 = 1. Dur-

ing training, the weights are estimated by cross-validation

on the train/validation set, while for the testing phase, we

use these pre-computed weights. Further, we observed that

training the network without regularization of weights has

prevented the model from converging throughout the learn-

4036



WLS Filter

Shared Weights

Weight, ()

Stage 2

Weight, (*.)

Weighted

Loss
C

O

N

V

Classification Network

Stage 1

Scene

Identity Filter

$
+

%

Input RGB 

Image

&
Luminance Image

Y

Chrominance Image

'-
%

CbCr

',.-
%

Figure 3: (Stat-CNN) In this architecture, we use pre-learned filters from Sec. 3.1 (Figure 2) for image enhancement and the original

image. The individual softmax scores are combined in a weighted way in the CNN. There is no adaptation of weights of the filters.
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Figure 4: (Dyn-CNN) In this architecture, similar to Sec. 3.1 (Figure 2), we show end-to-end joint learning of multiple filters. The

individual softmax scores are combined in a weighted way in the CNN. There is adaptation of weights of the filters.

ing, and led to overfitting with significant drop in perfor-

mance.

End-to-end training: Finally, we now extend the loss of

approach 2, by adding an MSE term for joint optimization

of K enhancement networks with a classification objective.

We learn all parameters of the network jointly in an end-to-

end fashion. The weighted loss is sample-specific, and is

given as:

LossDyn =

K∑

k=1

MSEk(Tk, Y
′

k ) +

K+1∑

k=1

WkLk(P,y) (3)

We believe training our network in this manner, offers

a natural way to encourage the filters to apply a transfor-

mation that enhances the image structures for an accurate

classification, as the classification network is regularized

via enhancement networks. Moreover, joint optimization

helps minimize the overall cost function of the whole archi-

tecture, hence leading to better results.

4. Experiments

In this section, we demonstrate the use of our enhance-

ment filtering technique on four very different image classi-

fication tasks. First, we introduce the dataset, target output

data generation, and implementation details, and explore

the design choices of the proposed methods. Finally, we

test and compare our proposed method with baseline meth-

ods and other current ConvNet architectures. Note that, the

purpose of this paper is to improve the baseline performance

of generic CNN architectures using an add-on enhancement

filters, and not to compete against the state-of-the-art meth-

ods.

4.1. Datasets

We evaluate our proposed method on four visual recogni-

tion tasks: fine-grained classification using CUB-200-2011

CUB) [37], object classification using PASCAL-VOC2007

(PascalVOC) [12], scene recognition using MIT-Indoor-

Scene (MIT) [26], and texture classification using Describ-

able Textures Dataset (DTD) [4]. Table 1 shows the details

of the datasets. For all of these datasets, we use the standard

training/validation/testing protocols provided as the original

evaluation scheme and report the classification accuracy.

4.2. Target Output Data

We generate target output T images for five (i.e., K=5)

enhancement methods E: (1) weighted least squares (WLS)

filter [13], (2) bilateral filter (BF) [11, 34], (3) image sharp-

Data-set # train img # test img # classes

CUB [37] 5994 5794 200

PascalVOC [12] 5011 4952 20

MIT [26] 4017 1339 67

DTD [4] 1880 3760 47

Table 1: Details of the training and test set for datasets.
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ening filter (Imsharp), (4) guided filter (GF) [16], and (5)

histogram equalization (HistEq). Given an input image,

we first transform the RGB color space into a luminance-

chrominance color space, and then apply these enhance-

ment methods on the luminance image to obtain an en-

hanced luminance image. This enhanced luminance image

is then used as the target image for training. We used default

parameters for WLS and Imsharp, and for BF, GF and His-

tEq parameters are adapted to each image, thus requiring no

parameter setting. For comprehensive discussion, we refer

the readers to [11, 13, 16]. The source code for fast BF [11],

WLS [13] is publicly available, and others are available in

the Matlab framework.

4.3. Implementation Details

We use the MatCovNet and Torch frameworks, and all

the ConvNets are trained on a TitanX GPU. Here we dis-

cuss the implementation details for ConvNet training (1)

with dynamic enhancement filter networks, (2) with static

enhancement filters, and (3) without enhancement filters as

a classic ConvNet training scenario.

We evaluate our design on AlexNet [21],

GoogleNet [31], VGG-VD [30], VGG-16 [30], and

BN-Inception [17]. In each case, the models are pre-

trained on the ImageNet [8] and then fine-tuned on the

target datasets. To fine-tune the network, we replace the

1000-way classification layer with a C-way softmax layer,

where C is the number of classes in the target dataset. For

fine-tuning the different architectures depending on the

dataset about 60-90 epochs (batch size 32) were used, with

a scheduled learning rate decrease, starting with a small

learning rate 0.01. All ConvNet architectures are trained

with identical optimization schemes, using SGD optimizer

with a fixed weight decay of 5 × 10−4 and a scheduled

learning rate decrease. We follow two steps to fine-tune the

whole network. First, we fine-tune (last two fc layers) the

ConvNet architecture using RGB images, and then embed

it in Stat/Dyn-CNN for fine-tuning the whole network with

enhancement filters, by setting a small learning rate for

all layers except the last two fc layers, which have a high

learning rate. Specifically, for example, in BN-Inception

the network requires a fixed input size of 224 × 224. The

images are mean-subtracted before network training. We

apply data augmentation [21, 30] by cropping the four

corners, center, and their x-axis flips, along with color

jittering (and the cropping procedure repeated for each of

these) for network training. Ahead we provide more details

for ConvNet training using BN-Inception.

−Dynamic enhancement filters (Dyn-CNN): The en-

hancement network consists of ∼570k learnable model pa-

rameters, with the last fully-connected layer (i.e., dynamic

filter parameters) containing 36 neurons - that is, filter-size

6 × 6. We initialize the enhancement networks’ model pa-

rameters randomly, except for the last fully-connected layer,

which is initialized to regress the identity transform (zero

weights, and identity transform bias), suggested in [18]. We

initialize the learning rate with 0.01 and decrease it by a

factor of 10 after every 15k iterations. The maximum num-

ber of iterations is set to 90k. In terms of computation

speed, the training enhancement network along with BN-

Inception takes approx. 7% more training time for network

convergence in comparison to BN-Inception for approach

1 (Sec. 3.1). We use five enhancement networks for gen-

erating five enhancement filters (one for each method) for

approach 3 (Sec. 3.3). We also include original RGB image

too.

−Without enhancement filters (FC-CNN): Similar to

classical ConvNets’ fine-tuning scenario, we replace the last

classification layer of a pre-trained model with a C-way

classification layer before fine-tuning. The fully connected

layers and the classification layer are fine-tuned. We initial-

ize the learning rate with 0.01 and decrease it by a factor

of 10 after every 15k iterations. The maximum number of

iterations is set to 45k.

−Static enhancement filters (Stat-CNN): Similar to

FC-CNN, here, we have five enhanced images for five static

filters and original RGB image as the sixth input that are

fed as input to the ConvNets for network training. In prac-

tice, the static filters for image enhancement are very low-

complex operations. The optimization scheme used here is

the same as FC-CNN. We use all the five static learned fil-

ters for approach 2 (Sec. 3.2).

Testing: As previously mentioned, the input RGB image

is transformed into luminance-chrominance color space,

and then the luminance image is convolved with the en-

hancement filter, leading to an enhanced luminance im-

age. Chrominance is then recombined to the enhanced lu-

minance image and the image is transformed back to RGB.

For ConvNet testing, an input frame with either be an RGB

image or an enhanced RGB image using the static or dy-

namic filters is fed into the network. In total, five enhanced

images (one for each filter) and the original RGB image are

fed into the network, sequentially. For final image label pre-

diction, the predictions of all images are combined through

a weighted sum, where the pre-computed weights W are

obtained from Dyn-CNN.

4.4. FineGrained Classification

In this section, we use CUB-200-2011 [37] dataset as

a test bed to explore the design choices of our proposed

method, and then finally compare our method with baseline

methods and the current methods.

Dataset: CUB [37] is a fine-grained bird species classifi-

cation dataset. The dataset contains 20 bird species with

11,788 images. For this dataset, we measure the accuracy

of predicting a class for an image.
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RGB BF WLS GF HistEq Imsharp LF

(a) GT-EMs 67.3 [24] 66.93 67.34 67.12 66.41 66.74 70.14

(b) RGB: GT-EMs − 67.16 67.41 67.37 66.58 66.87 71.28

(c) Ours (Sec. 3.1) − 68.21 68.73 68.5 67.62 67.86 72.16

Table 2: Individual accuracy (%) performance comparison of all

the enhancement methods E using AlexNet on CUB, where LF is

late-fusion as averaging of scores for the 5 enhancement methods.

Ablation study: Here we explore four aspects of our pro-

posed method: (1) the impact of different filter size; (2) the

impact of each enhancement method, separately; (3) the im-

pact of weighting strategies; and (4) the impact of different

ConvNet architectures.

−Filter size: In our experiment, we explore three differ-

ent filter sizes. Specifically, we implement the enhancement

network as a few convolutional and fully-connected layers

with the last-layer containing (1) 25 neurons (fΘ is an en-

hancement filter of size 5×5), (2) 36 neurons (6×6), and (3)

49 neurons (7×7). From the literature [7, 18], we exploited

the insights about good filter size. The filter size determines

the receptive field and is application dependent. We found

that a filter size > 7×7 produces smoother images, and thus

drops the classification performance by approx. 2% (WLS:

68.73→ 66.84) in comparison to a filter size of 6×6. Sim-

ilar was the case with a filter size < 5 × 5, where correct

enhancement was not transferred, leading to a drop in per-

formance by approx. 3% (WLS: 68.73→ 65.9). We found

that the filter size 6×6 learned the expected transformation,

and applied the correct enhancement to the input image with

sharper preserved edges.

−Enhancement method (E): Here, we compare the

performance of individual enhancement methods in three

aspects: (1) We employ AlexNet [21] pre-trained on Im-

ageNet [8] and fine-tuned (last two fc layers) on CUB

for each ground-truth enhancement method separately (GT-

EMs). (2) Using the pre-trained RGB AlexNet model on

CUB from (1), we fine-tune the whole model with GT-EMs,

by setting a small learning rate for all layers except the last

two fc layers, which have a high learning rate. This slightly

improves the performance of the pre-trained RGB model by

a small margin. (3) Similar to (2), but here we fine-tune the

whole model using approach 1 (Sec. 3.1). We can see that

our dynamic enhancement approach improves the perfor-

mance by a margin of ∼1-1.5% in comparison to a generic

network when fine-tuned on RGB images only. In Table 2,

we summarize the results.

In Fig. 5, as an example we show some qualitative results

for the difference in textures that our enhancement method

extracts from the GT-EMs, which is primarily responsible

for improving the classification performance.

−Weighting strategies: Combining the enhancement

methods in a late-fusion (LF) as an averaging of the scores

gives further improvements, shown in Table 2. With this

observation, we realized a more effective weighting strat-

egy should be applied, such that more importance could

be given to better methods for combining. In our evalua-

tion, we explore two weighting strategies (1) giving equal

weights Wk with value equal to 1/K - that is, 0.2 for K=5,

and (2) weight computed on the basis of MSE, estimated

by cross-validation on the training set, shown in Table 3.

Table 4 clearly shows that weighting adds a positive reg-

ularization effect. We found that training the network with

regularization of MSE loss prevents the classification ob-

jective from divergence throughout the learning. Table 3

shows that in Dyn-CNN the weight of each enhancement

filter relates very well to that of its individual performance

shown in Table 2. We observe that the MSE-based weight-

ing performs the best. Therefore, we choose that as a default

weighting method.

−ConvNet architectures: Here, we compare the dif-

ferent ConvNet architectures. Specifically, we compare

AlexNet [21], GoogLeNet [31], and BN-Inception [17].

Among all architectures shown in Table 5, BN-Inception

exhibits the best performance in terms of classification ac-

curacy in comparison to others. Therefore, we choose BN-

Inception as a default architecture for this experiment.

Results: In Table 6, we explore our static and dynamic

CNNs with the current methods. We consider BN-Inception

using our two-step fine-tuning scheme with Stat-CNN and

Dyn-CNN. We can notice that Dyn-CNN improves the

generic BN-Inception performance by 3.82% (82.3 →
86.12) using image enhancement. Our EnhanceNet takes a

constant time of only 8 ms (GPU) to generate all enhanced

images altogether, in comparison to generating ground-truth

BF WLS GF HistEq Imsharp RGB

W 0.23±0.05 0.25±0.04 0.24±0.03 0.13±0.03 0.17±0.05 1.0

Table 3: Relative comparison of the strength of weights W for

each enhancement method estimated by cross-validation on the

training set of CUB using Dyn-CNN with BN-Inception, where

W for RGB image by default is set to 1.

�:	WLS �:	GF �:	HistEq �:	Imsharp

�

�:	BF�

�
$
:WLS �

$
: GF �

$
: HistEq �

$
: Imsharp�

$
:	BF

Diff:WLS Diff: GF Diff:	HistEq Diff: ImsharpDiff:	BF

Figure 5: Qualitative results: CUB. Comparison between the

target image T , enhanced luminance image Y
′

, and compliment of

difference image (diff=T -Y
′

) obtained using approach 1 (Sec. 3.1)

for all enhancement methods.
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Stat-CNN (ours) Dyn-CNN (ours)

W : Averaging 83.19 85.58

W : MSE-based 83.74 86.12

Table 4: Accuracy (%) performance comparison of the weighting

strategies using BN-Inception on CUB.

target images, which is very time-consuming and takes ∼1-

6 seconds for each image/method: BF, WLS, and GF. Test-

ing time for the whole model is: EnhanceNet (8 ms) plus

ClassNet (inference time for the architecture used).

Further, we extend the baseline 2×ST-CNN [18] to in-

clude static (Sec 3.2) and dynamic filters (Sec. 3.3) im-

mediately following the input, with the weighted loss. In

reference to ST-CNN work [18], we evaluate the methods,

keeping the training and evaluation setup the same for a fair

comparison. Our results indicate that Dyn-CNN improves

the performance by 3.81% (83.1 → 86.91). Furthermore,

our Stat-CNN with static filters is competitive too, and per-

forms 1.15% better than 2×ST-CNN [18]. This means that

the static filters when dropped into a network can perform

explicit enhancement of features, and thus gains in accuracy

are expected in any ConvNet architecture.

4.5. Object Classification

Dataset: The PASCAL-VOC2007 [12] dataset contains 20

object classes with 9,963 images that contain a total of

24,640 annotated objects. For this dataset, we report the

mean average precision (mAP), averaged over all classes.

Results: In Table 7, we show the results. Dyn-CNN is

4.58/6.16% better than Stat-CNN/FC-CNN using AlexNet,

and 2.43/3.5% using VGG-16. One can observe that for a

smaller network, AlexNet shows more improvement in per-

formance in comparison to the deeper: VGG-16 network.

Also, Stat-CNN is 1.58/1.07% better than FC-CNN using

AlexNet/VGG-16. Furthermore, Bilen et al. [1] with 89.7%

mAP performs 3.1% (89.7 ← 92.8) lower than Dyn-CNN

using VGG-16.

4.6. Indoor Scene Recognition

Dataset: The MIT-Indoor scene dataset (MIT) [26] con-

tains a total of 67 indoor scene categories with 5,356 im-

ages. For this dataset, we measure the accuracy of predict-

ing a class for an image.

Results: In Table 7, we show the results. As expected and

previously observed, Dyn-CNN is 4.66/6.11% better than

Stat-CNN/FC-CNN using AlexNet, and 2.73/3.8% using

VGG-16.

FC-CNN Stat-CNN (ours) Dyn-CNN (ours)

AlexNet 67.3 [24] 68.52 73.57

GoogLeNet 81.0 [24] 82.35 84.91

BN-Inception 82.3 [18] 83.74 86.12

Table 5: Accuracy (%) performance comparison of different ar-

chitectures on CUB.

FC-CNN Stat-CNN (ours) Dyn-CNN (ours)

4× ST-CNN [18]: 448px 84.1 [18] − −

BN-Inception 82.3 [18] 83.74 86.12

2× ST-CNN [18] 83.1 [18] 84.25 86.91

Table 6: Fine-grained classification (CUB). Accuracy (%) per-

formance comparison of Stat-CNN and Dyn-CNN with baseline

methods and previous works on CUB.

Dataset ConvNet FC-CNN Stat-CNN Dyn-CNN

(ours) (ours)

PasclVOC (mAP) AlexNet 76.9 [33] 78.48 83.06

PasclVOC (mAP) VGG-16 89.3 [30] 90.37 92.8

MIT (Acc.) AlexNet 56.79 [41] 58.24 62.9

MIT (Acc.) VGG-16 64.87 [41] 65.94 68.67

DTD (mAP) AlexNet 61.3 [5] 62.9 67.81

DTD (mAP) VGG-VD 67.0 [5] 69.12 71.34

Table 7: Performance comparison in %. The table compares

FC-CNN, Stat-CNN, and Dyn-CNN on AlexNet and VGG net-

works trained on ImageNet and fine-tuned on target datasets using

the standard training and testing sets.

4.7. Texture Classification

Dataset: The Describable Texture Datasets (DTD) [4] con-

tains 47 describable attributes with 5,640 images. For this

dataset, we report the mAP, averaged over all classes.

Results: In Table 7, we show the results. The story is

similar to our previous observation: Dyn-CNN outperforms

Stat-CNN and FC-CNN by a significant margin. Surpris-

ingly, it is interesting to see that Dyn-CNN shows a sig-

nificant improvement of 6.51/4.34% in comparison to FC-

CNN using AlexNet/VGG-VD.

5. Concluding Remarks

In this paper, we propose a unified CNN architecture

that can emulate a range of enhancement filters with the

overall goal to improve image classification in an end-to-

end learning approach. We demonstrate our framework

on four benchmark datasets: PASCAL-VOC2007, CUB-

200-2011, MIT-Indoor Scene, and Describable Textures

Dataset. In addition to improving the baseline performance

of vanilla CNN architectures on all datasets, our method

shows promising results in comparison to the state-of-the-

art using our static/dynamic enhancement filters. Also, our

enhancement filters can be used with any existing networks

to perform explicit enhancement of image texture and struc-

ture features, giving CNNs higher-quality features to learn

from, which in turn can lead to more accurate classification.

We believe our work opens many possibilities for fur-

ther exploration. In future work, we plan to further investi-

gate more enhancement methods as well as more complex

loss functions which are appropriate for image enhancement

tasks.
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