
Generative Adversarial Learning Towards Fast Weakly Supervised Detection

Yunhan Shen1 Rongrong Ji1∗ Shengchuan Zhang1 Wangmeng Zuo2, Yan Wang3

1Fujian Key Laboratory of Sensing and Computing for Smart City,

School of Information Science and Engineering, Xiamen University, Fujian, China
2School of Computer Science and Technology, Harbin Institute of Technology, China

3Microsoft, Redmond, USA

yhshen@stu.xmu.edu.cn rrji@xmu.edu.cn zsc 2007@163.com wmzuo@hit.edu.cn wanyan@microsoft.com

Abstract

Weakly supervised object detection has attracted exten-

sive research efforts in recent years. Without the need of

annotating bounding boxes, the existing methods usually

follow a two/multi-stage pipeline with an online compul-

sive stage to extract object proposals, which is an order of

magnitude slower than fast fully supervised object detec-

tors such as SSD [31] and YOLO [34]. In this paper, we

speedup online weakly supervised object detectors by or-

ders of magnitude by proposing a novel generative adver-

sarial learning paradigm. In the proposed paradigm, the

generator is a one-stage object detector to generate bound-

ing boxes from images. To guide the learning of object-level

generator, a surrogator is introduced to mine high-quality

bounding boxes for training. We further adapt a structural

similarity loss in combination with an adversarial loss into

the training objective, which solves the challenge that the

bounding boxes produced by the surrogator may not well

capture their ground truth. Our one-stage detector outper-

forms all existing schemes in terms of detection accuracy,

running at 118 frames per second, which is up to 438×
faster than the state-of-the-art weakly supervised detectors

[8, 30, 15, 27, 45]. The code will be available publicly soon.

1. Introduction

Weakly supervised object detection (WSD) has attracted

extensive attention in the recent years [8, 28, 45, 10, 49, 27].

A significant advantage of WSD lies in removing the ne-

cessity of labor-intensive annotation of object bounding

boxes. Instead, it exploits image-level annotations that are

widely available from the Internet. To take advantage of

such image-level weak supervision, most previous methods

[49, 8, 45] use a Multiple Instance Learning (MIL) pipeline.

∗Corresponding author.

Figure 1: Comparison between the classic weakly super-

vised detectors and our method. The typical frameworks

employ a Multiple-Instance Learning paradigm, and are

two/multi-stage detectors during training and testing. Our

method adopts a Generative Adversarial Learning paradigm

to train a generator G, a discriminator D and a surrogator

F with only image-level supervision. During online infer-

ence, the generator G makes a one-stage detection without

proposals object directly from images, which is very fast.

In this pipeline, object proposals in an image are treated

as instances to form a bag, whose labels are assigned from

the corresponding image-level annotations. The objective

is then to estimate the probability of the instances contain-

ing a given object. The above pipeline has two key draw-

backs: Firstly, instances are considered independent when

obtaining foreground proposals. The correlation among in-

stances is typically ignored and the optimization might con-

verge to an undesirable local minimum [2]. Secondly, the

existing methods follow a two/multi-stage process in detec-

tion, making the corresponding inference inefficient. Partic-

ularly, it requires to first extract object proposals [46, 55, 3],

and thus cannot be applied to real-time applications. In ad-

dition, the image is typically augmented with five scales and

horizontal flips [8, 28] in both training and testing, which

further increases the online computation complexity signif-

icantly, sometimes to an order of magnitude.
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In order to overcome the above limitations, in this paper,

we train fast object detector for online WSD. Our goal is to

achieve comparable speed to the state-of-the-art fast fully

supervised detectors such as YOLO [35] or SSD [31], with

comparable (or even better) detection accuracy. In particu-

lar, we utilize one-stage process in online detection, which

discards the necessity of object proposals. We achieve this

goal by proposing a novel Generative Adversarial Learning

(GAL) paradigm, termed Generative Adversarial Learning

Towards Fast Weakly Supervised Detection (GAL-fWSD),

which regards the inference of WSD as a generative pro-

cess, supervised by a discriminator. In particular, a dis-

criminator D learns to distinguish the “real” distribution of

bounding boxes from the “fake” distribution, while a gener-

ator G learns to fool D by detecting high-quality bounding

boxes from images. Two specific designs are introduced:

First, since WSD does not have annotations of the

ground-truth bounding boxes, we introduce a surrogator

module F to mine promising bounding boxes from train-

ing data with only image-level annotations. It addresses the

difficulty of modeling individual instances with only global

labels. This pivotal module aggregates responses of individ-

ual object proposals to estimate a probabilistic distribution,

which is then used to refine the proposals to train G.

Second, to address the drawback of low efficiency, the

learned generator G is directly leveraged as a one-stage

detector. To the best of our knowledge, this is the first

attempt to learn genuine one-stage object detectors in a

weakly supervised setting. As known in object detectors

like SSD [31] and YOLO [35], one-stage detection is faster

and simpler, but requires object-level annotations for train-

ing, which is traditionally infeasible in WSD.

The proposed GAL-fWSD framework is shown in Fig. 1.

It works by iteratively learning a surrogator F to mine the

object proposals of foreground categories, as well as learn-

ing a one-stage detector G to emulate F . The above pro-

cedure is supervised by a discriminator D. Besides the ad-

versarial loss, we further introduce a structural similarity

loss to encourage G to not only fool the discriminator D

but also replicate the output of surrogator F , as inspired by

GAN based image-to-image translation [24, 29, 53]. Mean-

while, the F module also augments its proposals with those

generated by G to provide high-quality estimation of the

distribution for ground-truth bounding boxes. At the test

time, we only use the learned detector G for inference.

The contributions of this work are three folds:

• We propose a framework to adopt Generative Adver-

sarial Learning to train fast detectors with only image-

level annotation. To the best of our knowledge, this is

the first attempt to formulate WSD using GAL instead

of the traditional MIL paradigm.

• We propose to introduce a one-stage detector in WSD,

instead of the traditional two/multi-stage detector. We

achieve significant runtime speedup while maintaining

comparable or better detection accuracy.

• To overcome the unavailability of ground-truth bound-

ing boxes in training, we further propose to combine

a structural similarity loss with an adversarial loss to

train the generator network.

We present detailed evaluations on PASCAL VOC 2007,

2010 and 2012 [16], with comparison to several state-of-

the-art methods [8, 28, 45, 30, 27, 15]. Experiment re-

sults demonstrate that our method processes an image of

300× 300 size with astounding 118 frames per second (i.e.,

up to 438× faster than the state-of-the-art WSD in the lit-

erature), while still surpassing the detection accuracy of

above methods. Using a larger 512×512 input, our method

achieves even better accuracy, while can still perform real-

time detection.

2. Related Work

Weakly Supervised Detection. Weakly supervised ob-

ject detection has been widely studied in the past decade,

which typically uses a two/multi-stage pipeline, i.e., object

proposal generation, feature extraction and proposal classi-

fication. Cinbis et al. [10] presented a multi-fold multiple

instance learning approach, which avoids the performance

degeneration in object localization. Wang et al. [47] uti-

lized a probabilistic Latent Semantic Analysis (pLSA) to

learn latent categories. The category containing target ob-

ject class is selected by evaluating the discrimination score

of each latent category. Bilen et al. [7] proposed to couple

a smooth discriminative learning procedure with a convex

clustering algorithm, which searches for a small set of ex-

emplars to describe training data. Wang et al. [49] relaxed

the highly combinatorial MIL optimization problem into a

convex program and optimized it using stochastic gradient

descent. Bazzani et al. [5] masked out regions of an image

provided as input to a deep neural network, then embedded

the drop of recognition score caused by masking out into an

agglomerative clustering, which was used to merge regions

for object localization.

In recent years, many WSD methods [8, 28, 45] have

been proposed to learn end-to-end models with object pro-

posals extracted from images. Bilen et al. [8] proposed

a two-stream end-to-end CNN architecture. Kantorov et

al. [28] further proposed to add a contrast-based contex-

tual stream to form a three-stream CNN architecture. Tang

et al. [45] integrated the basic multiple instance detection

and multi-stage instance classification into a single network.

Two-stage fully supervised detectors are also well investi-

gated in weakly supervised setting [30, 27, 15]. Li et al.

[30] presented a progressive domain adaptation approach
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Figure 2: The proposed framework contains three modules during training. First, the generator G generates object bounding

boxes in the given images. Second, the surrogator F estimates the distributions of bounding boxes from the given images and

the corresponding image-level annotations. Third, the discriminator D distinguishes whether the images and distributions of

bounding boxes are “real” (which is based on surrogator F ) or “fake” (which comes from G). During inference, the generator

G is used to detect objects one-stage from the input image.

with both classification adaptation and detection adaptation.

Jie et al. [27] also learned a multi-label classification at the

first step, followed by online supportive sample harvesting

(augmented with a relative CNN score improvement metric)

to detect object proposals to learn Fast RCNN [17]. Diba

et al. [15] utilized a three-stage cascade model that incor-

porates localization, multiple instance learning and weakly

supervised object segmentation to mine foreground propos-

als.

All above WSD methods require object proposals [46,

55, 3] to be generated in online inference. Despite such

two-stage setting, some approaches [52, 54, 20, 50] pro-

posed to localize objects without using explicit proposals.

In those methods, response (or activation) map for each cat-

egory was computed and then converted to a binary map,

base on which bounding boxes are extracted. However, it

is hard to estimate to what extend the objects are occluded

mutually. Further more, those methods are still multi-stage

detectors, as they require extra steps to extract bounding

boxes. To our knowledge, no previous work has explored

adapting one-stage detectors for WSD, since such one-stage

detection like SSD [31] and YOLO [35] all require high-

quality ground-truth object annotation for offline training.

Fast Object Detection. To speedup online inference,

a natural choice is to decrease the proposal-wise subnet-

work and increase the shared convolutional subnetwork.

For example, R-CNN [18] had no shared convolutional

layer, which made it very slow. In contrast, Faster R-CNN

[36] shared most of the convolutional layer, which largely

speedups from R-CNN. R-FCN [12] further removed all

proposal-wise layers, which made it faster, but still required

a time-consuming proposal feature pooling layer. Although

SSD [31] had more than 8, 000 default boxes, it has neither

proposal-wise layers nor proposal pooling layers, which

makes it fastest among the above detectors. Institutionally,

the network architecture also impacts the inference time.

For example, Kantorov et al. [28] used Alex-Net [1] as

backbone to reduce the network processing time. However,

such a small network may hurt the accuracy.

Generative Adversarial Network. GAN was originally

proposed by Goodfellow et al. [19] for synthesizing high-

quality images. Recent efforts [9, 51, 33, 4, 21] are made to

improve the stability of GAN in training. GAN has achieved

impressive results in image generation [33], representation

learning [37], style transfer [53] and image super-resolution

[29]. However, there are very limited works that com-

bine object detection and generative adversarial learning to-

gether. Wang et al. [48] utilized adversarial training to mine

hard positive examples with different occlusions and defor-

mations to train detectors. Contradictory from the above

works, we adopt the generative adversarial learning to gen-

erate high-quality bounding boxes, which innovatively ap-

proximating the estimated distribution of bounding boxes

for WSD.

3. The Proposed Method

3.1. Generative Adversarial Learning for Fast WSD

Typical fast one-stage object detectors are learned to fit

the ground-truth bounding boxes of object instances. When

turning to WSD, the annotation of object bounding boxes is

not unavailable, and what we have is only the image-level

annotation. For fast WSD, one usual solution is to train

the object detector to fit the estimated bounding boxes to

approximate the ground-truth ones. Nevertheless, conven-

tional classification/regression losses [18, 17, 31, 34] are de-
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Figure 3: The network architecture of surrogator F .

fined on the ground-truth bounding boxes, and cannot cap-

ture the distribution pb of the estimated bounding boxes.

Inspired by the recent work that used GAN to estimate

generative models [19], we introduce an adversarial loss on

the distribution of bounding boxes (described by location,

size, and category), which enables the learning of detectors

from only image-level annotations. As illustrate in Fig. 2,

our key innovation lies in a novel Generative Adversarial

Learning paradigm toward Fast Weakly Supervised Detec-

tion (GAL-fWSD). In the training stage, GAL-fWSD alter-

nates between: (i) a discriminator D is introduced to dis-

tinguish the generated bounding boxes from the estimated

ones, and (ii) the generator is updated to generate more

high-quality bounding boxes to imitate the distribution pb.

Moreover, as explained in the following subsection, a struc-

tural similarity loss is further incorporated with adversarial

loss to guide the learning of generator.

Another critical issue in GAL-fWSD is the estimation

of bounding boxes based on image-level annotation. Here

we present a surrogator F to estimate accurate proposals.

In particular, the generator G is very fast without the need

of object proposal, and it is our final detector to perform

fast online detection, while the surrogator F is developed

based on the slow but accurate proposals, both of which are

mutually reinforced in the following Generative Adversarial

Learning framework.

3.2. Model Architecture

Generator G. Give an image x, G outputs object bound-

ing boxes Gl(x) with the associated probability Gc(x) and

implicitly defines a probability distribution pg . We utilize

a one-stage proposal-free detector introduced in [31] as G.

The reason of not using the more popular two-stage detec-

tors is these detectors usually have an explicit object pro-

posal stage, which either produces determined bounding

boxes independent of object categories [46, 55, 3], or re-

quires a complicated network structure [36]. The former ap-

proach restricts G from having sufficient diversity to model

the distribution of bounding box pb. And the latter approach

closely couples proposal extractors with detectors, which

makes the architecture complicated. On the contrary, one-

stage detectors have the potential to be faster and simpler.

We briefly describe G below. In one-stage detectors,

multiple feature maps at the top of network are used for

prediction. Different feature map has different receptive

fields, which allows to detect different scale of objects in

the images. Each cell on feature map is associated to a set

of default bounding boxes with different scales and aspect

ratios implicitly. The detectors predict per-category scores

of default bounding boxes, which indicate the presence of a

category instance in each of those boxes. Then, regression

is done to fit the bounding boxes tighter around the instance.

Predictors in high-level feature maps are responsible for de-

tecting large objects and vice versa, as illustrate in Fig. 2.

More details can be found in [31].

Discriminator D. The discriminator D is designed to

provide high-quality guidance to supervise G. Intuitively,

it is a deep convolutional network whose inputs are an im-

ages x and bounding boxes {bi}. In detail, VGG16 [41] is

applied to obtain feature map φ(x) from its last convolution

layer. Then the original fully-connected layers are adapted

to take the feature map φ(x), normalized coordinates and

probability of bounding boxes {bi} as inputs and output one

entry, followed by a sigmoid layer to compute the probabil-

ity that bounding boxes {bi} are high-quality for image x.

This network is optimized to distinguish pb and pg using

stochastic gradient descent with backpropagation.

Surrogator F . We use object-aware spatial information

to refine the proposals, which is a variation of the method

proposed in [8] by using object-aware spatial information

to rectify proposals. As show in Fig. 3, F is a three-stream

deep network. The proposal feature from the SPP layer [22]

is forked into two streams, i.e., classification stream and de-

tection stream. Suppose we have C categories and R object

proposals {p1 . . . pR}, the two streams produce two score

matrices xc, xd ∈ R
R×C by two fully-connected layers,

respectively. Both score matrices are normalized by soft-

max functions over categories and proposals, respectively:

[σ(xc)]ij = e
xc
ij

∑
C
k=1

e
xc
ik

and [σ(xd)]ij = e
xd
ij

∑
R
r=1

e
xd
rj

. Then,

the element-wise product of the output of the two streams

is again a score matrix: xs = σ(xc) · σ(xd). To acquire

image-level classification scores, a sum pooling is further

applied: yk =
∑R

r=1 x
s
rk. Note xs is calculated based on

local information of each individual proposal. Therefore,

the relationship between different proposals from the same

image is abnegated and the learning process may converge

to an undesirable local minimum. To handle this, a response

map Mk for category k is obtained by back-propagating the

image-level classification score yk to pixels. As the image-

level classification score is the sum of individual proposal

scores, it is equivalent to back-propagating the score of each

proposal to image pixels, which forms response maps that

reveal the shape of objects.

To generate the output of the third stream, a rectifier is

further defined based on the contrast between responses of

a proposal and its contextual region: xr
rk = ρrk − ρcrk,

where the first term ρrk estimates the response of each pro-
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posal: ρrk =
1

√

|pr|

∑

i,j∈pr
✶[Mk

ij ≥ γ · maxMk], and

the second term ρcrk estimates the contextual response of

each proposal as ρrk.

The final score of each proposal is obtained by taking the

element-wise product on the output of the three streams:

xg = σ(xc) · σ(xd) · xr. Thus, the estimation xs of the

original proposal score is rectified by the output of the third

stream xr, leading to xg .

3.3. The Model Objective

We combine the adversarial objective function LGAN

with a structural similarity function LSTR:

L = LGAN + λLSTR, (1)

where λ is the weight associated with second loss term.

Adversarial Loss. The objective function of generative

adversarial learning is formulated as:

min
G

max
D

LGAN =
∑

x,b∼pdata(x,b)

[

log
(

D(x, b)
)]

+

∑

x∼pdata(x)

[

log
(

1−D
(

x,G(x)
)

)]

,

(2)

where pdata(x, b) denotes the bivariate distribution of images

and the corresponding object bounding boxes. In particular,

we consider a discriminator D (to distinguish which distri-

bution the bounding boxes come from), and a generator G

(to provide bounding boxes to fool the discriminator D).

The distribution of object bounding boxes pdata(x, b) is es-

timated by the surrogator F from the distribution of object

proposals p. Such distribution can be obtained by running

the existing algorithms such as [46, 55, 3]. We further have

b = F (x, p) in Eq. 2. It’s worth noting that, although a

bounding box b and an object proposal p may have the same

coordinate, b is associated with a probabilistic distribution

among multiple categories while p is only related with a

category-less object proposal. To this end, we separate the

objective function LGAN to optimize the D and G, respec-

tively:

D∗ = argmax
D

∑

x,p∼pdata(x,p)

[

log
(

D
(

x, F (x, p)
)

)]

+

∑

x∼pdata(x)

[

log
(

1−D
(

x,G(x)
)

)]

,

(3)

G∗ = argmin
G

∑

x∼pdata(x)

[

log
(

1−D
(

x,G(x)
)

)]

. (4)

For each object category, the surrogator F aims to translate

a distribution from pp to pb. If pb approximates the ground-

truth distribution well, the discriminator is able to provide

high-quality supervision to improve G.

The above formulation encourages the detector, i.e., gen-

erator G, to match the distribution of object bounding

boxes. It differs from previous works that forced the detec-

tors to fit just one discriminative bounding box per instance.

In contrast, the generator G implicitly defines a probabil-

ity distribution pg . Then, G and D will reach a joint opti-

mal [19] when the generative model perfectly replicates the

bounding boxes distribution pb, i.e., pb = pg
1 .

Structural Similarity Loss. We further introduce a

structural similarity loss, which forces G to model not only

pb of the entire data, but also the bounding box patterns of

individual images. We first match each bounding box gen-

erated by G to the bounding boxes from F with the best

Jaccard overlap. For k-th category, W k
ij = {1, 0} is de-

fined as the indicator for matching the i-th bounding boxes

from G to the j-th from F . If the category of highest con-

fidence score of bounding boxes from F is the background,

the matched bounding boxes from G are treated as nega-

tive samples, and vice versa. The corresponding similarity

function LSTR is defined as:
∑

x,p∼pdata(x,p)

[

Lconf

(

F c(x, p), Gc(x)
)

+

αLloc

(

F c(x, p), F l(x, p), Gl(x)
)

]

,

(5)

where F c(x, p) and F l(x, p) are the probability and co-

ordinates of F (x, p), respectively, which are similar for

Gc(x, z), Gl(x) and G(x). The first term of Eq. 5 mea-

sures the probability similarity of bounding boxes between

G(x) and F (x, p), which is specified as:

Lconf(T, S) =−
∑

i=1

∑

j∈Pos

∑

k=1

TikW
k
i,j log(Sjk)

−
∑

i=1

∑

j∈Neg

∑

k=1

(1− Ti0) log(Sj0),
(6)

where Tik and Ti0 denote the estimated probabilities of the

i-th bounding box for category k and the background, re-

spectively, which are similar for Sjk and Sj0.

The second term in Eq. 5 is localization similarity loss:

Lloc(T, U, V ) =
∑

i=1

∑

j∈Pos

∑

k=1

TikW
k
ijsmoothL1(Ui − Vj),

(7)

where Ui = {Ux
i , U

y
i , U

w
i , Uh

i } denotes the coordinates

of the i-th bounding box, similar to Vj . The function

smoothL1(Z) is similar to the regression loss as in [17]:

smoothL1(Z) =
∑

m∈{x,y,w,h}

{

0.5(Zm)2 if |Zm| < 1
|Zm| − 0.5 otherwise

.

(8)

1 Note that a distortion operation is applied to images, which increases

the diversity of bounding boxes from the generator G. As simulated to

human annotators, we expect the generator to be able to produce notably

different object bounding boxes given an image.
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The weighting term α is set to 1 as in [31].

Then the full objective function can be reformulated as:

L = LGAN + λLSTR

=
∑

x,p∼pdata(x,p)

[

log
(

D
(

x, F (x, p)
)

)

+

λ
{

Lconf

(

F c(x, p), Gc(x)
)

+

αLloc

(

F c(x, p), F l(x, p), Gl(x)
)

}]

+

∑

x∼pdata(x)

[

log
(

1−D
(

x,G(x)
)

)]

.

(9)

Feedback Mechanism. The surrogator F is not fixed

during training, which is instead updated iteratively with D

and G. At each step, we first update D, then G, similar to

the vanilla GAN [19]. To update F , we first merge the orig-

inal objectness proposals with the bounding boxes gener-

ated by G, then F is updated with the augmented proposals.

Therefore, all function F (x, p) in Eq. 9 are reformulated as

F (x, {p,Gl(x)}). Although the bounding boxes generated

by G are category-specific, we treat them as object proposal

for simplicity.

During training, G feedbacks high-quality bounding

boxes to improve the performance of F , which in turn pro-

vides high-quality estimation of distribution pb to improve

G through LGAN and LSTR (implicitly or explicitly). With

such feedback, G is capable to learn unknown distribution

of bounding boxes, which is estimated by F from an al-

terable set of object proposals. If G generates high-quality

bounding boxes, Gl(x) may dominate the distribution of

F (x, {p,G(x)}), i.e., average of F c(x,G(x)) is higher than

that of F c(x, p). From this perspective, the G also fools F ,

as G provides higher-quality bounding boxes than the orig-

inal proposals.

4. Experiment

4.1. Experimental Setup

Datasets. We conduct experiments on PASCAL VOC

2007, 2010 and 2012 [16], which are commonly used in

object detection. PASCAL VOC 2007 consists of 2, 501
training images, 2, 510 validation images, and 4, 092 test

images over 20 categories. PASCAL VOC 2010 consists of

4, 998 training images, 5, 105 validation images, and 9, 637
test images over 20 categories. PASCAL VOC 2012 con-

sists of 5, 717 training images, 5, 823 validation images, and

10, 991 test images over 20 categories. We use both train

and validation splits as our training sets, and the test split as

our test set. As we focus on weakly supervised detection,

only image-level labels are used in training.

Evaluation Protocols. First, we evaluate the mean aver-

age precision (mAP) on the test set following the standard

PASCAL VOC protocol [16]. Second, because PASCAL

VOC actually has object-level annotation, we compute Cor-

Loc [14] on the training set. CorLoc is a metric to evaluate

object localization. It computes the percentage of images

in which a method correctly localizes an object of the tar-

get category. Following [16], a bounding box is considered

correct if it has at least 0.5 intersection-over-union with any

ground truth bounding boxes of the target category.

Implementation Details. We use VGG16 [41] pre-

trained on ImageNet [13] as the backbone for all modules,

i.e., D, G and F . Pre-training on ImageNet classification

data [13] does not require bounding box annotations. We

set the parameter λ = 10−3. To obtain a good initialization

for G, we first train F with the original objectness propos-

als from [3] with a learning rate of 10−3. Then we itera-

tively update the above models. At each step, we train D

for 1, 000 iterations using stochastic gradient descent with

a learning rate of 10−3, momentum of 0.9, weight decay of

0.005, minibatch size of 128, while a minibatch size of 32

is used to train G. To train F , we keep the same setting as

D for 40 iterations, which is about a epoch of VOC 2007

training set. We set the rest hyper-parameters of G and F

following respective papers [31, 8]. To trade-off speed and

accuracy, we use two difference input sizes: 300× 300 and

512 × 512 for G. Our implementation is done using Caffe

[25]

4.2. Comparison to StateoftheArts

Tab. 1 shows our results on PASCAL VOC 2007 test split

in termed of mAP. The low-resolution version, i.e., GAL-

fWSD300, is already more accurate than the state-of-the-

art methods. Note that 300 × 300 is the lowest resolution

of input in Tab. 1. When we train GAL-fWSD on a larger

512 × 512 input size, it further surpasses the state-of-the-

arts [8] and [15] by 12.7% and 4.7% mAP, respectively.

We want to point out that most methods in Tab. 1 used a

multi-scale setting during training and testing, and their in-

put resolution of the max scale is far larger than ours. Our

performance can be further improved by using the context

information [28], size estimation [39] and the ensemble of

multiple networks [44]. GAL-fWSD shows large improve-

ment for categories with deformable parts, for example,

bird, dog, cat, and person. All alternative methods did not

perform well in the person category, whose mAPs are all

≤ 20.3%. Our GAL-fWSD300 achieves 81.3% improve-

ment compared to [11] for person category. However, our

modes are not good at detecting horse. By using the detec-

tion analysis tool [23], we find that most false positives are

due to poor localization.

Tab. 2 shows our results on the PASCAL VOC 2007

training set in termed of CorLoc. Our two models con-

sistently boost the performance by 11.4% and 9.4%, re-

spectively, compared to [15]. It indicates that our model
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Table 1: Detection comparisons to the state-of-the-art methods on PASCAL VOC 2007 test set in terms of AP(%).

Method aero bike bird boat btl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv Av.

Song et al.’14 [43] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

Wang et al.’14 [47] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

Cinbis et al.’15 [11] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

Bilen et al.’16 [8] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

Bency et al.’16 [6] - - - - - - - - - - - - - - - - - - - - 25.7

Li et al.’16 [30] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

Kantorov et al.’16 [28] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

Jie et al.’17 [27] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

Tang et al.’17 [45] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

Shi et al.’17 [38] – – – – – – – – – – – – – – – – – – – – 33.8

Diba et al.’17 [15] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

GAL-fWSD300 52.0 60.5 44.6 26.1 20.6 63.1 66.2 65.3 15.0 50.1 52.8 56.7 21.3 63.4 36.8 22.7 47.9 51.7 68.9 54.1 47.0

GAL-fWSD512 58.4 63.8 45.8 24.0 22.7 67.7 65.7 58.9 15.0 58.1 47.0 53.7 23.8 64.3 36.2 22.3 46.7 50.3 70.8 55.1 47.5

Table 2: Localization comparisons to the state-of-the-art methods on PASCAL VOC 2007 training set in terms of CorLoc(%).

Method aero bike bird boat btl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv Av.

Siva et al.’12 [42] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2

Shi et al.’13 [40] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2

Wang et al.’14 [47] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

Cinbis et al.’15 [11] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0

Wang et al.’15 [49] 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2

Bilen et al.’16 [8] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

Li et al.’16 [30] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4

Kantorov et al.’16 [28] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1

Jie et al.’17 [27] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1

Zhu et al.’17 [54] 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6

Tang et al.’17 [45] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

Shi et al.’17 [38] – – – – – – – – – – – – – – – – – – – – 59.5

Diba et al.’17 [15] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

GAL-fWSD300 76.5 76.1 64.2 48.1 52.5 80.7 86.1 73.9 30.8 78.7 62.0 71.5 46.7 86.1 60.7 47.8 82.3 74.7 83.1 79.3 68.1

GAL-fWSD512 78.6 81.9 63.6 40.3 48.8 80.7 85.3 76.3 30.3 78.0 54.5 65.3 48.4 86.5 56.3 46.9 76.0 68.1 83.9 73.1 66.1

Table 3: Ablation study of GAL-fWSD300 on Pascal VOC.
(a) Effects of various components.

LGAN LSTR #Feedback mAP

✓ 39.2

✓ ✓ 44.3

✓ ✓ 128 45.8

✓ ✓ 256 46.5

✓ ✓ 512 47.0

✓ ✓ 1024 47.1

(b) Feedback proposals vs. original pro-

posals.

#Proposals 512 1536

+Feedback +512 +512

+Original +512 +512

Total 1024 2048

mAP 43.8 46.5 44.3 47.0

Table 4: Detection and localization comparisons
to the state-of-the-art methods on PASCAL VOC
2010 and 2012 in terms of mAP (%) and CorLoc
(%). †http://host.robots.ox.ac.uk:8080/anonymous/2TGWVW.html
§http://host.robots.ox.ac.uk:8080/anonymous/5XCKR0.html

Method
2010 2012

mAP (%) CorLoc (%) mAP (%) CorLoc (%)

Oquab et al.’15 [32] – – 11.7 –

Cinbis et al.’15 [11] 27.4 55.2 – –

Li et al.’16 [30] 30.7 – 29.1 –

Kantorov et al.’16 [28] – – 35.3 54.8

Bency et al.’16 [6] – – 26.5 –

Tang et al.’17 [45] – – 37.9 62.1

Jiang et al.’17 [26] 36.0 – 33.6 –

Diba et al.’17 [15] 39.5 – 37.9 –

GAL-fWSD300 45.1† 68.3 43.1§ 67.2

achieves the best localizing performance (6 out of 20 cate-

gories in GAL-fWSD300), which verifies the effectiveness

of our scheme from another perspective.

We further conduct experiments on PASCAL VOC 2010

and 2012. Tab. 4 shows our result on the PASCAL VOC

2010 and 2012 on both metrics. Compared to other meth-

ods, our method consistently achieves the state-of-the-art

performance using a single model. We further highlight

Table 5: Efficiency comparisons to the state-of-the-art

methods on PASCAL VOC 2007 test set in terms of

speed(FPS).

Method Backbone # Scales Flips?
Time(ms)

FPS
Proposal Network NMS Total

Bilen et al.’16 [8] VGG16 5 ✓ 250 3451 19 3720 0.27

Li et al.’16 [30] VGG16 1 ✗ 250 217 6 473 2.11

Kantorov et al.’16 [28] VGG-F 5 ✓ 1510 1140 14 2664 0.38

Tang et al.’17 [45] VGG16 5 ✓ 1510 2052 4 3566 0.28

Jie et al.’17 [27] VGG16 1 ✗ 250 321 6 577 1.73

GAL-fWSD300 VGG16 1 ✗ 0 8.28 0.2 8.48 118

GAL-fWSD512 VGG16 1 ✗ 0 19.73 0.2 19.93 50

that, even using low-resolution input size (300 × 300), our

method still significantly outperforms all methods that use

multi-scale input for both training and testing.

4.3. Online Inference Efficiency

We compare our method to several state-of-the-art meth-

ods [8, 30, 28, 45, 27] in term of inference time. For fair

comparison, we re-implement the methods in [8, 28, 27]

with Caffe [25] framework. Thus, the time costs of all meth-

ods in Tab. 5 are comparable. We reproduce all methods in

Tab. 5 on our server and keep all the other settings exactly

the same. We measure the speed using a GTX 1080Ti GPU

and cuDNN v6 with Intel i7-6900K@3.20GHz.

Tab. 5 shows the comparison between GAL-fWSD and

other the state-of-the-art methods. Our fastest model (GAL-

fWSD300) quantitatively performs at 118 frame per second

and is 55× and 438× speedup comparing to [30] and [8], re-

spectively. According to the profiling, there are three main

reasons that make detectors inefficient: First, the multi-
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Figure 4: Speed and accuracy comparison between differ-

ent WSD methods on PASCAL VOC 2007 detection task.

The mAPs are from the respective paper, although our re-

production results may have slight difference.

Figure 5: The performance of SSD300 with various an-

notations. The red line shows the performance of GAL-

fWSD300.

scale setting in inference significantly pulls down the speed

[8, 28, 45]. Second, the proposal extraction used at least

250 milliseconds per image, as illustrated in the fifth col-

umn in Tab. 5. Third, the proposal-wise operation in net-

work, e.g. SPP layer, also consumes a lot of time. Fig. 4

further demonstrates that our both methods outperform all

other in terms of speed and accuracy by a large gap.

4.4. Ablation Study

We use GAL-fWSD300 on Pascal VOC 2007 test set

for ablation study. As shown in Tab. 3a, optimizing LGAN

and LSTR jointly improves the performance by 5.1%, which

shows the effectiveness of the structural similarity loss.

With the feedback mechanism, the performance is further

improved by a large margin, which confirms our intuition

that feedback proposals can be used to help surrogator F ,

and in turn boost the performance of generator G. Tab. 3b

also shows that feedback mechanism is more effective than

simply increasing the number of region proposals on im-

proving the performance.

4.5. Robustness to Noisy Annotation

We study the robustness of G by analyzing the perfor-

mance of SSD300 [31] when applying synthetic noise to

the ground-truth annotations. The models are trained on

PASCAL VOC 2007 training and validation split, and tested

on the test split. We introduce two mechanisms to em-

ulate noise. The first replaces the ground-truth bounding

boxes by randomly sampling a region from the images. The

second randomly shifts the ground-truth bounding boxes,

but keeps the centers of bounding boxes inside the image

boundary. As illustrated in the left of Fig. 5, with the in-

creasing proportion of noisy annotations, the performance

of G drops dramatically. It reveals that we need a precise

estimation of the bounding boxes distribution to supervise

the training of G.

We also randomly drop a proportion of training image to

study the robustness of G as illustrated in the right of Fig. 5,

which indicates the importance of annotations amount, i.e.,

ground-truth bounding boxes. The red line in Fig. 5 in-

dicates the performance of GAL-fWSD300. Our detec-

tion accuracy approximates the fully supervised methods,

whose training data contains about 46% ∼ 50% noisy an-

notations. The performance of SSD300 drops to GAL-

fWSD300 when it has only 10% training images. In other

words, an image with object-level annotations (which are

required by fully supervised detectors) is probably worth 10
images with only image-level annotations in our method.

5. Conclusion

In this paper, we propose an effective framework GAL-

fWSD towards real-time weakly supervised object detec-

tion, which tackles the need of bounding-box-level super-

vision from a novel perspective of Generative Adversarial

Learning. In particular, we design the generator to be ex-

tremely fast by using state-of-the-art one-stage object detec-

tor. In addition, a surrogator module and feedback mecha-

nism are introduced to estimate the distribution of object

bounding boxes. Finally, a novel structural similarity loss

together with adversarial loss is further proposed to opti-

mize the model. Extensive experiments show that GAL-

fWSD significantly speedups the state-of-the-art weakly su-

pervised detectors while achieving the state-of-the-art de-

tection accuracy.
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