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Abstract

Unlike on images, semantic learning on 3D point clouds

using a deep network is challenging due to the naturally

unordered data structure. Among existing works, Point-

Net has achieved promising results by directly learning on

point sets. However, it does not take full advantage of a

point’s local neighborhood that contains fine-grained struc-

tural information which turns out to be helpful towards

better semantic learning. In this regard, we present two

new operations to improve PointNet with a more efficient

exploitation of local structures. The first one focuses on

local 3D geometric structures. In analogy to a convolu-

tion kernel for images, we define a point-set kernel as a

set of learnable 3D points that jointly respond to a set of

neighboring data points according to their geometric affi-

nities measured by kernel correlation, adapted from a simi-

lar technique for point cloud registration. The second one

exploits local high-dimensional feature structures by recur-

sive feature aggregation on a nearest-neighbor-graph com-

puted from 3D positions. Experiments show that our net-

work can efficiently capture local information and robustly

achieve better performances on major datasets. Our code

is available at http://www.merl.com/research/

license#KCNet

1. Introduction

As 3D data become ubiquitous with the rapid develop-

ment of various 3D sensors, semantic understanding and

analysis of such kind of data using deep networks is gaining

attentions [3, 20, 29, 32, 41], due to its wide applications in

robotics, autonomous driving, reverse engineering, and civil

infrastructure monitoring. In particular, as one of the most

primitive 3D data format and often the raw 3D sensor out-

put, 3D point clouds cannot be trivially consumed by deep

networks in the same way as 2D images by convolutional

networks. This is mainly caused by the irregular organiza-

tion of points, a fundamental challenge inherent in this raw

∗The authors contributed equally. This work is supported by MERL.

Figure 1: Visualization of learned kernel correlations.

To represent complex local geometric structures around a

point p, we propose kernel correlation as an affinity me-

asure between two point sets: p’s neighboring points and

kernel points. This figure shows kernel point positions and

width as sphere centers and radius (top row), and the cor-

responding filter responses (other rows) of 5 kernels over 4

objects. Colors indicate affinities normalized in each object

(red: strongest, white: weakest). Note the various structures

(plane, edge, corner, concave and convex surfaces) captured

by different kernels. Best viewed in color.

data format: compared with a row-column indexed image, a

point cloud is a set of point coordinates (possibly with attri-

butes like intensities and surface normals) without obvious

orderings between points, except for point clouds computed

from depth images.

Nevertheless, influenced by the success of convolutio-

nal networks for images, many works have focused on 3D

voxels, i.e., regular 3D grids converted from point clouds

prior to the learning process. Only then do the 3D con-

volutional networks learn to extract features from voxels

[2, 7, 23, 25, 30, 42]. However, to avoid the intractable com-

putation time complexity and memory consumptions, such
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(b) Segmentation network.

Figure 2: Our KCNet architectures. Local geometric structures are exploited by the front-end kernel correlation layer

computing L different affinities between each data point’s K nearest neighbor points and L point-set kernels, each kernel

containing M learnable 3D points. The resulting responses are concatenated with original 3D coordinates. Local feature

structures are later exploited by graph pooling layers, sharing a same graph per 3D object instance constructed offline from

each point’s 3D Euclidean neighborhood. ReLU is used in each layer without Batchnorm. Dropout layers are used for the

last MLPs. Other operations and base network architectures are similar to PointNet [29] for both shape classification and part

segmentation. Solid arrows indicate forward operation with backward propagation, while dashed arrows mean no backward

propagation. Green boxes are input data, gray are intermediate variables, and blue are network predictions. We name our

networks as KCNet for short. Best viewed in color.

methods usually work on a small spatial resolution only,

which results in quantization artifacts and difficulties to le-

arn fine details of geometric structures, except for a few re-

cent improvements using Octree [32, 41].

Different from convolutional nets, PointNet [29] provi-

des an effective and simple architecture to directly learn

on point sets by firstly computing individual point featu-

res from per-point Multi-Layer-Perceptron (MLP) and then

aggregating all features as a global presentation of a point

cloud. While achieving state-of-the-art results in different

3D semantic learning tasks, the direct aggregation from per-

point features to a global feature suggests that PointNet does

not take full advantage of a point’s local structure to capture

fine-grained patterns: a per-point MLP output only encodes

roughly the existence of a 3D point in a certain nonlinear

partition of the 3D space. A more discriminative represen-

tation is expected if the MLP can encode not only “whet-

her” a point exists, but also “what type of” (e.g., corner vs.

planar, convex vs. concave, etc.) a point exists in the non-

linear 3D space partition. Such “type” information has to

be learned from the point’s local neighborhood on the 3D

object surface, which is the main motivation of this paper.

Attempting to address the above issue, PointNet++ [31]

propose to segment a point set into smaller clusters, send

each through a small PointNet, and repeat such a process

iteratively for higher-dimensional feature point sets, which

leads to a complicated architecture with reduced speed.

Thus, we try to explore from a different direction: is there

any efficient learnable local operations with clear geome-

tric interpretations to help directly augment and improve the

original PointNet while maintaining its simple architecture?

To address this question, we focus on improving Point-

Net using two new operations to exploit local geometric and

feature structures, as depicted in Figure 2, regarding two

classic supervised representation learning tasks on 3D point

clouds. Our contributions are summarized as follows:

• We propose a kernel correlation layer to exploit local

geometric structures, with a clear geometric interpre-

tation (see Figure 1 and 3).

• We propose a graph-based pooling layer to exploit lo-

cal feature structures to enhance network robustness.

• Our KCNet efficiently improves point cloud semantic

learning performances using these two new operations.

2. Related Works

2.1. Local Geometric Properties

We will first discuss some local geometric properties fre-

quently used in 3D data and how they lead us to modify

kernel correlation as a tool to enable potentially complex

data-driven characterization of local geometric structures.

Surface Normal. As a basic surface property, sur-

face normals are heavily used in many areas including 3D

shape reconstruction, plane extraction, and point set regis-

tration [5, 14, 28, 39, 40]. They usually come directly from

CAD models or can be estimated by Principal Component

Analysis (PCA) on data covariance matrix of neighboring

points as the minimum variance direction [15]. Using per-

point surface normal in PointNet corresponds to modeling

a point’s local neighborhood as a plane, which is shown

in [29, 31] to improve performances comparing with only

3D coordinates. This meets our previous expectation that a

point’s “type” along with its positions should enable better

representation. Yet, this also leads us to a question: since

normals can be estimated from 3D coordinates (not like co-

lors or intensities), then why PointNet with only 3D coor-
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dinate input cannot learn to achieve the same performance?

We believe it is due to the following: 1) the per-point MLP

cannot capture neighboring information from just 3D coor-

dinates, and 2) global pooling either cannot or is not effi-

cient enough to achieve that.

Covariance Matrix. A second-order description of a lo-

cal neighborhood is through data covariance matrix, which

has also been widely used in cases such as plane extraction,

curvature estimation [11,14] along with normals. Following

the same line of thought from normals, the information pro-

vided by the local data covariance matrix is actually richer

than normals as it models the local neighborhood as an el-

lipsoid, which includes lines and planes in rank-deficient

cases. We also observe empirically that it is better than nor-

mals for semantic learning.

However, both surface normals and covariance matrices

can be seen as handcrafted and limited descriptions of local

shapes, because point sets of completely different shapes

can share a similar data covariance matrix. Naturally, to

improve performances of both 3D semantic shape classifi-

cation of fine-grained categories and 3D semantic segmen-

tation, more detailed analysis of each point’s local neighbor-

hood is needed. Although PointNet++ [31] is one direct

way to learn more discriminative descriptions, it might not

be the most efficient solution. Instead, we would like to find

a learnable local description that is efficient, simple, and has

a clear geometric interpretation just as the above two hand-

crafted ones, so it can be directly plugged into the original

elegant PointNet architecture.

Kernel Correlation. Another widely used description

is the similarity. For images, convolution (often imple-

mented as cross-correlation) can quantify the similarity be-

tween an input image and a convolution kernel [21]. Yet in

face of the aforementioned challenge of defining convolu-

tion on point clouds, how can we measure the correlation

between two point sets? This question leads us to kernel

correlation [17, 38] as such a tool. It has been shown that

kernel correlation as a function of pairwise point distance

is an efficient way to measure geometric affinity between

2D/3D point sets and has been used in point cloud registra-

tion and feature correspondence problems [17, 33, 38]. For

registration, in particular, a source point cloud is transfor-

med to best match a reference one by iteratively refining

a rigid/non-rigid transformation between the two to maxi-

mize their kernel correlation response. Thus, we propose

the kernel correlation layer to treat local neighboring points

and a learnable point-set kernel as the source and reference

respectively, which is further detailed in Section 3.1.

2.2. Deep Learning on Point Clouds

Recently, deep learning on 3D input data, especially

point clouds, attracts increasing research attention. There

exist four groups of approaches: volumetric-based, patch-

based, graph-based and point-based. Volumetric-based ap-

proach partitions the 3D space into regular voxels and apply

3D convolution on the voxels [2,7,23,25,30,42]. However,

volumetric representation requires a high memory and com-

putational cost to increase spatial resolution. Octree-based

and kd-tree based networks have been introduced recently,

but they could still suffer from the memory efficiency pro-

blem [20, 32, 41]. Patch-based approach parameterizes 3D

surface into local patches and apply convolution over these

patches [3, 24]. The advantage of this approach is the in-

variance to surface deformations. Yet it is non-trivial to

generalize from mesh to point clouds [43]. Graph-based

approach characterizes point clouds by graphs. Naturally,

graph representation is flexible to irregular or even non-

Euclidean data such as point clouds, user data on a social

network, and gene data [1, 9, 18, 19, 26, 27, 27]. There-

fore, a graph e.g. a connectivity graph or a polygon mesh

can be used to represent a 3D point cloud, convert to the

spectral representation and apply convolution in spectral

domain [4, 8, 10, 13, 19, 22]. Another study also investi-

gates convolution over edge attributes in the neighborhood

of a vertex from graphs built on point clouds [34]. Point-

based approach such as PointNet directly operates on point

clouds, with spatial features learned for each point, and

global features obtained by aggregating over point featu-

res through max-pooling [29]. PointNet is simple yet ef-

ficient for the applications of shape classification and seg-

mentation. However, global aggregation without explicitly

considering local structures misses the opportunity to cap-

ture fine-grained patterns and suffers from sensitivity to noi-

ses. To further extend PointNet to local structures, we use

a simple graph-based network: we construct k nearest neig-

hbor graphs (KNNG) to utilize the neighborhood informa-

tion for kernel correlation and to recursively conduct the

max-pooling operations in each nodes neighborhood, with

the insight that local points share similar geometric structu-

res. KNNG is usually used to establish local connectivity

information, in the applications of point cloud on surface

detection, 3D object recognition, 3D object segmentation

and compression [12, 35, 37].

3. Method

We now explain the details of learning local structures

over point neighborhoods by 1) kernel correlation that me-

asures the geometric affinity of point sets, and 2) a KNNG

that propagates local features between neighboring points.

Figure 2 illustrates our full network architectures.

3.1. Learning on Local Geometric Structure

As mentioned earlier, in our network’s front-end, we

take inspiration from kernel correlation based point cloud

registration and treat a point’s local neighborhood as the

source, and a set of learnable points, i.e., a kernel, as the
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reference that characterizes certain types of local geometric

structures/shapes. We modify the original kernel correla-

tion computation by allowing the reference to freely adjust

its shape (kernel point positions) through backward propa-

gation. Note the change of perspective here compared with

point set registration: we want to learn template/reference

shapes through a free per-point transformation, instead of

using a fixed template to find an optimal transformation be-

tween source and reference point sets. In this way, a set of

learnable kernel points is analogous to a convolutional ker-

nel, which activates to points only in its joint neighboring

regions and captures local geometric structures within this

receptive field characterized by the kernel function and its

kernel width. Under this setting, the learning process can

be viewed as finding a set of reference/template points en-

coding the most effective and useful local geometric struc-

tures that lead to the best learning performance jointly with

other parameters in the network.

Specifically, we adapt ideas of the Leave-one-out Kernel

Correlation (LOO-KC) and the multiply-linked registration

cost function in [38] to capture local geometric structures

of a point cloud. Let us define our kernel correlation (KC)

between a point-set kernel κ with M learnable points and

the current anchor point xi in a point cloud of N points as:

KC(κ,xi) =
1

|N (i)|

M
∑

m=1

∑

n∈N (i)

Kσ(κm,xn − xi), (1)

where κm is the m-th learnable point in the kernel, N (i)
is the neighborhood index set of the anchor point xi, and

xn is one of xi’s neighbor point. Kσ(·, ·) : ℜD × ℜD →
ℜ is any valid kernel function (D = 2 or 3 for 2D or 3D

point clouds). To efficiently store the local neighborhood of

points, we pre-compute a KNNG by considering each point

as a vertex, with edges connecting only nearby vertices.

Following [38], without loss of generality, we choose the

Gaussian kernel in this paper:

Kσ(k, δ) = exp

(

−
||k− δ||2

2σ2

)

(2)

where || · || is the Euclidean distance between two points

and σ is the kernel width that controls the influence of dis-

tance between points. One nice property of Gaussian kernel

is that it decays exponentially as a function of the distance

between the two points, providing a soft-assignment from

each kernel point to neighboring points of the anchor point,

relaxing from the non-differentiable hard-assignment in or-

dinary ICP. Our KC encodes pairwise distance between ker-

nel points and neighboring data points and increases as two

point sets become similar in shape, hence it can be clearly

interpreted as a geometric similarity measure, and is inva-

riant under translation. Note the importance of choosing

kernel width here, since either a too large or a too small σ

Figure 3: Visualization of handcrafted (linear, planar, and

curved) kernels and responses, similar to Figure 1.

will lead to undesired performances (see Table 6), similar

to the same issue in kernel density estimation. Fortunately,

for 2D or 3D space in our case, this parameter can be empi-

rically chosen as the average neighbor distance in the neig-

hborhood graphs over all training point clouds.

To complete the description of the proposed new learna-

ble layer, given 1) L as the network loss function, 2) its de-

rivative w.r.t. each point xi’s KC response di =
∂L

∂ KC(κ,xi)

propagated back from top layers, we provide the back-

propagation equation for each kernel point κm as:

∂L

∂κm

=

N
∑

i=1

αidi

[

∑

n∈N (i)

vm,i,n exp(−
||vm,i,n||

2

2σ2
)
]

,

(3)

where point xi’s normalizing constant αi = −1
|N (i)|σ2 , and

the local difference vector vm,i,n = κm + xi − xn.

Although originates from LOO-KC in [38], our KC ope-

ration is different: 1) unlike LOO-KC as a compactness me-

asure between a point set and one of its element point, our

KC computes the similarity between a data point’s neig-

hborhood and a kernel of learnable points; and 2) unlike

the multiply-linked cost function involving a parameter of a

transformation for a fixed template, our KC allows all points

in the kernel to freely move and adjust (i.e., no weight decay

for κ), thus replacing the template and the transformation

parameters as a point-set kernel.

To better understand how KC captures various local ge-

ometric structures, we visualize several handcrafted kernels

and corresponding KC responses on different objects in Fi-

gure 3. Similarly, we visualize several learned kernels from

our segmentation network in Figure 1. Note that we can

learn L different kernels in KCNet, where L is a hyper-

parameter similar to the number of output channels in con-

volutional nets.
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3.2. Learning on Local Feature Structure

Our KCNet performs KC only in the network front-end

to extract local geometric structure, as shown in Figure 2.

For computing KC, to efficiently store the local neighbor-

hood of points, we build a KNNG by considering each point

as a vertex, with edges connecting only nearby points. This

graph is also useful for exploiting local feature structures

in deeper layers. Inspired by the ability of convolutional

nets to locally aggregate features and gradually increase re-

ceptive fields via multiple pooling layers, we use recursive

feature propagation and aggregation along edges of the very

same 3D neighborhood graph for KC, to exploit local fea-

ture structures in the top layers.

Our key insight is that neighbor points tend to have si-

milar geometric structures and hence propagating features

through neighborhood graph helps to learn more robust lo-

cal patterns. Note that we specifically avoid changing this

neighborhood graph structure in top layers, which is also

analogous to convolution on images: each pixel’s spatial

ordering and neighborhoods remain unchanged even when

feature channels of input image expand greatly in top con-

volutional layers.

Specifically, let X ∈ ℜN×K represent input to the graph

pooling layer, and the KNNG has an adjacency matrix W ∈
ℜN×N where W(i, j) = 1 if there exists an edge between

vertex i and j, and W(i, j) = 0 otherwise. It is intuitive

that neighboring points forming local surface often share

similar feature patterns. Therefore, we aggregate features

of each point within its neighborhood by a graph pooling

operation:

Y = PX, (4)

which can be implemented as average or max pooling.

Graph average pooling averages a point’s features over

its neighborhood by using P ∈ ℜN×N in (4) as a normali-

zed adjacency matrix:

P = D
−1

W, (5)

where D ∈ ℜN×N is the degree matrix with (i, j)-th entry

di,j defined as:

di,j =

{

deg(i), if i = j

0, otherwise
(6)

where deg(i) is the degree of vertex i counting the number

of vertices connected to vertex i.

Graph max pooling (GM) takes maximum features over

the neighborhood of each vertex, independently operated

over each of the K dimensions. This can be simply com-

puted by replacing the “+” operator in the matrix multipli-

cation in (4) with a “max” operator. Thus the (i, k)-th entry

of output Y is:

Y(i, k) = max
n∈N (i)

X(n, k), (7)

where N (i) indicates the neighbor index set of point Xi

computed from W.

A point’s local signature is then obtained by graph max

or average pooling. This signature can represent the ag-

gregated feature information of the local surface. Note the

connection of this operation with PointNet++: each point

i’s local neighborhood is similar to the clusters/segments in

PointNet++. This graph operation enables local feature ag-

gregation on the original PointNet architecture.

4. Experiments

Now we discuss the proposed architectures for 3D shape

classification (Section 4.1), part segmentation (Section 4.2),

and perform ablation study (Section 4.3).

4.1. Shape Classification

Datasets. We evaluated our network on both 2D and 3D

point clouds. For 2D shape classification, we converted

MNIST dataset [21] to 2D point clouds. MNIST con-

tains images of handwritten digits with 60,000 training and

10,000 testing images. We transformed non-zero pixels

in each image to 2D points, keeping coordinates as in-

put features and normalize them within [-0.5, 0.5]. For

3D shape classification, we evaluated our KCNet on 10-

categories and 40-categories benchmarks ModelNet10 and

ModelNet40 [42], consisting of 4899 and 12311 CAD mo-

dels respectively. ModelNet10 is split into 3991 for training

and 908 for testing. ModelNet40 is split into 9843 for trai-

ning and 2468 for testing. As in PointNet, to obtain 3D

point clouds, we uniformly sampled points from meshes

into 1024 points of each object by Poisson disk sampling

using MeshLab [6] and normalized them into a unit ball.

Network Configuration. As detailed in Figure 2a, our

KCNet has 9 parametric layers in total. The first layer,

kernel correlation, takes point coordinates as inputs and

outputs local geometric features and concatenated with the

point coordinates. Then features are passed into the first 2-

layer MLP for per-point feature learning. The graph pooling

layer then aggregates the output per-point features into more

robust local structure features, which are concatenated with

the outputs from the second 2-layer MLP. Other configurati-

ons are similar to the original PointNet, except that 1) ReLU

is used after each fully connected layer without Batchnorm

(we found it not useful in KCNet and PointNet), and 2) Dro-

pout layers are used for the final fully connected layers with

drop ratio 0.5. We used 16-NN graph for kernel computa-

tion and graph max pooling. L = 32 sets of kernels were

used, in which each kernel had M = 16 points uniformly

initialized within [-0.2, 0.2] and kernel width σ = 0.005.

We trained the network for 400 epochs on a NVIDIA GTX

1080 GPU using our modified Caffe [16] with ADAM opti-
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Method Accuracy (%)

LeNet5 [21] 99.2

PointNet (vanilla) [29] 98.7

PointNet [29] 99.2

PointNet++ [31] 99.5

KCNet (ours) 99.3

Table 1: MNIST digit classification.

Method MN10 MN40

MVCNN [36] - 90.1

VRN Ensemble [2] 97.1 95.5

ECC [34] 90.0 83.2

PointNet (vanilla) [29] - 87.2

PointNet [29] - 89.2

PointNet++ [31] - 90.7

Kd-Net(depth 10) [20] 93.3 90.6

Kd-Net(depth 15) [20] 94.0 91.8

KCNet (ours) 94.4 91.0

Table 2: ModelNet shape classification comparisons of

accuracy of proposed network with state-of-the-art. Our

KCNet has competitive performance on both ModelNet10

and ModelNet40. Note that MVCNN [36] and VRN En-

semble [2] take image and volume as inputs, while rest of

the models take point clouds as inputs.

Method #params (M) Fwd. time (ms)

PointNet(vanilla) [31] 0.8 11.6

PointNet [31] 3.5 25.3

PointNet++(MSG) [31] 1.0 163.2

Kd-Net (depth 10) 2.0 -

KCNet (M = 16) 0.9 18.5

KCNet (M = 3) 0.9 12.0

Table 3: Model size and inference time. ”M” stands for mil-

lion. Networks were tested on a PC with a single NVIDIA

GTX 1080 GPU and an Intel i7-8700@3.2 GHz 12 cores

CPU. Other settings are the same as in [31].

mizer, initial learning rate 0.001, batch size 64, momentum

0.9, momentum2 0.999, and weight decay 1e−5. No data

augmentation was performed.

Results. Table 1 and Table 2 compares our results with se-

veral recent works. In MNIST digit classification, KCNet

reaches comparable results obtained with ConvNets. In Mo-

delNet40 shape classification, our method achieves com-

petitive performance with 3.8% and 1.8% higher accuracy

than PointNet-vanilla (meaning without T-nets) and Point-

Net respectively [29], and is slightly better (0.3%) than

PointNet++ [31]. Table 3 summarizes required number of

parameters and forward time of different networks. Note

KCNet achieves better or comparable accuracy and compu-

tes more efficiently than [20, 31] with fewer parameters.

4.2. Part Segmentation

Part segmentation is an important task that requires accu-

rate segmentation of complex shapes with delicate structu-

res. We used the network illustrated in Figure 2b to predict

the part label of each point in a 3D point cloud object.

Datasets. We evaluated KCNet for part segmentation on

ShapeNet part dataset [44]. There are 16,881 shapes of

3D point cloud objects from 16 shape categories, with each

point in an object corresponds to a part label (50 parts in

total, and non-overlapping across shape categories). On

average each object consists of less than 6 parts and the

highly imbalanced data makes the task quite challenging.

We used the same strategy as in Section 4.1 to uniformly

sample 2048 points for each CAD object. We used the offi-

cial train test split following [31].

Network Configuration. Segmentation network has 10 pa-

rametric layers. Features of different layers capturing local

features are concatenated with the replicated global features

and shape information, as in [29]. Details are in Figure 2b.

Again, ReLU is used in each layer without Batchnorm. Dro-

pout layers are used for fully connected layers with drop ra-

tio 0.3. We used 18-NN graph for kernel computation and

graph max pooling. L = 16 sets of kernels are used, in

which each kernel has M = 18 points uniformly initiali-

zed within [−0.2, 0.2] and kernel width σ = 0.005. Other

hyper-parameters are the same as in shape classification. No

data augmentation was performed.

Results. We compared our method with PointNet [29],

PointNet++ [31] and Kd-Net [20]. We use intersection over

union (IoU) of each category as the evaluation metric fol-

lowing [20]: IoU of each shape instance is the average IoU

of each part that occurs in this shape category (the IoUs

of the parts belonging to other shape categories are igno-

red following the protocol of [29]). The mean IoU (mIoU)

of each category is obtained by averaging IoUs of all the

shapes in that category. The overall average instance mIoU

(Ins. mIoU) is calculated by averaging IoUs of all the shape

instances. Besides, we also report overall average category

mIoU (Cat. mIoU) that is directly averaged over 16 catego-

ries. Table 4 lists the results. Compared with PointNet++

that uses surface normals as additional inputs, our KCNet

only takes raw point clouds as input and achieves better per-

formance with more efficiency regarding computation and

parameters in Table 3. Figure 4 displays some examples of

predicted results on ShapeNet part test dataset.

4.3. Ablation Study

In this section, we further conducted several ablation ex-

periments, investigating various design variations and de-

monstrating the advantages of KCNet.
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Cat. Ins. aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

mIoU mIoU phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Kd-Net 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

KCNet (ours) 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

Table 4: ShapeNet part segmentation results. Average mIoU over instances (Ins.) and categories (Cat.) are reported.

GT PointNet Ours GT PointNet Ours GT PointNet Ours

42.3% 96.8% 69.6% 83.1% 59.3% 72.1%

68.5% 82.3% 70.8% 83.8% 61.4% 79.0%

76.5% 78.3% 59.5% 66.9% 63.5% 82.8%

48.4% 93.6% 55.8% 90.6% 84.6% 94.9%

88.8% 96.8% 64.0% 67.9% 84.1% 91.5%

48.7% 57.9% 89.9% 92.8% 59.2% 93.4%

58.2% 65.4% 63.2% 68.8% 82.7% 90.4%

68.5% 74.0% 90.8% 93.2% 39.8% 59.1%

77.2% 91.6% 69.4% 94.3% 40.2% 53.9%

Figure 4: Examples of part segmentation results on ShapeNet part test dataset. IoU (%) is listed below each result for

reference. Red arrows: KCNet improvements. Red circles: some errors in ground truth (GT). Better viewed in color.
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Effectiveness of Kernel Correlation Accuracy (%)

Normal 88.4

Kernel correlation 90.5

Symmetric Functions Accuracy (%)

Graph average pooling 88.0

Graph max pooling 88.6

Effectiveness of Local Structures Accuracy (%)

Baseline: PointNet (vanilla) 87.2

Kernel correlation (geometric) 90.5

Graph max pooling (feature) 88.6

Both 91.0

Table 5: Ablation study on ModelNet40 test set.

L Acc. (%) M Acc. (%) σ Acc. (%)

16 90.7 3 90.9 1e−3 90.0

32 91.0 8 90.4 5e−3 91.0

48 91.0 16 91.0 1e−2 90.4

Table 6: Choosing hyper-parameters. Each column only

changes the corresponding parameter (base setting in bold).

Effectiveness of Kernel Correlation. Table 5 lists the com-

parison between kernel correlation and normal. In this ex-

periment, we used normals as local geometric features, con-

catenated them with coordinates and passed them into the

proposed architecture in Figure 2a. Normal of each point

was computed by applying PCA to the covariance matrix to

obtain the direction of minimal variance. Results show that

kernel correlation is better than normals.

Symmetric Functions. Symmetric function is able to make

a network invariant to input permutation [29]. In this ex-

periment, we investigated the performance of graph max

pooling and graph average pooling. As shown in Table 5,

graph max pooling has a marginal improvement over graph

average pooling, and is faster to compute, thus was adopted.

Effectiveness of Local Structures. In Table 5 we also

demonstrate the effect of our local geometric and feature

structures learned by kernel correlation and graph max

pooling, respectively. Note that our kernel correlation and

graph max pooling layer already respectively achieve com-

parable or even better performances compared to PointNet.

Choosing Hyper-parameters. KCNet have several unique

hyper-parameters: L, M , and σ, as explained in Section 3.1.

We report their individual influences in Table 6.

Robustness Test. We compared our networks with Point-

Net on robustness against random noise in the input point

cloud. Both networks are trained on the same train and test

data with 1024 points per object. The PointNet was trained

0 1 10 50 100
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Figure 5: KCNet vs. PointNet on random noise. Different

numbers of points in each object are replaced with uniform

noise between [-1,1]. Metric is overall classification accu-

racy on the ModelNet40 test set. KCNet is more robust

against random noise. GM only: graph max pooling only.

KC only: kernel correlation only. KC+GM: both.

with the same data augmentation in [29] using the authors’

code. Our networks were trained without data augmenta-

tion. During testing, a certain number of randomly selected

input points were replaced with uniformly distributed noise

ranging [-1.0, 1.0]. As shown in Figure 5, our networks

are more robust against random noise. The accuracy of

PointNet drops 58.6% when 10 points were replaced with

random noise (from 89.2% to 30.6%), while ours (KC+GM)

only drops 23.8% (from 91.0% to 67.2%). Besides, it can be

seen that within the groups of experiments, graph max pool-

ing is the most robust under random noise. We speculate

that it is caused by the local max pooling - neighbor points

sharing max features along each dimension so random noise

in the neighborhood could not easily affect the prediction.

This could also explain why KC+GM is more robust than

KC only. This test shows an advantage of local structures

over per-point features - our network learns to exploit local

geometric and feature structures within neighboring regions

and thus is robust against random noise.

5. Conclusion

We proposed kernel correlation and graph pooling to im-

prove PointNet-like methods. Experiments have shown that

our method efficiently captures local patterns and robustly

improves performances of 3D point cloud semantic lear-

ning. We will generalize the kernel correlation to higher

dimensions, with learnable kernel widths in the future.
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spread of influence through a social network. In Procee-

dings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 137–146.

ACM, 2003. 3

[19] T. N. Kipf and M. Welling. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016. 3

[20] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-

networks for the recognition of 3d point cloud models. Inter-

national Conference on Computer Vision (ICCV), 2017. 1,

3, 6

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Procee-

dings of the IEEE, 86(11):2278–2324, 1998. 3, 5, 6

[22] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cay-

leynets: Graph convolutional neural networks with complex

rational spectral filters. arXiv preprint arXiv:1705.07664,

2017. 3

[23] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. Fpnn: Field

probing neural networks for 3d data. In Advances in Neural

Information Processing Systems, pages 307–315, 2016. 1, 3

[24] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on riemannian ma-

nifolds. In Proceedings of the IEEE international conference

on computer vision workshops, pages 37–45, 2015. 3

[25] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In IEEE

International Conference on Intelligent Robots and Systems

(IROS), pages 922–928. IEEE, 2015. 1, 3

[26] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda,
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