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Abstract

Deep convolutional networks (ConvNets) have achieved

unprecedented performances on many computer vision

tasks. However, their adaptations to crowd counting on

single images are still in their infancy and suffer from se-

vere over-fitting. Here we propose a new learning strategy

to produce generalizable features by way of deep negative

correlation learning (NCL). More specifically, we deeply

learn a pool of decorrelated regressors with sound gener-

alization capabilities through managing their intrinsic di-

versities. Our proposed method, named decorrelated Con-

vNet (D-ConvNet), is end-to-end-trainable and indepen-

dent of the backbone fully-convolutional network architec-

tures. Extensive experiments on very deep VGGNet as well

as our customized network structure indicate the superi-

ority of D-ConvNet when compared with several state-of-

the-art methods. Our implementation will be released at

https://github.com/shizenglin/Deep-NCL

1. Introduction

Crowd counting is an active research topic in computer

vision due to its wide-ranging applications in video surveil-

lance, metropolis security, human behavior analysis and re-

source management. Since the pioneering work for au-

tomated counting of object [1], several hand-crafted fea-

tures [2, 3] and learning methods [4, 5] have consistently

improved the counting performance, leading the research

community to address more challenging scenarios and com-

plex datasets [4, 5]. However, significant hurdles due to

occlusions, scale variations and diverse crowd distributions

make it difficult to solve this problem.

Detecting people individually [6] seems to be a straight-

forward solution but suffers from severe defects: detectors

are prone to fail when people are in close proximity and

there is no way to recover. Furthermore, high computational
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sponding author: Le Zhang (zhang.le@adsc-create.edu.sg)

complexities in detection based approaches also limit their

applicability for real-time applications. Counting by regres-

sion, on the other hand, learns to predict pedestrians’ num-

ber through a regression function with some visual descrip-

tors such as texture features, edge features [7] or learned

representations [5, 4]. Counting by regression is perceived

as state-of-the-art at present. The regression-based methods

have been widely studied and reported to be computation-

ally feasible with modern hardware, robust with parameters

and accurate across various challenging scenarios.

Recently, the number of success stories of computer vi-

sion has seen an all-time rise across a wide range of top-

ics such as image recognition [8], object detection [9], face

recognition [10], image segmentation [11] and visual track-

ing [12]. The common idea behind these solutions is to

use deep convolutional networks with many hidden layers,

aiming at learning discriminative feature embedding from

raw data, rather than relying on handcrafted feature extrac-

tion. Inspired by this, several ConvNets based crowd mod-

els have been proposed. [5, 13] make the fist attempt, to

the best of our knowledge, to employ ConvNets for crowd

counting. While tremendous progress has been achieved

later by aggressively exploring deeper [14] or wider archi-

tectures [4] or heuristic engineering tricks [15, 13] with the

standard “convolution + pooling” recipe, in this paper, we

contribute from a different view. We are the first to pro-

vide an alternative to the commonly used learning objective

with better generalization abilities by ensemble learning.

Our method is end-to-end-trainable and independent of the

backbone fully-convolutional network architectures. At the

core of our approach is the adoption of Negative Correla-

tion Learning (NCL) that has been shown, both theoretically

and empirically, to work well for regressions based prob-

lems. NCL controls the bias-variance-covariance trade-off

systematically and usually results in a regression ensemble

where each base model is both “accurate and diversified”.

Simplicity and efficiency are central to our design, and triv-

ially applying NCL to train multiple ConvNets is not the fo-

cus of this paper as it leads to significantly higher computa-

tional complexity. Instead, we adopt a “divide and conquer”
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approach to learn a pool of regressors to regress the crowd

density map on top of convolutional feature maps. Each re-

gressor is jointly optimized with ConvNets by an amended

cost function which penalizes correlations with others to

make better trade-offs among the bias-variance-covariance

in the ensemble. We call our method D-ConvNet where

“D” means decorrelated. D-ConvNet based crowd counting

framework has following advantages:

• D-ConvNet produces multiple counting results with

a single ConvNet with no extra learning parameters.

It has sound generalization capability through manag-

ing diversities among each prediction to have a better

“bias-variance-covariance” trade-off.

• D-ConvNet is simple and does not rely on foreground

segmentation results. It is end-to-end-trainable and

does not require complicated training process like [4].

• D-ConvNet is generic and independent of the back-

bone fully-convolutional network architectures. Ex-

tensive experiments of very deep VGG as well as our

customized network structure on several challenging

crowd counting datasets such as UCF CC 50, Shang-

haiTech, and WorldExpo10 indicate the superiority of

D-ConvNet when compared with several state-of-the-

art methods.

2. Related Work

Regression with ConvNets has made vast inroads into

crowd counting due to their commendable performances.

It is widely accepted that ConvNets trained in an end-to-

end manner deliver strikingly better generalization ability

than shallow learning approaches with carefully engineered

representations. A deep ConvNet [5] was trained alterna-

tively with two related learning objectives, crowd density

and crowd count. However, it relied heavily on a switch-

able learning approach and was not clear how these two

objective functions can alternatively assist each other. [13]

proposed to directly regress the total people number by

adopting AlexNet [16] which has been later shown to be

worse than methods regressing density map. This observa-

tion suggests that reasoning with rich spatial layout infor-

mation from convolutional feature maps is necessary. [14]

proposed a framework consisting of both deep and shallow

network for crowd counting. It was reported to be more ro-

bust with perspectives and scale variations. Similarly, [4]

proposed a multi-column ConvNets architecture. However,

it needed careful pre-training of each base model followed

by overall finetuning. “Hydra CNN” [15] was proposed

to estimate object densities in different crowded scenarios

in a scale-aware manner. It relied on a pyramid of image

patches extracted at multiple scales and the performance

on a single scale was not promising. Switching ConvNet

was introduced in [17] where patches from a grid within a

crowd scene were relayed to independent ConvNet regres-

sors based on crowd count prediction quality of the Con-

vNet established during training.

Almost all the aforementioned approaches work well for

their adopted ConvNet structures. Generating them to a

much deeper network structure like [18] to further boost

the discriminative ability of the learned representations for

crowd counting is not straight-forward due to limited train-

ing data. Introducing large-scale datasets for crowd count-

ing may partially alleviate the problem. However, manual

labeling is costly, time-consuming and error-prone. It can

also raise privacy concerns. It is often impractical as there

may exist several thousands of people within a single im-

age in dense crowd scenarios. This motivates us to study

the problem of training deep ConvNets on existing crowd

counting datasets with less risk of over-fitting. To address

this, we draw inspirations from NCL [19, 20] and extend

it to deep learning. The proposed method is readily plug-

gable into any ConvNets architecture and amenable to end-

to-end training. With no extra learning parameter, it learns

an ensemble of accurate and diversified regressors for crowd

counting whose prediction errors may cancel out each other.

3. D-ConvNet

3.1. Background and Motivation

Before elaborating the proposed crowd counting method,

we first briefly present the notations that we use and the

background knowledge to put our D-ConvNet in a proper

context. We assume that we have access to N training sam-

ples, X = {x1, . . . ,xN}. The samples are Mi dimen-

sional: xi ∈ X ⊆ IRMi , i ∈ {1, . . . , N},Mi = Hi ×
Wi×Ci, where Hi,Wi and Ci denote the height, width and

number of channels of ith input image, respectively. Our

objective is to predict the number of people in xi. To this

end, we learn to regress a density map Y = {y1, . . . ,yN}
where each yi in Mi dimensional space. Mi = Hi ×Wi.

Detailed procedure of generating Y will be discussed in

Section 3.3. In our implementation,Hi

Hi
= Wi

Wi
= S where∑

yi = ti ∈ Z stands for the number of people in an input

image. We denote a generic data point by x and use x⋄,

with ⋄ denoting the placeholder for the index where ever

necessary. Similarly, we use M and M to represent the

dimensionality of a generic input data and its label, respec-

tively. We achieve counting by learning a mapping function

G : X → Y , where Y ∈ [0, 1]M.

In a typical regression ensemble, dimensionality of input

data are considered to be the same, i.e., Mi = M . In the

same way, Mi = M. The learning problem is to use the

set X to learn a mapping function G, parameterized by θ,
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to approximate their label Y as accurate as possible:

e(G) =

∫

(G(X, θ)− Y )2p(X,Y )d(X,Y ), (1)

In practice, as data distribution p(X,Y ) is unknown, Eq. (1)

is usually approximated by

e(G) =
1

N

N∑

i=1

(G(xi, θ)− yi)
2
, (2)

we omit the input and parameter vectors, so where it is un-

ambiguous, instead of G(X, θ), we write simply G. we use

the shorthand expectation operator E to represent the gen-

eralization ability on testing data. Bias-variance decompo-

sition theorem states that the regression error of a predictor

can be decomposed into its bias and variance:

E{(G− Y )2} = (E{G} − Y )2
︸ ︷︷ ︸

bias(G)2

+E{(G− E{G})2}
︸ ︷︷ ︸

variance(G)

(3)

It is a property of the generalization error in which bias and

variance have to be balanced against each other for best per-

formance.

Single model, however, turns out to be far from optimal

in practice which has been evidenced by several studies,

both theoretically [21, 20] and empirically [22, 23]. Con-

sider the ensemble output G̃ by averaging individual’s re-

sponse Gk, i.e.,

G̃ =
1

K

K∑

k=1

Gk, (4)

Here we restrict our analysis to the uniform combination

case which is commonly used in practice although the de-

composition presented below generalize to non-uniformly

weighted ensembles as well. Posing the ensemble as a sin-

gle learning unit, its bias-variance decomposition can be

shown by the following equation:

E{(G̃− Y )2} = (E{G̃} − Y )2
︸ ︷︷ ︸

bias(G̃)2

+E{(G̃− E{G})2}
︸ ︷︷ ︸

variance(G̃)

(5)

Consider ensemble output in Eqn. 4, it is straightforward to

show:

E{(G̃− Y )2} =
1

K2
(

K∑

k=1

(E{Gk} − Y ))2

︸ ︷︷ ︸

bias(G)2

+
1

K2

K∑

k=1

E{(Gk − E{Gk})
2}

︸ ︷︷ ︸

variance(G)

+
1

K2

K∑

k=1

∑

j �=k

E{(Gk − E{Gk})(Gj − E{Gj})}

︸ ︷︷ ︸

covariance(G)

(6)

The so-called bias-variance-covariance decomposition

illustrates that in addition to the internal bias and variance,

the generalization error of an ensemble depends on the co-

variance between the individuals as well.

It is natural to show that

1

K
E{(Gk − Y )2} = bias(G)2+

+ [K × variance(G) +
1

K

K∑

k=1

(E{Gk} − E{G̃})2]
(7)

1

K

K∑

k=1

E{(Gk − G̃)2} =

− [variance(G) + covariance(G)]

+ [K × variance(G) +
1

K

K∑

k=1

(E{Gk} − E{G̃})2]

(8)

then it is easy to show:

E{(G̃−Y )2} =
1

K

K∑

k=1

E{(Gk−Y )2}−
1

K

K∑

k=1

E{(Gk−G̃)2}

(9)

Eqn. 9 explains the effect of error correlations in an en-

semble model by stating that the quadratic error of the en-

semble estimator is guaranteed to be less than or equal to

the average quadratic error of the component estimators.

This is also in line with the strength-correlation theory [24],

which advocates learning a set of both accurate and decor-

related models. Based on this, [25] proposed a “division

of labor” approach by learning a correlation regularized en-

semble by training several shallow feed forward networks

with the following objective:

ek =
1

2
(Gk −Y)2 + λ(Gk − G̃)(

∑

j �=i

(Gj − G̃)),

=
1

2
(Gk −Y)2 − λ(Gk − G̃)2,

(10)

Eqn. 10 can be regarded as a smoothed version of Eq. 9 to

improve the generalization ability of the ensemble models.

Please note that the optimal value of λ may not necessar-

ily be 0.5 because of the discrepancy between the train-

ing and testing data [20]. By setting λ = 0, we actu-

ally achieve conventional ensemble learning (non-boosting

type) where each model is optimized independently. It is

straightforward to show that the first part in Eqn 10 cor-

responds to bias plus an extra term [K × variance(G) +
1
K

∑K

k=1(E{Gk} − E{G̃})2] while the second part stands

for the variance, covariance and the same term [K ×

variance(G) + 1
K

∑K

k=1(E{Gk} − E{G̃})2]. Since the

extra term appears on both sides, it cancels out when we

combine them by subtracting, as done in Eqn. 10. Thus by

introducing the second part in Eq. 10, we aim at achieving

better “diversity” which balances the components of bias
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variance and the ensemble covariance to reduce the overall

MSE.

To demonstrate this, consider the scenario in Fig 1. We

are using an regression ensemble consisting of 6 regressors

where the ground truth is -1.5. Each curve in Fig 1 illus-

trates the evolution of one regressor when trained with gra-

dient descent, i.e. fin = fi(n−1) − γ dE

dfi(n−1)

, where γ and

E stands for the learning rate and mean-square loss func-

tion, respectively. i ∈ 1, 2, · · · 6 is the index of individual

models in the ensemble and n ∈ 1, 2, · · · 30 stands for the

index of iterations. Although both conventional ensemble

learning (Fig. 1a) and NCL (Fig. 1b) may lead to correct es-

timations by simple model averaging, NCL results in much

diversified individual models which make error cancellation

being possible on testing data.
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(a) Conventional ensemble learning
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(b) NCL

Figure 1: Demonstration of the training process of conven-

tional learning and NCL.

3.2. Deep Negative Correlation Learning

Although the idea introduced here is theoretically gen-

eral for regression ensemble, we choose crowd counting as

our concrete application. We consider our mapping func-

tion as an ensemble of predictors as defined in Eqn. 4 where

each base predictor is posed as:

Gk(xi) = G
L
k (G

L−1
k · · · (G1

k(xi)))),

k = 1, 2 · · ·K, i = 1, 2 · · ·N
(11)

where k and i stands for the index for individual mod-

els and data samples. More specifically, each predictor in

the ensemble consists of cascades of feature extractor Gl

k
,

l = 1, 2 · · · L − 1 and regressor GL
k

. Motivated by recent

success of ConvNets on visual recognition tasks, each fea-

ture extractor Gl

k
is embodied by a typical layer of Fully

Convolutional ConvNets. By “Fully Convolutional” we

mean G commutes with translation. More formally, con-

sidering a translation operator for a one-dimensional sig-

nal (Tκx)[i] = x[i − κ], a function G that maps sig-

nals to signals is fully-convolutional with integer stride s

if G(Tκsx) = TκG(x) for any translation κ. The defini-

tion generalize to image signals in a straightforward way.

Fully-convolutional realization of G is advantageous in the

sense that one can provide input in an arbitrary size to the

network and it will compute mapping results, which is the

estimation of crowd density map.

In our implementation, lower levels of feature extractors

are shared by each predictor for efficiency, i.e, Gl

k
= Gl,

l = 1, 2 · · · L − 1, k = 1, 2 · · ·K. Furthermore, build-

ing on the lessons learnt from subspace idea in ensemble

learning [24], highest level of feature extractor GL−1
k

out-

puts a different feature subset for different regressor GL
k

to

insert more diversities. Generally speaking, network spec-

ification of Gl

k
is problem dependent and we show that,

the proposed method, named as decorrelated ConvNet (D-

ConvNet), is end-to-end-trainable and independent of the

backbone fully-convolutional network architectures. Exten-

sive experiments on very deep VGG as well as our cus-

tomized network structure indicate the superiority of D-

ConvNet compared with several state-of-the-art methods.

3.3. Crowd density map

It is well appreciated that the density map [1] based

on annotated pedestrians’ spatial location contains rich and

abundant local and detailed information. Thus when learn-

ing density map using ConvNet, the learned filters become

more sensitive to pedestrians of different sizes and perspec-

tive variation, benefitting to improve the counting accuracy.

For a training image xi, the ground truth density function

can be defined as a kernel density estimate based on the an-

notated pedestrians’ points:

F (p) =
∑

p∈P

N (p, P, σ), (12)

where p denotes a pixel, N (p, P, σ) denotes a normalized

2D Gaussian kernel evaluated at p, with an user-defined

mean value P , and an isotropic covariance matrix with σ

being a small value. The σ is usually set to 0.2M(p) when

the perspective map M(p) can be available [5]. However,

generating such perspective maps is a laborious task and

involves manually labeling several pedestrians by marking

their height. Zhang et al. [4] provides an alternative to de-

termine σ adaptively. They determine the spread parameter

σ based on the size of the head for each person within the

image. Due to the occlusion in many cases, it is difficult to

obtain the size of the head. In this case, they assume around

each head, the crowd is somewhat evenly distributed, then

the average distance d̄ between the head and its nearest k

neighbors (in the image) gives a reasonable estimate of head

size. As a result, the σ can be set to βd̄. We found empiri-

cally β = 0.3 gives the best result.

3.4. Network Structure

Fig. 2 gives an overview of our crowd counting system.

We report the performance of deep NCL for crowd counting
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with two fully convolutional network configurations. The

first setting, which is named as D-ConvNet-v1, employs a

deep pretrained VGG16 network and make several modifi-

cations. Firstly, the stride of the fourth max-pool layer is set

to 1. Secondly, the fifth pooling layer was further removed.

This provides us a much larger feature map with richer in-

formation. To handle the receptive-field mismatch caused

by the removal of stride in the fourth max-pool layer, we

then double the receptive field of convolutional layers after

the fourth max-pool layer by using the technique of holes

introduced in [26]. Finally, we use a 64×1×1 convolution

layer as regressor GL
k

on each output feature map to get the

final crowd density map. Specifically, each regressor GL
k

is

sparsely connected to a small portion of feature maps from

the last convolutional layer(conv5 3) of VGG16 network,

implemented via the well-established “group convolution”

strategy [16, 27].

Unlike existing work [4, 5, 13, 14, 28] which may only

work on one deep or shallow network configurations, we

show deep NCL introduced here can be more generalizable

and thus can work well for different network structures.

To demonstrate this, we train deep NCL on a relatively

shallower model named as D-ConvNet-v2, which is con-

structed by stacking several Multi-Scale Blob as shown in

Fig. 3, aiming to increase the depth and expand the width of

crowd model in a single network. Multi-Scale Blob(MSB)

is an Inception-like model which enhances the feature di-

versity by combining feature maps from different network

branches. More specifically, it contains multiple filters with

different kernel size (including 7×7, 5×5 and 3×3). This

also makes the net more sensitive to crowd scale changing

of the images.

Motivated by VGGNet [18], to make model more dis-

criminative, we further achieve 5×5 and 7×7 convolutional

layers by stacking two and three 3× 3 convolutional layers,

respectively. In our adopted network, the first convolution

layer consists of 16×5×5 filters and is followed by a 2×2
max pooling layer. After that, we stack two MSB modules

as demonstrated in Fig. 3 where the first MSB modules is

followed by a 2 × 2 max-pooling layer. The number of

feature maps of each convolution layer in these two MSB

modules is 24 and 32, respectively. Finally, we use the same

1×1 convolution layer on each of the feature map as regres-

sor GL
k

to get the final crowd density map.

All the parameters in D-ConvNet can be efficiently

trained and updated by back-propagating gradients of our

error function given in Eq. 10 with Stochastic Gradient

Descent. Taking derivatives of this objective function is

straightforward and can be easily plugged into many pop-

ular ConvNet platforms, such as Caffe [29]. More specif-

ically, in each iteration, we get the ensemble output G̃ by

running one-pass feed-forward through the whole network.

We then back-propagate the gradient of Eq. 10 and update

parameters of all the network structure.

4. Experiments

We evaluate the proposed methods on three benchmark

datasets: UCF CC 50 dataset [30], Shanghaitech dataset [4]

and WorldExpo’10 dataset [5]. We implement our crowd

counting system in Caffe [29] on a single machine with

a TitanX GPU. The proposed networks are trained using

Stochastic Gradient Descent with a mini-batch size of 1 at a

fixed constant momentum value of 0.9. Weight decay with

a fixed value of 0.0005 is used as a regularizer. We use

a fixed learning rate of 1e-7 in the last convolution layer

of our crowd model to enlarge the gradient signal for effec-

tively parameter updating and use a relatively smaller learn-

ing rate of 1e-9 in other layers.

4.1. Evaluation Metric

The widely used mean absolute error (MAE) and the

root mean squared error (RMSE) are adopted to evalu-

ate the performance of different methods. The MAE and

RMSE are defined as follows:

MAE =
1

N
·

N∑

i=1

|(yi − ỹi)|, RMSE =

√
√
√
√ 1

N
·

N∑

i=1

(yi − ỹi)2

(13)

Here N represents the total number of images in the testing

datasets, yi and ỹi are the ground truth and the estimated

value respectively for the ith image.

4.2. UCF CC 50 dataset

The challenging UCF CC 50 dataset [30] contains 50

images that are randomly collected from the Internet. The

number of head ranges from 94 to 4543 with an average of

1280 individuals per image. The total number of annotated

persons within 50 images is 63974. Challenging issues such

as large variations in head number among different images

from a small number of training images come in the way

of accurately counting for UCF CC 50 dataset. We follow

the standard evaluation protocol by splitting the dataset ran-

domly into five parts in which each part contains ten images.

Five-fold cross-validation is employed to evaluate the per-

formance. Since the perspective maps are not provided, we

generate the ground truth density map by using the Zhang’s

method [4] as described in Section 3.3.

We compared our method on this dataset with ten state-

of-the-art methods. In [31, 1, 30], handcraft features are

used to regress the density map from the input image. Sev-

eral CNN-based methods in [5, 14, 4, 32, 28, 15, 17] were

also considered here due to their superior performance on

this dataset. Table 1 summarizes the detailed results. Firstly,

it is obvious that most deep learning methods outperform

hand-crafted features significantly. In [14] the authors pro-

posed to employ a shallow network to assist the training
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Figure 2: Details of the proposed D-ConvNest for crowd counting. We formulate a single ConvNet as ensemble learning

with the same amount of parameter. D-ConvNet receives crowd images as input and processes them by stack of typical

convolutional and pooling layers. Finally, a “divide and conquer” strategy is adopted to learn a pool of regressors to regress

the crowd density map on top of each convolutional feature map at top layers. Each regressor is jointly optimized with

the ConvNet by an amended cost function which penalizes correlations with others to make better trade-offs among the

bias-variance-covariance in the ensemble. We demonstrate the feasibility of D-ConvNets on VGG and our own customized

network.

Filter
concatenation

Previous layer

3x33x3

3x3 3x3 3x3

3x3

Figure 3: Demonstration of Multi-Scale Blob module used

in D-ConvNet-v2.

process of deep VGG network. With the proposed deep

negative learning strategy, It is also interesting to see that

1) both our deep(D-ConvNet-v1) and shallow (D-ConvNet-

v2) networks works well; 2) deep networks(D-ConvNet-

v1) are better than shallower networks(D-ConvNet-v2), as

expected. However, shallower network(D-ConvNet-v2)

still leads to competitive results and may be advantageous

in resource-constrained scenarios as it is computationally

cheaper; (3) finally, It is straightforward to see that D-

ConvNet-v1 outperforms others on this dataset.

4.3. Shanghaitech dataset

The Shanghaitech dataset [4] is a large-scale crowd

counting dataset, which contains 1198 annotated images

with a total of 330,165 persons. This dataset is the largest

one in the literature in terms of the number of annotated

pedestrians. It consists of two parts: Part A consisting of

482 images are randomly captured from the Internet, and

Part B including 716 images are taken from the busy streets

in Shanghai. Each part is divided into training and testing

subset. The crowd density varies significantly among the

subsets, making it difficult to estimate the number of pedes-

trians.

We compare our method with four existing methods on

the ShanghaiTech dataset. All the detailed results for each

Table 1: Comparing results of different methods on the

UCF CC 50 dataset.

Method MAE RMSE

Rodriguez et al.[31] 655.7 697.8

Lempitsky et al.[1] 493.4 487.1

Isrees et al.[30] 419.5 541.6

Zhang et al. [5] 467.0 498.5

CrowdNet [14] 452.5 -

Zhang et al. [4] 377.6 509.1

Zeng et al. [32] 363.7 468.4

Mark et al. [28] 338.6 424.5

Daniel et al. [15] 333.7 425.2

Sam et al. [17] 318.1 439.2

D-ConvNet-v1 288.4 404.7

D-ConvNet-v2 354.1 443.7

Table 2: Comparing performances of different methods on

Shanghaitech dataset.

Method
Part A Part B

MAE RMSE MAE RMSE

LBR+RR 303.2 371.0 59.1 81.7

Zhang et al. [5] 181.8 277.7 32.0 49.8

Zhang et al. [4] 110.2 173.2 26.4 41.3

Sam et al. [17] 90.4 135.0 21.6 33.4

D-ConvNet-v1 73.5 112.3 18.7 26.0

D-ConvNet-v2 101.7 152.8 25.7 38.6

method are illustrated in Table 2. In the same way, we

can see that all deep learning methods outperform hand-

crafted features significantly. The shallow model in [4]

employs a much wider structure by a multi-column design
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Table 3: Mean absolute errors of the WorldExpo’10 crowd counting dataset.

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average

LBP+RR 13.6 58.9 37.1 21.8 23.4 31.0

Zhang et al.[5] 9.8 14.1 14.3 22.2 3.7 12.9

Zhang et al. [4] 3.4 20.6 12.9 13.0 8.1 11.6

Sam et al. [17] 4.4 15.7 10.0 11.0 5.9 9.4

D-ConvNet-v1 1.9 12.1 20.7 8.3 2.6 9.1

D-ConvNet-v2 4.9 14.3 18.7 11.3 4.6 10.7

Table 4: Comparing transfer performances of different methods on Shanghaitech and UCF CC 50 dataset.

Method
Part A → Part B Part B → Part A Part A→ UCF CC 50

MAE RMSE MAE RMSE MAE RMSE

Zhang et al. [4] 85.2 142.3 221.4 357.8 397.7 624.1

D-ConvNet-v1 49.1 99.2 140.4 226.1 364 545.8

and performs better than the shallower CNN models in [5]

in both cases. D-ConvNet-v1 performs consistently better

than D-ConvNet-v2, as expected, because of employing a

much deep pre-trained model. Moreover, it is interesting to

see that with deep negative learning, D-ConvNet-v2 which

employs a relatively shallower network structure is on a

par with a much complicated and state-of-the-art switching

strategy [17]. Finally, our deep structure, D-ConvNet-v1

leads to the best performance.

4.4. WorldExpo’10 dataset

The WorldExpo’10 dataset [5] is a large-scale and cross-

scene crowd counting dataset. It contains 1132 annotated

sequences which are captured by 108 independent cameras,

all from Shanghai 2010 WorldExpo’10. This dataset con-

sists of 3980 frames with a total of 199,923 labeled pedestri-

ans, which are annotated at the centers of their heads. Five

different regions of interest(ROI) and the perspective maps

are provided for the test scenes.

We follow the standard evaluation protocol and use all

the training frames to learn our model. For comparison,

the quantitative results are given in Table 3. In the same

way, we observe that learned representations are more ro-

bust than the handcraft features. Even without using the per-

spective information, our results are still comparable with

another deep learning method [5] which used perspective

normalization to crop 3× 3 square meters patches with 0.5

overlaps on testing time. D-ConvNet-v1 outperforms all

other in terms of average performance. More specifically,

it achieves the best performance in four out of five scenes

while method in [17] win in the remaining one cases.

Table 5: Comparing Performance of NCL regularization

and conventional ensemble.

Datasets
Ensemble D-ConvNet-v1

MAE RMSE MAE RMSE

UCF CC 50 380.5 527.2 288.4 404.7

Shanghaitech Part A 91.6 127.9 73.5 112.3

Shanghaitech Part B 21.3 30.9 18.7 26.0

WorldExpo’10 16.4 - 9.1 -

5. Discussions

After demonstrating the superiority of D-ConvNets by

extensively comparing them with many state-of-the-art

methods on multiple datasets, we now provide more dis-

cussions to shed light upon their rationale and sensitivities

with some hyper-parameters. We also provide additional

experiments on cross-scene evaluation to further understand

the merits of the proposed method. We will focus on D-

ConvNet-v1 as it consistently performs better than the other

version.

5.1. NCL or Conventional Ensemble Learning?

In Table 5, we compared the performance of the pro-

posed method with conventional ensemble learning. It is

widely accepted that training deep networks like VGG re-

mains to be challenging. In [14], a shallow network was

proposed to assist the training and improve the perfor-

mance of deep VGG network. When compared with re-

sults achieved on dataset UCF CC 50 by other methods
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shown in Table 1, our implementation of conventional en-

semble method using a single VGG network leads to much

improved results. However, it still over-fits severely com-

pared with other state-of-the-art methods. More specifi-

cally, it was outperformed by recent methods such as multi-

column structure [4], multi-scale Hydra method [15], and

advanced switching strategy [17]. In contrast, the proposed

D-ConvNet leads to much improved performance compared

with this baseline in all cases and outperforms all aforemen-

tioned methods. As illustrated in Fig. 1, the NCL mecha-

nism used in the proposed D-ConvNet encourages diversi-

ties in the ensemble and thus it is more likely to allow error

canceling. The learning objective function in Eqn. 10 is

also in line with Breiman’s strength-correlation theory [24]

on the VC-type bounds for generalization ability of ensem-

ble models which advocated both accurate and decorrelated

individual models. It as well appreciated that the individ-

ual model should be able to exhibit different patterns of

generalization-a very simple intuitive explanation is that a

million identical estimators are obviously no better than a

single.

5.2. Cross Scene Evaluation

In order to test the generalization ability of the crowd

counting system, here we evaluate the proposed method in a

cross-scene setting where no laborious data annotation is re-

quired for counting people in new target surveillance crowd

scenes unseen in the training set. More specifically, we con-

sider the follow cross-scene scenarios: i) Part A → Part B,

ii) Part B → Part A and iii) Part A→ UCF CC 50. In each

case, D-convNet is trained on the first dataset and evaluated

on the second one. Results in Table 4 indicates that perfor-

mances in these scenarios are worse, as expected, probably

due to dataset bias. D-ConvNet performs much better in

all cases compared with the state-of-the-art method of [4].

This further verifies that through managing the intrinsic di-

versities of each model in the ensemble, D-ConvNet leads

to better generalization capability.

5.3. Effect of λ and K

Parameter λ controls the correlation between each model

in the ensemble. On the one hand, setting λ = 0 is equiv-

alent to train each regressor in an independent manner. On

the other hand, employing a larger value for λ overempha-

sizes the effect of diversity and may lead to poor individual

regressors. We empirically find that setting λ to be a rela-

tively smaller value ∈ [10−3, 10−2] usually leads to satis-

factory results. Parameter K stands for the number of base

regresors in the ensemble. Theoretically speaking, conven-

tional ensemble learning such as bagging and decision tree

ensemble requires larger ensemble sizes [33, 22, 23] to per-

form well. We empirically find that the performances of

D-ConvNet works well even with a relatively smaller en-

semble size (32-64). In this work, K is set to be 64 as no

significant improvement is observed with a more number of

regressors.

6. Conclusion

In this paper, we present a simple yet effective learn-

ing strategy for crowd counting. We pose typical counting

by regression as an ensemble learning problem and learn a

pool of weak regressors using convolutional feature maps.

The main component of this ensemble architecture is the

introduction of negative correlation learning (NCL), which

aims to improve generalization capability of the ensemble

models. We show the proposed method, named as Decorre-

lated ConvNet (D-ConvNet), has sound generalization ca-

pability through managing their intrinsic diversities. D-

ConvNet is generic and independent of the backbone fully-

convolutional network architectures. Extensive experiments

of very deep VGG as well as our customized network struc-

ture on several challenging datasets demonstrate the superi-

ority of D-ConvNet.
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