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Abstract

Light field cameras capture both the spatial and the an-

gular properties of light rays in space. Due to its prop-

erty, one can compute the depth from light fields in uncon-

trolled lighting environments, which is a big advantage over

active sensing devices. Depth computed from light fields

can be used for many applications including 3D modelling

and refocusing. However, light field images from hand-held

cameras have very narrow baselines with noise, making the

depth estimation difficult. Many approaches have been pro-

posed to overcome these limitations for the light field depth

estimation, but there is a clear trade-off between the ac-

curacy and the speed in these methods. In this paper, we

introduce a fast and accurate light field depth estimation

method based on a fully-convolutional neural network. Our

network is designed by considering the light field geometry

and we also overcome the lack of training data by proposing

light field specific data augmentation methods. We achieved

the top rank in the HCI 4D Light Field Benchmark on most

metrics, and we also demonstrate the effectiveness of the

proposed method on real-world light-field images.

1. Introduction

Light field cameras collect and record light coming from

different directions. As one of the most advanced techni-

ques introduced in the area of computational photography,

the new hand-held light field camera design has a broad im-

pact on photography as it changes how images are captured

and enables the users to alter the point of view or focal plane

after the shooting.

Since the introduction of the camera array system [38],

many approaches for making compact and hand-held light

field cameras have been proposed like the lenslet-based

cameras [25, 3, 2, 26], which utilize a micro-lens array

placed in front of the imaging sensor. Images captured from

the lenslet-based cameras can be converted into multi-view

images with a slightly different view point via geometric
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Figure 1. Comparison of the accuracy and the run time of light field

depth estimation algorithms. Our method achieved the top rank in

the HCI 4D Light Field Benchmark, both in accuracy and speed.

Our method is 85 times faster than OBER-cross+ANP, which is a

close second in the accuracy ranking.

calibration processes [6, 7]. Thanks to this special camera

structure, light field cameras can be used to estimate the

depth of a scene in uncontrolled environments. This is one

of the key advantages of the light field cameras over active

sensing devices [4, 1], which require controlled illumina-

tion and are therefore limited to the indoor use.

On the other hand, the hand-held light field cameras have

their own limitation. Due to their structure, the baseline

between sub-aperture images is very narrow and there ex-

ists a trade-off between the spatial and the angular resolu-

tion within the restricted image sensor resolution. Various

approaches [30, 16, 11, 42, 34, 43] have been introduced

to overcome these limitations and acquire accurate depth

maps. These methods achieve good performances close to

other passive sensor-based depth estimation methods such

as the stereo matching, but are less practical due to their

heavy computational burden. Although several fast depth

estimation methods [37, 15] have been proposed, they lose

the accuracy to gain the speed.

In this paper, we introduce a deep learning-based ap-

proach for the light field depth estimation that achieves both

accurate results and fast speed. Using a convolutional neu-

ral network, we estimate accurate depth maps with sub-
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pixel accuracy in seconds. We achieved the top rank in HCI

4D Light Field Benchmark1[14] on most quality assessment

metrics including the bad pixel ratio, the mean square error,

and the runtime as shown in Fig. 1.

In our deep network design, we create four separate,

yet identical processing streams for four angular directions

(horizontal, vertical, left and right diagonal) of sub-aperture

images and combine them at a later stage. With this archi-

tecture, the network is constrained to first produce meaning-

ful representations of the four directions of the sub-aperture

images independently. These representations are later com-

bined to produce higher level representation for the depth

estimation.

One problem of applying deep learning for light field

depth estimation is the lack of data. Publicly available light

field datasets do not contain enough data to train a deep net-

work. To deal with this problem of data insufficiency, we

additionally propose a data augmentation method specific

for the light field imaging. We augment the data through

scaling, center view change, rotation, transpose, and color

that are suitable for light field images. Our data augmenta-

tion plays a significant role in increasing the trainability of

the network and the accuracy of the depth estimation.

2. Related Work

The related works can be divided in two categories:

depth from a light field image using optimization ap-

proaches and learning-based approaches.

Optimization-based methods. The most representative

method for the depth estimation using light field images is

the use of the epipolar plane images (EPIs), which consist

of 2D slices angular and spatial directions [20, 10]. As the

EPI consists of lines with various slopes, the intrinsic di-

mension is much lower than its original dimension. This

makes image processing and optimization tractable for the

depth estimation. Wanner and Goldluecke [37] used a struc-

tured tensor to compute the slopes in EPIs, and refined ini-

tial disparity maps using a fast total variation denoising fil-

ter. Zhang et al. [43] also used the EPIs to find the matching

lines and proposed a spinning parallelogram operator to re-

move the influence of occlusion on the depth estimation.

Another approach is to exploit both defocus and corre-

spondence cues. Defocus cues perform better in repeating

textures and noise, and correspondence cues are robust in

bright points and features. Tao et al. [30] first proposed a

depth estimation that combines defocus and correspondence

cues. This approach was later improved by adding shading-

based refinement technique in [31] and a regularization with

an occlusion term in [34]. Williem and Park [39] proposed

a method robust to noise and occlusion. It is equipped with

1http://hci-lightfield.iwr.uni-heidelberg.de

a novel data cost using an angular entropy metric and adap-

tive defocus responses.

Many other methods have been proposed to improve

the depth estimation from light field image. Heber and

Pock [11] proposed a global matching term which formu-

lates a low rank minimization on the stack of sub-aperture

images. Jeon et al. [16] adopted a multi-view stereo match-

ing with a phase-based sub-pixel shift. The multi-view

stereo-based approach enabled the metric 3D reconstruction

from a real-world light field image.

These conventional optimization based methods have an

unavoidable trade-off between the computational time and

the performance. In this paper, we adopt a convolutional

neural network framework to gain both the speed and the

accuracy.

Learning based methods. Recently, machine learning

techniques have been applied to a variety of light field imag-

ing applications such as super-resolution [41, 40], novel

view generation [19], single image to a light field image

conversion [28], and material recognition [35].

For the depth estimation, Johannsen et al. [18] presented

a technique which uses EPI patches to compose a dictionary

with a corresponding known disparity. This method yielded

better results on multi-layered scenes. Heber et al. [13] pro-

posed an end-to-end deep network architecture consisting of

an encoding and a decoding part. Heber and Pock [12] pro-

posed a combination of a CNN and a variational optimiza-

tion. They trained a CNN to predict EPI line orientations,

and formulated a global optimization with a higher-order

regularization to refine the network predictions.

There are still issues in the aforementioned learning

based methods. Those methods only consider one direc-

tional epipolar geometry of light field images in designing

the network [12, 13], resulting in low reliability of depth

predictions. We overcome this problem via a multi-stream

network which encodes each epipolar image separately to

improve the depth prediction. Because each epipolar image

has its own unique geometric characteristics, we separate

epipolar images into multiple parts to make the deep net-

work to take advantage of the characteristics. Another issue

is that the insufficient training data limit the discriminative

power of the learned model and lead to over-fitting. In this

work, we propose novel data augmentation techniques for

light-field images that lead to good results without the over-

fitting issue.

3. Methodology

3.1. Epipoloar Geometry of Light Field Images

With the insights from previous works, we design an

end-to-end neural network architecture for the depth from

a light-field image exploiting the characteristics of the light
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Figure 2. EPINET: Our light field depth estimating architecture.

field geometry. Since the light field image has many angular

resolutions in the vertical and the horizontal directions, the

amount of data is much bigger than that of a stereo camera.

When using all the viewpoints of the light field images as an

input data, despite the accurate light field depth results, the

computation speed is several hundred times slower than the

stereo depth estimation algorithm. To solve this problem,

several papers proposed algorithms that only use horizontal

or crosshair viewpoints of light field images [37] [18] [43]

[29]. Similarly, we propose a depth estimation pipeline by

first reducing the number of images to be used for the com-

putation by exploiting the light field characteristics between

the angular directions of viewpoints.

The 4D light field image is represented as L(x, y, u, v),
where (x, y) is the spatial resolution and (u, v) is the angu-

lar resolution. The relationship between the center and the

other viewpoints of light field image can be expressed as

follows:

L(x, y, 0, 0) = L(x+d(x, y)∗u, y+d(x, y)∗v, u, v), (1)

where d(x, y) is the disparity of the pixel (x, y) in the cen-

ter viewpoint from its corresponding pixel in its adjacent

viewpoint.

For an angular direction θ (tan θ = v/u), we can refor-

mulate the relationship as follows:

L(x, y, 0, 0) = L(x+ d(x, y) ∗ u, y + d(x, y) ∗ u tan θ,

u, u tan θ) (2)

However, the viewpoint index is an integer, so there

are no corresponding viewpoints when tan θ is non-integer.

Therefore, we select images in the direction of four view-

point angles θ: 0, 45, 90, 135 degrees assuming that the

light field images have (2N + 1)× (2N + 1) angular reso-

lution.

3.2. Network Design

Multi-stream network. As shown in Fig. 2, we con-

struct a multi-stream networks for four viewpoints with

consistent baselines based on Sec. 3.1: horizontal, verti-

cal, left and right diagonal directions. Similar to the con-

ventional optical flow estimation and stereo matching ap-

proaches [8, 22], we encode each image stack separately in

the beginning of our network. In order to show the effec-

tiveness of the multi-stream architecture, we quantitatively

compare our multi-stream network to a single stream net-

work. As shown in Fig. 3, the reconstruction error using

the proposed method is about 10 percent lower, even when

using the same number of parameters as the one-stream net-

work. With this architecture, the network is constrained to

first produce meaningful representations of the four view-

points.

The multi-stream part consists of three fully convolu-

tional blocks. Since fully convolutional networks are known

to be effective architecture for pixel-wise dense predic-

tion [21], we define a basic block with a sequence of

fully convolutional layers: ’Conv-ReLU-Conv-BN-ReLU’

to measure per-pixel disparity in a local patch. To handle

the small baseline of light-field images, we use small 2x2

kernel with stride 1 to measure a small disparity value (±4

pixels).

To show the effect of different number of streams in the

network, we compare the performance of our network with

varying number of the streams. Using the same architec-

ture with almost the same number of parameters (5.1M),
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One-streamMulti-stream

MSE=0.0021, BP=0.57 MSE=0.0023, BP=0.81

Train curve Error map

Figure 3. Multi-stream vs one-stream: Test error during training

(left), and error map at the 10M iteration (right). In the error map,

white color represents lower errors.

Table 1. The effect of the number of viewpoints on performance.

1-stream 2-streams 4-streams

Input Views

MSE 2.165 1.729 1.393

Bad pixel ratio
7.61 5.94 3.87

(<0.07px)

we compare the difference in performance of our network

with different numbers of streams in Table 1. The network

with four streams shows the best performance in terms of

the bad pixel ratio and the mean square error.

After the multi-stream part, we concatenate all the fea-

tures from each stream, and the size of the feature becomes

four times larger. The merge network consists of eight

convolutional blocks that finds the relationships between

the features passed through the multi-stream network. The

blocks in the merge network have the same convolutional

structure with that of the multi-stream network except for

the last block. To inferring the disparity values with sub-

pixel precision, we construct the last block with a Conv-

ReLU-Conv structure.

3.3. Data Augmentation

Although there are some public light-field image

datasets, only a few of them have data that are under simi-

lar conditions as the real light field image with the ground-

truth disparity maps. In this paper, we use the 16 light-field

synthetic images containing various textures, materials, ob-

jects and narrow baselines provided in [14]. However, 16

light-field images are just not enough to generalize convolu-

tional neural networks. To prevent the overfitting problem,

data augmentation techniques are essential. Therefore, we

propose a light-field image specific data augmentation tech-

nique that preserves the geometric relationship between the

sub-aperture images.

Our first strategy is to shift the center view point of the

light field image. The synthetic light field dataset that we

used has 9×9 views, each with a 512×512 spatial resolu-

Figure 4. An example of the viewpoint augmentation: (-1,-1) shift.
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Figure 5. Data augmentation with rotation. When augmenting the

data with rotation, we also need to rearrange the connections to

put the stacked views into the correct network stream.

tion. As shown in Fig. 4, we select the 7×7 views and dis-

parity image of its center view to train our network. By

shifting the center view, we can get nine times more train-

ing sets through this view-shifting strategy. To validate the

performance according to the number of viewpoints and the

view-shifting augmentation, we compare performances of

the networks using 3×3, 5×5, 7×7, and 9×9 input views.

As shown in Table 2, we found that there are performance

gains when increasing the number of input views. How-

ever, the gain is marginal when comparing 9×9 views with

7×7 views. The 7×7 views shows the better performance

in the mean square error. This shows the effectiveness of

our view-shifting augmentation.

We also propose a rotation augmentation method for

light field images. As in the depth estimation [24] and the

optical flow estimation [8] using deep learning, the image

rotation in the spatial dimension has been widely used as

an augmentation technique. However, the conventional ro-

tational method cannot be directly used, as it does not con-

sider the directional characteristics of the light-field image.

In the multi-stream part of our network, we extract features
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Table 2. Effects of the angular resolutions and the augmentation techniques on performance.

Augular
resolution

3 × 3 5 × 5 7 × 7 9 × 9

Augmentaion type Full Aug Full Aug Color
Color +

Viewshift
Color +
Rotation

Color +
scaling

Full Aug Full Aug

Mean square error 1.568 1.475 2.799 2.564 1.685 2.33 1.434 1.461

Bad pixel ratio
(>0.07px)

8.63 4.96 6.67 6.29 5.54 5.69 3.94 3.91

for epipolar property of viewpoint sets. To preserve this

light field property, we first rotate sub-aperture images in

the spatial dimension, and then rearrange the connection

of the viewpoint sets and the streams as shown in Fig. 5.

This rearrangement is necessary as the geometric properties

change after the rotation. For example, pixels in the vertical

direction are strongly related to each other in the vertical

views as mentioned in Section 3.1. If we rotate the sub-

aperture images in the vertical viewpoints by 90 degrees, it

makes the horizontal view network stream to look at ver-

tical characteristics. Thus, the rotated sub-aperture images

should be input to the vertical view stream.

We additionally use general augmentation techniques

such as the scaling and the flipping. When the images are

scales, the disparity values need to be also scaled accord-

ingly. We tune the scales of both the image and the disparity

by 1/N times (N = 1, 2, 3, 4). The sign of disparity is re-

versed when flipping the light field images. With these aug-

mentation techniques: the view-shifting, rotation [90, 180,

270 degrees], image scaling [0.25, 1], color scaling [0.5, 2],

randomly converting color to gray scale from [0, 1]; gamma

value from [0.8, 1.2] and flipping, we can increase the train-

ing data up to 288 times the original data.

We validate the effectiveness of the light-field specific

augmentations. As seen in Table 2, there are large perfor-

mance gains when using the rotation and flipping. We also

observe that the scaling augmentation allows to cover vari-

ous disparity ranges, which is useful for real light-field im-

ages with very narrow baselines. Through the augmentation

techniques, we reduce disparity errors by more than 40%.

3.4. Details of learning

We exploit the patch-wise training by randomly sam-

pling gray-scale patches of size 23×23 from the 16 syn-

thetic light-field images [14]. To boost training speed,

all convolutions in the layers are conducted without zero

padding. We exclude some training data that contains re-

flection and refraction regions such as glass, metal and tex-

tureless regions, which result in incorrect correspondences.

Reflection and refraction regions were manually masked out

in Fig. 6. We also removed textureless regions where the

mean absolute difference between a center pixel and other

pixel in a patch is less than 0.02.

As the loss function in our network, we used the mean

Kitchen Museum Vinyl

F
ai

lu
re

ca
se

R
efl

ec
ti

o
n

m
as

k

Figure 6. (Top) Failure cases in regions with reflections. (Bottom)

Examples of reflection masks for training data.

absolute error (MAE) which is robust to outliers [9]. We

use Rmsprop [32] optimizer and set the batch size to 16.

The learning rate started at 1e-5 and is decreased to 1e-6.

Our network takes 5∼6 days to train on a NVIDIA GTX

1080TI and is implemented in TensorFlow [5].

4. Experiments

In this section, the performance of the proposed algo-

rithm is evaluated using synthetic and real-world datasets.

The 4D light field benchmark [14] was used for the syn-

thetic experiments. The benchmark has 9×9 angular and

512×512 spatial resolutions. For real-world experiments,

we utilized images captured with a Lytro illum [2].

4.1. Quantitative Evaluation

For the quantitative evaluation, we estimate the dispar-

ity maps using the test sets in the 4D Light Field Bench-

mark [14]. Bad pixel ratios and mean square errors were

computed for the 12 light-field test images. Three thresh-

olds (0.01, 0.03 and 0.07 pixels) for the bad pixel ratio are

used, in order to better assess the performance of algorithms

for difficult scenes.

In Fig. 7, we directly refer to the ranking tables, which

are published on the benchmark website. Our EPINET

shows the best performance in 3 out of 4 measures. Epinet-

fcn is our EPINET model using the vertical, the horizontal,

the left diagonal and the right diagonal viewspoints as input,
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Figure 7. Benchmark ranking (http://hci-lightfield.iwr.uni-heidelberg.de). Several versions of the proposed methods are highlighted.

Runtime (seconds)

Figure 8. Runtime benchmark of the algorithms

Table 3. Quantitative evaluation of deep learning based methods

using 50 synthetic LF images. The table provides the RMSE and

MAE. For [12, 13], the error metrics are directly referred from

[13].
Method (# of training images) RMSE MAE Time

[12] (850) 1.87 1.13 35s

[13] (850) 0.83 0.34 0.8s

Ours (250) 0.14 0.036 0.93s

and Epinet-fcn9x9 is a model that uses all 9×9 viewpoints.

The Epinet-fcn-m is a modified version of our Epinet-fcn.

Epinet-fcn-m predicts multiple disparity maps by flipping

and rotating (90, 180, 270 degrees) the given light field im-

age. The final estimation is the average of the estimated dis-

parity maps, which reduces the matching ambiguity. In ad-

dition to the accuracy, the EPINET is effectively the fastest

algorithm among the state-of-the-art methods as shown in

Fig. 8. Our computational time is second to MVCMv0, but

its depth accuracy is the last in the benchmark.

Qualitative results (Cotton, Boxes and Dots) are shown

in Fig. 10. The Cotton scene contains smooth surfaces,

and the Boxes scene is composed of slanted objects with

depth discontinuity occlusions. As can be seen from the ex-

amples, our EPINET reconstructs the smooth surface and

Heber [12] Heber [13] OursGround Truth

Figure 9. Comparison with deep learning-based methods [12, 13].

The results for [12, 13] are directly referred from [13].

the sharp depth discontinuity better than previous methods.

The EPINET infers accurate disparity values through the re-

gression part in the network as our fully-convolutional lay-

ers can precisely distinguish the subtle difference of EPI

slopes. The Dots scene suffers from image noise whose

levels varies spatially. Once again, the proposed method

achieves the best performance in this noisy scene because

the 2×2 kernel has the effect of alleviating the noise effect.

A direct comparison between the EPINET and other

state-of-the-art deep learning-based approaches [12, 13] can

be found in Table 3 and Fig. 9. We trained the EPINET on

250 LF images provided by the authors of [12, 13] whose

baseline is (-25, 5) pixels. The EPINET still outperforms

the works in [12, 13]. Our multi-streams strategy to re-

solve the directional matching ambiguities enables to cap-

ture sharp object boundaries like the airplane’s wing and

the toy’s head. Another reason for the better performance

is that the LF images of [12, 13] contain highly textured

regions with less noise compared to the HCI dataset.

4.2. Real­world results

We demonstrate that our EPINET also achieves reliable

results on real light-field images. We used the light-field im-

ages captured by a Lytro illum camera [2], provided by the

authors of [6]. The real-world dataset is challenging as the

data contain a combination of smooth and slanted surfaces

with depth discontinuity. Additionally, these images suf-

fer from severe image noise due to the inherent structural
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Cotton

Boxes

Dots

(a) GT (b) [36] (c) [33] (d) [16] (e) [18] (f) [39] (g) [43] (h) [27] (i) [15] (j) [29] (k) [17] (l) Ours

Figure 10. Qualitative results of the HCI light-field benchmark. Odd rows shows the estimated disparity results and even rows represent

error maps for bad pixel ratio of 0.03.

(a) (b)

(a) 7×7 (b) 9×9

Figure 11. Real world results using 7x7 angular resolution and 9x9

angular resolution of light field images.

problem in the camera. In Fig. 11, we compare the dis-

parity predictions from the EPINET using the input view-

points 7×7 and 9×9. Although the performances of both

EPINETs are similar in the synthetic data, there is a notice-

able performance differences between the two in the real-

world. In [37], it has been shown that the accuracy of the

depth estimation from light field improves with more view-

points, since they represent a consensus of all input views.

Thus, we used the EPINET with 9×9 input viewpoints for

the real-world experiments. We also remove sparse dispar-

ity errors using the conventional weighted median filter [23]

for only the real-world dataset.

Figure 12. Mesh rendering result of our disparity. (unit: mm)

Fig. 13 compares qualitative results with previous meth-

ods. Although the work in [16] shows good results, the

method requires several minutes for the depth estimation

with careful parameter tuning. In contrast, our EPINET

achieves the state-of-the-art results much faster, without any

parameter tuning. An accurate disparity map can facilitate

many applications. As an example, we reconstructed the

3D structure of an object captured by the Lytro illum cam-

era in the metric scale using the depth computed with our

method. In Fig. 12, the disparity map was converted into a

3D model in the metric scale using the calibration parame-

ters estimated by the toolbox of [6]. The impressive results

show that the proposed method can be used for further ap-

plications like the 3D printing.

4754



(a) (b) (c) (d) 
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Figure 13. Qualitative results of real world data. (a) reference view (center view), (b) [36], (c) [16], (d) [39], (e) [33], (f) [31], (g) [42]

5. Conclusion

In this paper, we have proposed a fast and accurate depth

estimation network using the light field geometry.

Our network has been designed taking into account the

light field epipolar geometry to learn the angular and the

spatial information using a combination of a multi-stream

network and a merging network. In addition, we introduced

light-field image-specific data augmentations such as view-

shifting and rotation. Using the proposed method, we could

overcome insufficient data problem and show the state-of-

the-art results on the Benchmark light-field images as well

as real-world light-field images.

There are still rooms for improving our method. First,

the easiest way to improve the CNN-based approach is to

boost the number of realistic dataset. Second, our network

fails to infer accurate disparities in reflection and textureless

regions. To handle this issue, we think that a prior knowl-

edge such as object material [35] can be included in the

future work. We also expect that our network model can

be improved by fusing a photometric cue [31] or a depth

boundary cue [34].
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