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Abstract

In this paper we address the problem of generating per-

son images conditioned on a given pose. Specifically, given

an image of a person and a target pose, we synthesize a

new image of that person in the novel pose. In order to deal

with pixel-to-pixel misalignments caused by the pose dif-

ferences, we introduce deformable skip connections in the

generator of our Generative Adversarial Network. More-

over, a nearest-neighbour loss is proposed instead of the

common L1 and L2 losses in order to match the details of

the generated image with the target image. We test our ap-

proach using photos of persons in different poses and we

compare our method with previous work in this area show-

ing state-of-the-art results in two benchmarks. Our method

can be applied to the wider field of deformable object gen-

eration, provided that the pose of the articulated object can

be extracted using a keypoint detector.

1. Introduction

In this paper we deal with the problem of generating

images where the foreground object changes because of a

viewpoint variation or a deformable motion, such as the ar-

ticulated human body. Specifically, inspired by Ma et al.

[12], our goal is to generate a human image conditioned on

two different variables: (1) the appearance of a specific per-

son in a given image and (2) the pose of the same person

in another image. The task our networks need to solve is

to preserve the appearance details (e.g., the texture) con-

tained in the first variable while performing a deformation

on the structure of the foreground object according to the

second variable. We focus on the human body which is an

articulated “object”, important for many applications (e.g.,

computer-graphics based manipulations or re-identification

dataset synthesis). However, our approach can be used with

other deformable objects such as human faces or animal

bodies, provided that a significant number of keypoints can

be automatically extracted from the object of interest in or-

der to represent its pose.

Pose-based human-being image generation is motivated

(a) Aligned task (b) Unaligned task

Figure 1: (a) A typical “rigid” scene generation task, where

the conditioning and the output image local structure is well

aligned. (b) In a deformable-object generation task, the in-

put and output are not spatially aligned.

by the interest in synthesizing videos [18] with non-trivial

human movements or in generating rare poses for hu-

man pose estimation [1] or re-identification [22] training

datasets. However, most of the recently proposed, deep-

network based generative approaches, such as Generative

Adversarial Networks (GANs) [3] or Variational Autoen-

coders (VAEs) [7] do not explicitly deal with the problem of

articulated-object generation. Common conditional meth-

ods (e.g., conditional GANs or conditional VAEs) can syn-

thesize images whose appearances depend on some con-

ditioning variables (e.g., a label or another image). For

instance, Isola et al. [4] recently proposed an “image-to-

image translation” framework, in which an input image x

is transformed into a second image y represented in another

“channel” (see Fig. 1a). However, most of these methods

have problems when dealing with large spatial deforma-

tions between the conditioning and the target image. For

instance, the U-Net architecture used by Isola et al. [4] is

based on skip connections which help preserving local in-

formation between x and y. Specifically, skip connections

are used to copy and then concatenate the feature maps of

the generator “encoder” (where information is downsam-
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pled using convolutional layers) to the generator “decoder”

(containing the upconvolutional layers). However, the as-

sumption used in [4] is that x and y are roughly aligned with

each other and they represent the same underlying structure.

This assumption is violated when the foreground object in

y undergoes to large spatial deformations with respect to x

(see Fig. 1b). As shown in [12], skip connections cannot

reliably cope with misalignments between the two poses.

Ma et al. [12] propose to alleviate this problem using

a two-stage generation approach. In the first stage a U-

Net generator is trained using a masked L1 loss in order

to produce an intermediate image conditioned on the target

pose. In the second stage, a second U-Net based generator

is trained using also an adversarial loss in order to generate

an appearance difference map which brings the intermediate

image closer to the appearance of the conditioning image.

In contrast, the GAN-based method we propose in this pa-

per is end-to-end trained by explicitly taking into account

pose-related spatial deformations. More specifically, we

propose deformable skip connections which “move” local

information according to the structural deformations repre-

sented in the conditioning variables. These layers are used

in our U-Net based generator. In order to move informa-

tion according to a specific spatial deformation, we decom-

pose the overall deformation by means of a set of local

affine transformations involving subsets of joints, then we

deform the convolutional feature maps of the encoder ac-

cording to these transformations and we use common skip

connections to transfer the transformed tensors to the de-

coder’s fusion layers. Moreover, we also propose to use a

nearest-neighbour loss as a replacement of common pixel-

to-pixel losses (such as, e.g., L1 or L2 losses) commonly

used in conditional generative approaches. This loss proved

to be helpful in generating local information (e.g., texture)

similar to the target image which is not penalized because

of small spatial misalignments.

We test our approach using the benchmarks and the eval-

uation protocols proposed in [12] obtaining higher qualita-

tive and quantitative results in all the datasets. Although

tested on the specific human-body problem, our approach

makes few human-related assumptions and can be easily ex-

tended to other domains involving the generation of highly

deformable objects. Our code and our trained models are

publicly available1.

2. Related work

Most common deep-network-based approaches for vi-

sual content generation can be categorized as either Vari-

ational Autoencoders (VAEs) [7] or Generative Adversar-

ial Networks (GANs) [3]. VAEs are based on probabilistic

graphical models and are trained by maximizing a lower

1https://github.com/AliaksandrSiarohin/pose-gan

bound of the corresponding data likelihood. GANs are

based on two networks, a generator and a discriminator,

which are trained simultaneously such that the generator

tries to “fool” the discriminator and the discriminator learns

how to distinguish between real and fake images.

Isola et al. [4] propose a conditional GAN framework for

image-to-image translation problems, where a given scene

representation is “translated” into another representation.

The main assumption behind this framework is that there

exits a spatial correspondence between the low-level infor-

mation of the conditioning and the output image. VAEs and

GANs are combined in [20] to generate realistic-looking

multi-view clothes images from a single-view input image.

The target view is filled to the model via a viewpoint label

as front or left side and a two-stage approach is adopted:

pose integration and image refinement. Adopting a similar

pipeline, Lassner et al. [8] generate images of people with

different clothes in a given pose. This approach is based

on a costly annotation (fine-grained segmentation with 18

clothing labels) and a complex 3D pose representation.

Ma et al. [12] propose a more general approach which

allows to synthesize person images in any arbitrary pose.

Similarly to our proposal, the input of their model is a con-

ditioning image of the person and a target new pose defined

by 18 joint locations. The target pose is described by means

of binary maps where small circles represent the joint lo-

cations. Similarly to [8, 20], the generation process is split

in two different stages: pose generation and texture refine-

ment. In contrast, in this paper we show that a single-stage

approach, trained end-to-end, can be used for the same task

obtaining higher qualitative results.

Jaderberg et al. [5] propose a spatial transformer layer,

which learns how to transform a feature map in a “canon-

ical” view, conditioned on the feature map itself. How-

ever only a global, parametric transformation can be learned

(e.g., a global affine transformation), while in this paper we

deal with non-parametric deformations of articulated ob-

jects which cannot be described by means of a unique global

affine transformation.

Generally speaking, U-Net based architectures are fre-

quently adopted for pose-based person-image generation

tasks [8, 12, 18, 20]. However, common U-Net skip con-

nections are not well-designed for large spatial deforma-

tions because local information in the input and in the out-

put images is not aligned (Fig. 1). In contrast, we propose

deformable skip connections to deal with this misalignment

problem and “shuttle” local information from the encoder

to the decoder driven by the specific pose difference. In

this way, differently from previous work, we are able to si-

multaneously generate the overall pose and the texture-level

refinement.

Finally, our nearest-neighbour loss is similar to the per-

ceptual loss proposed in [6] and to the style-transfer spatial-
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analogy approach recently proposed in [9]. However, the

perceptual loss, based on an element-by-element difference

computed in the feature map of an external classifier [6],

does not take into account spatial misalignments. On the

other hand, the patch-based similarity, adopted in [9] to

compute a dense feature correspondence, is very compu-

tationally expensive and it is not used as a loss.

3. The network architectures

In this section we describe the architectures of our gener-

ator (G) and discriminator (D) and the proposed deformable

skip connections. We first introduce some notation. At test-

ing time our task, similarly to [12], consists in generating an

image x̂ showing a person whose appearance (e.g., clothes,

etc.) is similar to an input, conditioning image xa but with

a body pose similar to P (xb), where xb is a different image

of the same person and P (x) = (p1, ...pk) is a sequence

of k 2D points describing the locations of the human-body

joints in x. In order to allow a fair comparison with [12], we

use the same number of joints (k = 18) and we extract P ()
using the same Human Pose Estimator (HPE) [1] used in

[12]. Note that this HPE is used both at testing and at train-

ing time, meaning that we do not use manually-annotated

poses and the so extracted joint locations may have some

localization errors or missing detections/false positives.

At training time we use a dataset X =

{(x
(i)
a , x

(i)
b )}i=1,...,N containing pairs of conditioning-

target images of the same person in different poses. For

each pair (xa, xb), a conditioning and a target pose P (xa)
and P (xb) is extracted from the corresponding image

and represented using two tensors Ha = H(P (xa)) and

Hb = H(P (xb)), each composed of k heat maps, where

Hj (1 ≤ j ≤ k) is a 2D matrix of the same dimension as

the original image. If pj is the j-th joint location, then:

Hj(p) = exp

(

−
‖p− pj‖

σ2

)

, (1)

with σ = 6 pixels (chosen with cross-validation). Us-

ing blurring instead of a binary map is useful to provide

widespread information about the location pj .

The generator G is fed with: (1) a noise vector z, drawn

from a noise distribution Z and implicitly provided using

dropout [4] and (2) the triplet (xa, Ha, Hb). Note that,

at testing time, the target pose is known, thus H(P (xb))
can be computed. Note also that the joint locations in xa

and Ha are spatially aligned (by construction), while in Hb

they are different. Hence, differently from [12, 4], Hb is

not concatenated with the other input tensors. Indeed the

convolutional-layer units in the encoder part of G have a

small receptive field which cannot capture large spatial dis-

placements. For instance, a large movement of a body limb

in xb with respect to xa, is represented in different locations

in xa and Hb which may be too far apart from each other to

be captured by the receptive field of the convolutional units.

This is emphasized in the first layers of the encoder, which

represent low-level information. Therefore, the convolu-

tional filters cannot simultaneously process texture-level in-

formation (from xa) and the corresponding pose informa-

tion (from Hb).

For this reason we independently process xa and Ha

from Hb in the encoder. Specifically, xa and Ha are con-

catenated and processed using a convolutional stream of the

encoder while Hb is processed by means of a second con-

volutional stream, without sharing the weights (Fig. 2). The

feature maps of the first stream are then fused with the layer-

specific feature maps of the second stream in the decoder

after a pose-driven spatial deformation performed by our

deformable skip connections (see Sec. 3.1).

Our discriminator network is based on the conditional,

fully-convolutional discriminator proposed by Isola et al.

[4]. In our case, D takes as input 4 tensors: (xa, Ha, y,Hb),
where either y = xb or y = x̂ = G(z, xa, Ha, Hb) (see

Fig. 2). These four tensors are concatenated and then given

as input to D. The discriminator’s output is a scalar value

indicating its confidence on the fact that y is a real image.

3.1. Deformable skip connections

As mentioned above and similarly to [4], the goal of the

deformable skip connections is to “shuttle” local informa-

tion from the encoder to the decoder part of G. The local in-

formation to be transferred is, generally speaking, contained

in a tensor F , which represents the feature map activations

of a given convolutional layer of the encoder. However, dif-

ferently from [4], we need to “pick” the information to shut-

tle taking into account the object-shape deformation which

is described by the difference between P (xa) and P (xb).
To do so, we decompose the global deformation in a set of

local affine transformations, defined using subsets of joints

in P (xa) and P (xb). Using these affine transformations and

local masks constructed using the specific joints, we deform

the content of F and then we use common skip connections

to copy the transformed tensor and concatenate it with the

corresponding tensor in the destination layer (see Fig. 2).

Below we describe in more detail the whole pipeline.

Decomposing an articulated body in a set of rigid sub-

parts. The human body is an articulated “object” which

can be roughly decomposed into a set of rigid sub-parts.

We chose 10 sub-parts: the head, the torso, the left/right

upper/lower arm and the left/right upper/lower leg. Each

of them corresponds to a subset of the 18 joints defined

by the HPE [1] we use for extracting P (). Using these

joint locations we can define rectangular regions which en-

close the specific body part. In case of the head, the region

is simply chosen to be the axis-aligned enclosing rectan-

gle of all the corresponding joints. For the torso, which is
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Figure 2: A schematic representation of our network architectures. For the sake of clarity, in this figure we depict P (·) as a

skeleton and each tensor H as the average of its component matrices Hj (1 ≤ j ≤ k). The white rectangles in the decoder

represent the feature maps directly obtained using up-convolutional filters applied to the previous-layer maps. The reddish

rectangles represent the feature maps “shuttled” by the skip connections from the Hb stream. Finally, blueish rectangles

represent the deformed tensors d(F ) “shuttled” by the deformable skip connections from the (xa, Ha) stream.

the largest area, we use a region which includes the whole

image, in such a way to shuttle texture information for the

background pixels. Concerning the body limbs, each limb

corresponds to only 2 joints. In this case we define a re-

gion to be a rotated rectangle whose major axis (r1) corre-

sponds to the line between these two joints, while the mi-

nor axis (r2) is orthogonal to r1 and with a length equal to

one third of the mean of the torso’s diagonals (this value

is used for all the limbs). In Fig. 3 we show an example.

Let Ra
h = {p1, ...,p4} be the set of the 4 rectangle corners

in xa defining the h-th body region (1 ≤ h ≤ 10). Note

that these 4 corner points are not joint locations. Using Ra
h

we can compute a binary mask Mh(p) which is zero every-

where except those points p lying inside Ra
h. Moreover, let

Rb
h = {q1, ...,q4} be the corresponding rectangular region

in xb. Matching the points in Ra
h with the corresponding

points in Rb
h we can compute the parameters of a body-part

specific affine transformation (see below). In either xa or

xb, some of the body regions can be occluded, truncated by

the image borders or simply miss-detected by the HPE. In

this case we leave the corresponding region Rh empty and

the h-th affine transform is not computed (see below).

Note that our body-region definition is the only human-

specific part of the proposed approach. However, similar

regions can be easily defined using the joints of other artic-

ulated objects such as those representing an animal body or

a human face.

Computing a set of affine transformations. During the

forward pass (i.e., both at training and at testing time) we

decompose the global deformation of the conditioning pose

with respect to the target pose by means of a set of local

affine transformations, one per body region. Specifically,

given Ra
h in xa and Rb

h in xb (see above), we compute the

6 parameters kh of an affine transformation fh(·;kh) using

Least Squares Error:

Figure 3: For each specific body part, an affine transforma-

tion fh is computed. This transformation is used to “move”

the feature-map content corresponding to that body part.

min
kh

∑

pj∈Ra
h
,qj∈Rb

h

||qj − fh(pj ;kh)||
2
2 (2)

The parameter vector kh is computed using the original

image resolution of xa and xb and then adapted to the spe-

cific resolution of each involved feature map F . Similarly,

we compute scaled versions of each Mh. In case either Ra
h

or Rb
h is empty (i.e., when any of the specific body-region

joints has not been detected using the HPE, see above), then

we simply set Mh to be a matrix with all elements equal to

0 (fh is not computed).

Note that (fh(),Mh) and their lower-resolution variants

need to be computed only once per each pair of real images

(xa, xb) ∈ X and, in case of the training phase, this is can

be done before starting training the networks (but in our

current implementation this is done on the fly).

Combining affine transformations to approximate

the object deformation. Once (fh(),Mh), h = 1, ..., 10
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are computed for the specific spatial resolution of a given

tensor F , the latter can be transformed in order to approx-

imate the global pose-dependent deformation. Specifically,

we first compute for each h:

F ′
h = fh(F ⊙Mh), (3)

where ⊙ is a point-wise multiplication and fh(F (p)) is

used to “move” all the channel values of F corresponding

to point p. Finally, we merge the resulting tensors using:

d(F (p, c)) = maxh=1,...,10F
′
h(p, c), (4)

where c is a specific channel. The rationale behind Eq. 4

is that, when two body regions partially overlap each other,

the final deformed tensor d(F ) is obtained by picking the

maximum-activation values. Preliminary experiments per-

formed using average pooling led to slightly worse results.

4. Training

D and G are trained using a combination of a stan-

dard conditional adversarial loss LcGAN with our proposed

nearest-neighbour loss LNN . Specifically, in our case

LcGAN is given by:

LcGAN (G,D) = E(xa,xb)∈X [logD(xa, Ha, xb, Hb)]+
E(xa,xb)∈X ,z∈Z [log(1−D(xa, Ha, x̂, Hb))],

(5)

where x̂ = G(z, xa, Ha, Hb).

Previous works on conditional GANs combine the adver-

sarial loss with either an L2 [13] or an L1-based loss [4, 12]

which is used only for G. For instance, the L1 distance

computes a pixel-to-pixel difference between the generated

and the real image, which, in our case, is:

L1(x̂, xb) = ||x̂− xb||1. (6)

However, a well-known problem behind the use of L1 and

L2 is the production of blurred images. We hypothesize

that this is also due to the inability of these losses to tol-

erate small spatial misalignments between x̂ and xb. For

instance, suppose that x̂, produced by G, is visually plau-

sible and semantically similar to xb, but the texture details

on the clothes of the person in the two compared images are

not pixel-to-pixel aligned. Both the L1 and the L2 loss will

penalize this inexact pixel-level alignment, although not se-

mantically important from the human point of view. Note

that these misalignments do not depend on the global defor-

mation between xa and xb, because x̂ is supposed to have

the same pose as xb. In order to alleviate this problem, we

propose to use a nearest-neighbour loss LNN based on the

following definition of image difference:

LNN (x̂, xb) =
∑

p∈x̂

minq∈N (p)||g(x̂(p))− g(xb(q))||1,

(7)

where N (p) is a n × n local neighbourhood of point p

(we use 5× 5 and 3× 3 neighbourhoods for the DeepFash-

ion and the Market-1501 dataset, respectively, see Sec. 6).

g(x(p)) is a vectorial representation of a patch around point

p in image x, obtained using convolutional filters (see be-

low for more details). Note that LNN () is not a metrics

because it is not symmetric. In order to efficiently compute

Eq. 7, we compare patches in x̂ and xb using their represen-

tation (g()) in a convolutional map of an externally trained

network. In more detail, we use VGG-19 [15], trained on

ImageNet and, specifically, its second convolutional layer

(called conv1 2). The first two convolutional maps in VGG-

19 (conv1 1 and conv1 2) are both obtained using a convo-

lutional stride equal to 1. For this reason, the feature map

(Cx) of an image x in conv1 2 has the same resolution of

the original image x. Exploiting this fact, we compute the

nearest-neighbour field directly on conv1 2, without losing

spatial precision. Hence, we define: g(x(p)) = Cx(p),
which corresponds to the vector of all the channel values

of Cx with respect to the spatial position p. Cx(p) has a

receptive field of 5× 5 in x, thus effectively representing a

patch of dimension 5 × 5 using a cascade of two convolu-

tional filters. Using Cx, Eq. 7 becomes:

LNN (x̂, xb) =
∑

p∈x̂

minq∈N (p)||Cx̂(p)− Cxb
(q)||1, (8)

In the Supplementary Material we show how Eq. 8 can be

efficiently implemented using GPU-based parallel comput-

ing. The final LNN -based loss is:

LNN (G) = E(xa,xb)∈X ,z∈ZLNN (x̂, xb). (9)

Combining Eq. 5 and Eq. 9 we obtain our objective:

G∗ = argmin
G

max
D

LcGAN (G,D) + λLNN (G), (10)

with λ = 0.01 used in all our experiments. The value of λ is

small because it acts as a normalization factor in Eq. 8 with

respect to the number of channels in Cx and the number of

pixels in x̂ (more details in the Supplementary Material).

5. Implementation details

We train G and D for 90k iterations, with the Adam opti-

mizer (learning rate: 2 ∗ 10−4, β1 = 0.5, β2 = 0.999). Fol-

lowing [4] we use instance normalization [17]. In the fol-

lowing we denote with: (1) Cs
m a convolution-ReLU layer
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with m filters and stride s, (2) CNs
m the same as Cs

m with

instance normalization before ReLU and (3) CDs
m the same

as CNs
m with the addition of dropout at rate 50%. Differ-

ently from [4], we use dropout only at training time. The en-

coder part of the generator is given by two streams (Fig. 2),

each of which is composed of the following sequence of

layers:

CN1
64 −CN2

128 −CN2
256 −CN2

512 −CN2
512 −CN2

512.

The decoder part of the generator is given by:

CD2
512 − CD2

512 − CD2
512 − CN2

256 − CN2
128 − C1

3 .

In the last layer, ReLU is replaced with tanh.

The discriminator architecture is:

C2
64 − C2

128 − C2
256 − C2

512 − C2
1 ,

where the ReLU of the last layer is replaced with sigmoid.

The generator for the DeepFashion dataset has one addi-

tional convolution block (CN2
512) both in the encoder and

in the decoder, because images in this dataset have a higher

resolution.

6. Experiments

Datasets The person re-identification Market-1501

dataset [21] contains 32,668 images of 1,501 persons

captured from 6 different surveillance cameras. This

dataset is challenging because of the low-resolution images

(128×64) and the high diversity in pose, illumination,

background and viewpoint. To train our model, we need

pairs of images of the same person in two different poses.

As this dataset is relatively noisy, we first automatically

remove those images in which no human body is detected

using the HPE, leading to 263,631 training pairs. For

testing, following [12], we randomly select 12,000 pairs.

No person is in common between the training and the test

split.

The DeepFashion dataset (In-shop Clothes Retrieval

Benchmark) [11] is composed of 52,712 clothes images,

matched each other in order to form 200,000 pairs of iden-

tical clothes with two different poses and/or scales of the

persons wearing these clothes. The images have a resolu-

tion of 256×256 pixels. Following the training/test split

adopted in [12], we create pairs of images, each pair depict-

ing the same person with identical clothes but in different

poses. After removing those images in which the HPE does

not detect any human body, we finally collect 89,262 pairs

for training and 12,000 pairs for testing.

Metrics Evaluation in the context of generation tasks is a

problem in itself. In our experiments we adopt a redundancy

of metrics and a user study based on human judgments. Fol-

lowing [12], we use Structural Similarity (SSIM) [19], In-

ception Score (IS) [14] and their corresponding masked ver-

sions mask-SSIM and mask-IS [12]. The latter are obtained

by masking-out the image background and the rationale be-

hind this is that, since no background information of the

target image is input to G, the network cannot guess what

the target background looks like. Note that the evaluation

masks we use to compute both the mask-IS and the mask-

SSIM values do not correspond to the masks ({Mh}) we use

for training. The evaluation masks have been built follow-

ing the procedure proposed in [12] and adopted in that work

for both training and evaluation. Consequently, the mask-

based metrics may be biased in favor of their method. More-

over, we observe that the IS metrics [14], based on the en-

tropy computed over the classification neurons of an exter-

nal classifier [16], is not very suitable for domains with only

one object class. For this reason we propose to use an addi-

tional metrics that we call Detection Score (DS). Similarly

to the classification-based metrics (FCN-score) used in [4],

DS is based on the detection outcome of the state-of-the-

art object detector SSD [10], trained on Pascal VOC 07 [2]

(and not fine-tuned on our datasets). At testing time, we use

the person-class detection scores of SSD computed on each

generated image x̂. DS(x̂) corresponds to the maximum-

score box of SSD on x̂ and the final DS value is computed

by averaging the scores of all the generated images. In other

words, DS measures the confidence of a person detector in

the presence of a person in the image. Given the high accu-

racy of SSD in the challenging Pascal VOC 07 dataset [10],

we believe that it can be used as a good measure of how

much realistic (person-like) is a generated image.

Finally, in our tables we also include the value of each

metrics computed using the real images of the test set. Since

these values are computed on real data, they can be consid-

ered as a sort of an upper-bound to the results a genera-

tor can obtain. However, these values are not actual upper

bounds in the strict sense: for instance the DS metrics on

the real datasets is not 1 because of SSD failures.

6.1. Comparison with previous work

In Tab. 1 we compare our method with [12]. Note that

there are no other works to compare with on this task yet.

The mask-based metrics are not reported in [12] for the

DeepFashion dataset. Concerning the DS metrics, we used

the publicly available code and network weights released by

the authors of [12] in order to generate new images accord-

ing to the common testing protocol and ran the SSD detector

to get the DS values.

On the Market-1501 dataset our method reports the high-

est performance with all but the IS metrics. Specifically,

our DS values are much higher than those obtained by [12].

Conversely, on the DeepFashion dataset, our approach sig-

nificantly improves the IS value but returns a slightly lower

SSIM value.

6.2. User study

In order to further compare our method with the state-of-

the-art approach [12] we implement a user study following
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Table 1: Comparison with the state of the art. (∗) These values have been computed using the code and the network weights

released by Ma et al. [12] in order to generate new images.

Market-1501 DeepFashion

Model SSIM IS mask-SSIM mask-IS DS SSIM IS DS

Ma et al. [12] 0.253 3.460 0.792 3.435 0.39∗ 0.762 3.090 0.95∗

Ours 0.290 3.185 0.805 3.502 0.72 0.756 3.439 0.96

Real-Data 1.00 3.86 1.00 3.36 0.74 1.000 3.898 0.98

the protocol of Ma et al. [12]. For each dataset, we show 55

real and 55 generated images in a random order to 30 users

for one second. Differently from Ma et al. [12], who used

Amazon Mechanical Turk (AMT), we used “expert” (vol-

untary) users: PhD students and Post-docs working in Com-

puter Vision and belonging to two different departments.

We believe that expert users, who are familiar with GAN-

like images, can more easily distinguish real from fake im-

ages, thus confusing our users is potentially a more diffi-

cult task for our GAN. The results2 in Tab. 2 confirm the

significant quality boost of our images with respect to the

images produced in [12]. For instance, on the Market-1501

dataset, the G2R human “confusion” is one order of mag-

nitude higher than in [12].

Finally, in the Supplementary Material we show some

example images, directly comparing with [12]. We also

show the results obtained by training different person re-

identification systems after augmenting the training set with

images generated by our method. These experiments indi-

rectly confirm that the degree of realism and diversity of our

images is very significant.

Table 2: User study (%). (∗) These results are reported in

[12] and refer to a similar study with AMT users.

Market-1501 DeepFashion

Model R2G G2R R2G G2R

Ma et al. [12] (∗) 11.2 5.5 9.2 14.9

Ours 22.67 50.24 12.42 24.61

6.3. Ablation study and qualitative analysis

In this section we present an ablation study to clarify

the impact of each part of our proposal on the final per-

formance. We first describe the compared methods, ob-

tained by “amputating” important parts of the full-pipeline

presented in Sec. 3-4. The discriminator architecture is the

same for all the methods.

• Baseline: We use the standard U-Net architecture [4]

without deformable skip connections. The inputs of

G and D and the way pose information is represented

2R2G means #Real images rated as generated / #Real images; G2R

means #Generated images rated as Real / #Generated images.

xa P (xa) P (xb) xb Baseline DSC PercLoss Full

Figure 4: Qualitative results on the Market-1501 dataset.

Columns 1, 2 and 3 represent the input of our model. We

plot P (·) as a skeleton for the sake of clarity, but actually

no joint-connectivity relation is exploited in our approach.

Column 4 corresponds to the ground truth. The last four

columns show the output of our approach with respect to

different baselines.

(see the definition of tensor H in Sec. 3) is the same as

in the full-pipeline. However, in G, xa, Ha and Hb are

concatenated at the input layer. Hence, the encoder of

G is composed of only one stream, whose architecture

is the same as the two streams described in Sec.5.

• DSC: G is implemented as described in Sec. 3, intro-

ducing our Deformable Skip Connections (DSC). Both
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Table 3: Quantitative ablation study on the Market-1501 and the DeepFashion dataset.

Market-1501 DeepFashion

Model SSIM IS mask-SSIM mask-IS DS SSIM IS

Baseline 0.256 3.188 0.784 3.580 0.595 0.754 3.351
DSC 0.272 3.442 0.796 3.666 0.629 0.754 3.352
PercLoss 0.276 3.342 0.788 3.519 0.603 0.744 3.271
Full 0.290 3.185 0.805 3.502 0.720 0.756 3.439

Real-Data 1.00 3.86 1.00 3.36 0.74 1.000 3.898

xa P (xa) P (xb) xb Baseline DSC PercLoss Full

Figure 5: Qualitative results on the DeepFashion dataset

with respect to different baselines. Some images have been

cropped for visualization purposes.

in DSC and in Baseline, training is performed using an

L1 loss together with the adversarial loss.

• PercLoss: This is DSC in which the L1 loss is replaced

with the Perceptual loss proposed in [6]. This loss is

computed using the layer conv2 1 of [15], chosen to

have a receptive field the closest possible to N (p) in

Eq. 8, and computing the element-to-element differ-

ence in this layer without nearest neighbor search.

• Full: This is the full-pipeline whose results are re-

ported in Tab. 1, and in which we use the proposed

LNN loss (see Sec. 4).

In Tab. 3 we report a quantitative evaluation on the

Market-1501 and on the DeepFashion dataset with respect

to the four different versions of our approach. In most of

the cases, there is a progressive improvement from Base-

line to DSC to Full. Moreover, Full usually obtains better

results than PercLoss. These improvements are particularly

evident looking at the DS metrics, which we believe it is a

strong evidence that the generated images are realistic. DS

values on the DeepFashion dataset are omitted because they

are all close to the value ∼ 0.96.

In Fig. 4 and Fig. 5 we show some qualitative results.

These figures show the progressive improvement through

the four baselines which is quantitatively presented above.

In fact, while pose information is usually well generated

by all the methods, the texture generated by Baseline often

does not correspond to the texture in xa or is blurred. In

same cases, the improvement of Full with respect to Base-

line is quite drastic, such as the drawing on the shirt of the

girl in the second row of Fig. 5 or the stripes on the clothes

of the persons in the third and in the fourth row of Fig. 4.

Further examples are shown in the Supplementary Material.

7. Conclusions

In this paper we presented a GAN-based approach for

image generation of persons conditioned on the appearance

and the pose. We introduced two novelties: deformable

skip connections and nearest-neighbour loss. The first is

used to solve common problems in U-Net based generators

when dealing with deformable objects. The second novelty

is used to alleviate a different type of misalignment between

the generated image and the ground-truth image.

Our experiments, based on both automatic evaluation

metrics and human judgments, show that the proposed

method is able to outperform previous work on this task.

Despite the proposed method was tested on the specific task

of human-generation, only few assumptions are used which

refer to the human body and we believe that our proposal

can be easily extended to address other deformable-object

generation tasks.
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